25
Inclusion of metal-organic complexes into cucurbit[8]uril Moscow 2005 Vladimir P. Fedin, Tatiana V. Mitkina, Olga A. Gerasko Nikolaev Institute of Inorganic Chemistry Russian Academy of Sciences, Siberian Branch Novosibirsk

Inclusion of metal-organic complexes into cucurbit[8]uril

  • Upload
    lorene

  • View
    53

  • Download
    9

Embed Size (px)

DESCRIPTION

Nikolaev Institute of Inorganic Chemistry Russian Academy of Sciences, Siberian Branch Novosibirsk. Inclusion of metal-organic complexes into cucurbit[8]uril. Vladimir P. Fedin, Tatiana V. Mitkina, Olga A. Gerasko. Moscow 2005. 2. The cucurbit[n]uril family ( CB[n]). - PowerPoint PPT Presentation

Citation preview

Page 1: Inclusion of metal-organic complexes into cucurbit[8]uril

Inclusion of metal-organic complexes into cucurbit[8]uril

Inclusion of metal-organic complexes into cucurbit[8]uril

Moscow2005

Vladimir P. Fedin, Tatiana V. Mitkina, Olga A. Gerasko

Nikolaev Institute of Inorganic Chemistry Russian Academy of Sciences, Siberian Branch

Novosibirsk

Page 2: Inclusion of metal-organic complexes into cucurbit[8]uril

The cucurbit[n]uril family (CB[n])The cucurbit[n]uril family (CB[n])22

R. Behrend, E. Meyer, F. Rusche, Liebigs Ann. Chem. 1905, 339, 1.

W. A. Freeman, W. L. Mock, N. Y. Shih, J. Am. Chem. Soc. 1981, 103, 7367.

Page 3: Inclusion of metal-organic complexes into cucurbit[8]uril

The cucurbit[n]uril family (CB[n])The cucurbit[n]uril family (CB[n])22

82 164 280 480

Cavity volume (Å3)

Page 4: Inclusion of metal-organic complexes into cucurbit[8]uril

Electrostatic potential maps for a) -CD and b) CB[7] The red to blue color range spans –80 to 40 kcal mol-1.

(K. Kim et al., Acc. Chem. Res. 2003, 36, 621)

CB[n]s exhibit a pronounced preference to interact with cationic rather than neutral or anionic guests whereas CDs prefer to bind to neutral or anionic

rather than cationic guests.

Page 5: Inclusion of metal-organic complexes into cucurbit[8]uril

cucurbit[8]uril (CB[8])C48H48N32O16

cucurbit[n]urilС6nH6nN4nO2n

n = 5 10symmetry Dnh

The cucurbit[n]uril family (CB[8])The cucurbit[n]uril family (CB[8])

17.5 Å

8.8 Å

6.9 Å

9.1 Å

dimensions of CB[8] molecule

22

M

LL

NHNH2H2N

L

NH

NH NH

HN

M

NH2

NH2

M

H2N

H2N

L

L

Guests:

Page 6: Inclusion of metal-organic complexes into cucurbit[8]uril

Possible approaches to synthesis of inclusion compounds of metal-organic

complexes into CB[8]

Possible approaches to synthesis of inclusion compounds of metal-organic

complexes into CB[8]

1) “metal aqua-complex + ligand@CB[8]” scheme

2) direct reaction “host + guest”

3) “guest substitution” approach

33

Page 7: Inclusion of metal-organic complexes into cucurbit[8]uril

+ Ni2+

12-fold excess of NiCl2·6H2O

yellow crystals, yield = 89%,

hot water soluble

Synthesis of {[Ni(cyclam)]@CB[8]}Cl2 ·16H2OSynthesis of {[Ni(cyclam)]@CB[8]}Cl2 ·16H2O

NHNH

NH NH

NN

NN

Ni

cyclam@CB[8]· 4HCl18H2O

1) The approach “metal aqua-complex + ligand@CB[8]”

Aqueous solution, reflux,

100°C, 2 h.

