18
833 Index a abiotic degradation 304 acetylated cellulose nanocrystals (ACNs) 592 acetylated cellulose nanofibers, surface degree of substitution 665 acetylation 667 NFC and BC nanopaper 666 porous cellulose nanofiber structures 665 advancing contact angles 735–737 aerogels 147. see also nanofibrillated cellulose (NFC), aerogels from cellulose solutions 659 description 659 from nanofibrillated cellulose 666–667 preparation 659 AKD-treated cellulose films, OTR for 671 Alberta Innovates Technology Futures 768 Alexa Fluor dyes 382 alkaline-acid-alkaline pretreatment 28 alkyl ketene dimer (AKD) 344, 350, 744–747 all-cellulose nanocomposites 590 amorphous cellulose, preparation 24–25 amorphous nanocellulose (ANC) 13, 56 anhydrides 343 anhydroglucose units (AGU) 5 aqueous emulsion polymerization 817 arabinoglucuronoxylan (AGX) 672 atomic absorption spectroscopy (AAS) 598 atomic force microscopy (AFM) 69, 377–378 atomic layer deposition (ALD) 740 attenuated total reflectance (ATR) FTIR 595–596 Avrami model 569–570 Avrami plots 569, 570 b bacterial cellulose (BC) 8–9, 102, 525, 533 DSC thermograms of 536, 537 nanopaper 665 TGA and DTG of 531 bacterial cellulose nanocrystal (BCW) 227 bacterial cellulose nanofibrils (BCNF) 401 bacterial cellulose/polycaprolactone (BC/PCL) nanocomposite 533 bacterial cellulose-polyvinyl alcohol (PVA) films 587 bacterial nanocellulose (BNC) 88–89 bacterial polyester poly(3-hydroxybutyrate-co-3 hydroxyvalerate) (PHBV) 534 batch process 769, 783, 785 bilayer mesoporous chiral nematic polymer 811 bio-based films, for barrier packaging 653 biodegradation 304 Handbook of Nanocellulose and Cellulose Nanocomposites, First Edition. Edited by Hanieh Kargarzadeh, Ishak Ahmad, Sabu omas, and Alain Dufresne. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.

Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

833

Index

aabiotic degradation 304acetylated cellulose nanocrystals

(ACNs) 592acetylated cellulose nanofibers, surface

degree of substitution 665acetylation 667NFC and BC nanopaper 666porous cellulose nanofiber structures

665advancing contact angles 735–737aerogels 147. see also nanofibrillated

cellulose (NFC), aerogelsfrom cellulose solutions 659description 659from nanofibrillated cellulose

666–667preparation 659

AKD-treated cellulose films, OTR for671

Alberta Innovates Technology Futures768

Alexa Fluor dyes 382alkaline-acid-alkaline

pretreatment 28alkyl ketene dimer (AKD) 344, 350,

744–747all-cellulose nanocomposites 590amorphous cellulose, preparation

24–25amorphous nanocellulose (ANC) 13,

56anhydrides 343anhydroglucose units (AGU) 5aqueous emulsion polymerization 817

arabinoglucuronoxylan (AGX) 672atomic absorption spectroscopy (AAS)

598atomic force microscopy (AFM) 69,

377–378atomic layer deposition (ALD) 740attenuated total reflectance (ATR) FTIR

595–596Avrami model 569–570Avrami plots 569, 570

bbacterial cellulose (BC) 8–9, 102, 525,

533DSC thermograms of 536, 537nanopaper 665TGA and DTG of 531

bacterial cellulose nanocrystal (BCW)227

bacterial cellulose nanofibrils (BCNF)401

bacterial cellulose/polycaprolactone(BC/PCL) nanocomposite 533

bacterial cellulose-polyvinyl alcohol(PVA) films 587

bacterial nanocellulose (BNC) 88–89bacterial polyester

poly(3-hydroxybutyrate-co-3hydroxyvalerate) (PHBV) 534

batch process 769, 783, 785bilayer mesoporous chiral nematic

polymer 811bio-based films, for barrier packaging

653biodegradation 304

Handbook of Nanocellulose and Cellulose Nanocomposites, First Edition.Edited by Hanieh Kargarzadeh, Ishak Ahmad, SabuThomas, and Alain Dufresne.© 2017Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 byWiley-VCH Verlag GmbH & Co. KGaA.