44

Page 8: Inclusion of metal-organic complexes into cucurbit[8]uril

The structure of {[Ni(cyclam)]@CB[8]}Cl2·16H2OThe structure of {[Ni(cyclam)]@CB[8]}Cl2·16H2O55

X-ray: square-planar environment of NiII; the angle between NiN4 plane and equatorial plane of CB[8] ~ 70°

ESI-MS: m/z = 793.245 {[Ni(cyclam)] + CB[8]}2+

Absorption spectra comparison:

side view

IR: CB[8] vibrations

Page 9: Inclusion of metal-organic complexes into cucurbit[8]uril

NiII/NiIII oxidation within the CB[8] cavity. Synthesis of {[NiIII(cyclam)]@CB[8]}(SO4)1.5·14⅔H2O

NiII/NiIII oxidation within the CB[8] cavity. Synthesis of {[NiIII(cyclam)]@CB[8]}(SO4)1.5·14⅔H2O

{[NiII(cyclam)]@CB[8]}2+ + Ce4+ {[NiIII(cyclam)]@CB[8]}3+ + Ce3+

X-ray cryst.: square-planar environment of NiIII; the angle between NiN4 plane and equatorial plane of CB[8] ~ 70°

IR: CB[8] vibrations, (SO42-) = 1121,

619 cm-1

Solid-state ESR: low spin (S = ½) d7 square-planar NiIIIN4 (!),

А = 286 G, gx = 2.142, gy = 2.277, gz = 2.209.

greenish-yellow crystals, water-insoluble, yield 88%

66

hyperfine structure

ESR

Page 10: Inclusion of metal-organic complexes into cucurbit[8]uril

cucurbit[8]uril

2) Direct approach “host + guest”77

2+NN

NN

Ni

Page 11: Inclusion of metal-organic complexes into cucurbit[8]uril

Synthesis of {trans-[M(en)2X2]@CB[8]}Cln·mH2O (M = CuII, NiII, CoIII ; X = Cl-, H2O)

Synthesis of {trans-[M(en)2X2]@CB[8]}Cln·mH2O (M = CuII, NiII, CoIII ; X = Cl-, H2O)

cucurbit[8]uril

2+ + 2+

NH2

NH2

Co

H2N

H2N

Cl

Cl

NH2

NH2

Cu

H2N

H2N

OH2

OH2

NH2

NH2

Ni

H2N

H2N

OH2

OH2

2) Direct approach “host + guest” 88

Page 12: Inclusion of metal-organic complexes into cucurbit[8]uril

NH2

NH2

Co

H2N

H2N

Cl

Cl

H2N

H2N

NH2Co

H2N

Cl

Cl

+ +Aqueous

solution, reflux, 100°C, 2 h.

CB[8]20H2O dark-green crystals, yield = 97%, hot water soluble

Synthesis of {trans-[Co(en)2Cl2]@CB[8]}Cl·17H2O Synthesis of {trans-[Co(en)2Cl2]@CB[8]}Cl·17H2O

ClCo

H2N

H2N NH2

H2N

Cl

+

+

+

99

Selective inclusion of trans-isomer !

2) Direct approach “host + guest”

cis

trans

Page 13: Inclusion of metal-organic complexes into cucurbit[8]uril

Orientations of the ethylenediamine complexes inside the cavity of CB[8]Orientations of the ethylenediamine complexes inside the cavity of CB[8]

NiCu Co

1010

{[Co(en)2Cl2]@CB[8]}+{[Ni(en)2(H2O)2]@CB[8]}2+{[Cu(en)2(H2O)2]@CB[8]}2+

Claq

aq

= 16°, Ni–N 2.10 Å,

Ni–O 2.13 Å

= 0°, Cu–N 2.00 Å, Cu–O 2.55 Å

= 90°, Co–N 1.92 Å, Co–Cl 2.24 Å

Page 14: Inclusion of metal-organic complexes into cucurbit[8]uril

trans-{[Ni(en)2(H2O)2]@CB[8]}2+

= 2.92 Å (Ni–N = 2.10 Å)

trans-{[Cu(en)2(H2O)2]@CB[8]}2+

= 0.42 Å (Cu–N = 2.00 Å)

13.01 Å

13.43 Å

11.46 Å

14.38 Å

NiCu

Distortion of CB[8] molecule upon encapsulation of guestsDistortion of CB[8] molecule upon encapsulation of guests

Page 15: Inclusion of metal-organic complexes into cucurbit[8]uril

X-ray cryst., elemental analysis

ESI-MS: m/z = 756 {CB[8] + Cu(en)2}

2+

ESR: g|| = 2.212, g = 2.049

IR: CB[8] vibrations

Dissociation upon dissolution in water: {[Cu(en)2(H2O)2]@CB[8]}2+

[Cu(en)2(H2O)2]2+ + СB[8]

Cu

Ni

Co

Cu

Ni

Co

Solution and solid state studies of {trans-[M(en)2X2]@CB[8]}Cln·mH2O

(M = CuII, NiII, CoIII ; X = Cl-, H2O)

Solution and solid state studies of {trans-[M(en)2X2]@CB[8]}Cln·mH2O

(M = CuII, NiII, CoIII ; X = Cl-, H2O)

1111

Page 16: Inclusion of metal-organic complexes into cucurbit[8]uril

Solution and solid state studies of {trans-[M(en)2X2]@CB[8]}Cln·mH2O

(M = CuII, NiII, CoIII ; X = Cl-, H2O)

Solution and solid state studies of {trans-[M(en)2X2]@CB[8]}Cln·mH2O

(M = CuII, NiII, CoIII ; X = Cl-, H2O) X-ray cryst., elemental analysis

ESI-MS: m/z = 510 {CB[8] + Ni(en)2 + Na}3+

1H NMR: CB[8] resonanses became broadened and en signals disappeared upon inclusion

IR: CB[8] vibrations

Stable in solution

May undergo reactions of guest substitution 2X + {Y@CB[8]} Y + {(X)2@CB[8]} N

C

N

X =

Cu

Ni

Co

Cu

Ni

Co

1212

Page 17: Inclusion of metal-organic complexes into cucurbit[8]uril

Cu

Ni

Co

Cu

Ni

Co

Solution and solid state studies of {trans-[M(en)2X2]@CB[8]}Cln·mH2O

(M = CuII, NiII, CoIII ; X = Cl-, H2O)

Solution and solid state studies of {trans-[M(en)2X2]@CB[8]}Cln·mH2O

(M = CuII, NiII, CoIII ; X = Cl-, H2O) X-ray cryst., elemental analysis

ESI-MS: m/z = 754 {CB[8] + Co(en)2}2+

IR: CB[8] vibrations

transcis isomerization (120°С, 45 hours)

ClCo

H2N

H2N NH2

H2N

Cl

+

+

H2N

H2N

NH2Co

H2N

OH2

OH2

3+

Absorption spectra comparison: hypsochromic schift upon inclusion

1313

Page 18: Inclusion of metal-organic complexes into cucurbit[8]uril

CB[8]

CB[8]

CB[8]

CH2 (en)NH2

(en)

original complex

inclusion compound

ClCo

H2N

H2N NH2

H2N

Cl

NH2

NH2

Co

H2N

H2N

Cl

Cl

+

+

1H NMR-spectra comparison of D2O solutions of [trans-Co(en)2Cl2]Cl

and {[trans-Co(en)2Cl2]@CB[8]}Cl·17H2O

1H NMR-spectra comparison of D2O solutions of [trans-Co(en)2Cl2]Cl

and {[trans-Co(en)2Cl2]@CB[8]}Cl·17H2O

= - 0.85 ppm = - 0.63 ppm

en resonanses are strongly upfield-shifted

upon inclusion

1414

Page 19: Inclusion of metal-organic complexes into cucurbit[8]uril

Thermogravimetric data for {[trans-Co(en)2Cl2]@CB[8]}Cl·17H2O, trans-[Co(en)2Cl2]Cl and CB[8]17H2O samples

Thermogravimetric data for {[trans-Co(en)2Cl2]@CB[8]}Cl·17H2O, trans-[Co(en)2Cl2]Cl and CB[8]17H2O samples

NH2

NH2

Co

H2N

H2N

Cl

Cl

+

225°|

medium: argon

ClCo

H2N

H2N NH2

H2N

Cl

+

T(decomposition of trans-[Co(en)2Cl2]Cl) increased by 135°С upon inclusion into CB[8]

NH2

NH2

Co

H2N

H2N

Cl

Cl

+

|360°

|225°

ClCo

H2N

H2N NH2

H2N

Cl

+

NH2

NH2

Co

H2N

H2N

Cl

Cl

+

T(decomposition of trans-[Co(en)2Cl2]Cl) increased by 135°С upon inclusion into CB[8]

|360°

||225°

Page 20: Inclusion of metal-organic complexes into cucurbit[8]uril

NHHN

HNNH

Ni

NHHN

HNNH

Ni

Violet crystals, yield 60%

NHNH2H2N Cu

N

N

OH2

+ + 2

Synthesis of {[Cu(dien)(4,4’-bipy)(H2O)]2@СB[8]}(ClO4)4·11H2OSynthesis of {[Cu(dien)(4,4’-bipy)(H2O)]2@СB[8]}(ClO4)4·11H2O

{[Ni(cyclam)]@ CB[8]}Cl2 ·16H2O

10-fold excess of [Cu(dien)(4,4’-bipy)

(H2O)](ClO4)2

2+

2+

4+2+

3) “Guest substitution” approach

NHNH2H2N Cu

N

N

OH2

NHNH2

H2NCu

N

N

H2O

Water solution, reflux, 100°C,

3 h.

1616

Page 21: Inclusion of metal-organic complexes into cucurbit[8]uril

The X-ray crystal structure of {[Cu(dien)(4,4’-bipy)(H2O)]2@СB[8]}

(ClO4)4·11H2O

The X-ray crystal structure of {[Cu(dien)(4,4’-bipy)(H2O)]2@СB[8]}

(ClO4)4·11H2O X-ray cryst. structure, elemental analysis

Absorption spectra: (): 600 (185), 270 (sh), 240 (46200) ( = , of free guest)

ESI-MS: m/z = 825.8 {CB[8] + Cu(dien)(4,4´-dipy)}2+

Solid-state ESR: gz = 2.312, gx = gy = 2.045 (g|| = 2.24, g = 2.06 for free guest) – Cu-OH2 become longer

IR: vibrations of CB[8], (С=С) and (С=N) 4,4´-dipy, (R2N-H) dien, (ClO4

-)

1717

Page 22: Inclusion of metal-organic complexes into cucurbit[8]uril

1818

ConclusionsConclusions

Inclusion into the cavity of cucurbit[8]uril may be helpful for:

1) isolation of metal complexes with unusual oxidation states and coordination environments

2) stabilization of guest complexes in solid state and in solution towards thermolysis, isomerization etc.

Page 23: Inclusion of metal-organic complexes into cucurbit[8]uril

Tatiana V. Mitkina Dr. Olga A. Gerasko

Page 24: Inclusion of metal-organic complexes into cucurbit[8]uril

AcknowledgementAcknowledgement

RFBR

INTAS (Prof. F. Secheresse)

RAS Target Programme (Prof. A.I. Konovalov)

1919

Page 25: Inclusion of metal-organic complexes into cucurbit[8]uril