Page 2: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

834 Index

biomass-based polyester matricesCNC 309–314CNF 305–307

biomedicine, cellulose nanomaterials in821–825

biomimetic stimuli-responsivenanocomposites 750

bio-nanocomposites 302, 534CNCmatrix, distribution 317–318microstructure effects 325–326natural polymer matrices314–317

polyester matrices 309–314property effects 319–325

CNFmatrix, distribution 317–318microstructure effects 325–326natural polymer matrices307–309

polyester matrix 305–307property effects 319–325

bleaching 28British Standards Institute (BSI) 697butyl acrylate polymerization, on NFC

surface 668

ccalorimetry 74–75capillary viscometry 76carboxymethyl xylan (CMX) films 672Cassie-Baxter model 734castor oil-based segmented

polyurethane 592cationized fibrils 78213C cross polarization magic angle

spinning nuclear magneticresonance (CP/MAS 13C NMR)587

cellobiose 801CelluForce plant 768, 780cellulose 3, 242AFM 69algae 8applications to 611–612bacterial 8–9, 57biochemical methods 77

chemical composition 242chemical methods 77CP/MAS 13C NMR 65–67crystal morphology 764definition 52, 763, 801dehydration reaction 526electron microscopy 67–69and glucose 763hierarchical architecture 3hierarchical structure 3industrial history 762infrared and Raman spectroscopy

70–71LLS 69–70macromolecules 53moisture absorption 665nanocrystallites 53nitrate 753noncrystalline 54physicochemical methodscalorimetry 74–75GC 75HPLC 75sorption 73–74viscometry methods 76zeta potential 76–77

physicomechanical propertiesmechanical testing 72physical testing 72

plant materials 8in plants 801and starch 763structural characteristics 54structural organization 53structure and chemistry 5–7superhydrophobic surfaces 732supramolecular structure 54thermal decomposition 526, 527thermal stability of 527thermoanalytical methods 71–72tunicates 8X-ray scattering methods 57crystalline unit cell 58crystallinity calculation 61–65nanocrystallites 59–61

cellulose acetate 762nanofibers 751

Page 3: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

Index 835

cellulose aerogels 738atomic layer deposition 740bacterial 741in carbonization 740drying methods 739fluorinated surfactants 740–741surface topography 740TiO$_2$ coating 740

cellulose-based aerogels 659cellulose-based nanofibers 554cellulose-binding-modules (CBMs)

146–147cellulose–clay nanocomposite films

671cellulose crystallinity 764–766cellulose crystallites. see cellulose

nanocrystals (CNCs)cellulose crystals 764–766. see also

cellulose nanocrystals (CNCs)cellulose films, for gas barrier

applications 671cellulose hydrolysis, in sulfuric acid

531cellulose lauroyl ester (CLE) 751–752cellulose microfibrils (CMF) 11cryocrushing 17grinding 15–17high-pressure homogenization

13–14HIUS 17–18microfluidizer 14–15

cellulose nanocompositesglass transition temperature of 538melting and glass transition

temperature of 538–540melting temperature of 538, 541thermal expansion coefficient of

542–544thermal conductivityof 545–546thermal degradation of 532–534

cellulose nanocrystals (CNCs) 11–12,56, 525, 584, 630, 750, 764,801–802. see also naturalrubber/nanocellulose basedgreen nanocomposites

acid recovery 778–779aerogels, fabrication method 660

assemblies and implications125–131

bionanocompositematrix, distribution 317–318microstructure effects 325–326natural polymer matrices314–317

polyester matrices 309–314property effects 319–325

from bleached softwood kraft pulp802

characterization 78–86, 688chemical modification 459crystallinity 615–616crystallization in 558–565diafiltration 775–777dynamic mechanical characterization

453, 456nanocomposites 457–459

exposureimmune responses and oxidativestress 700

inflammatory and oxidativeresponses 700

filtration 774heat requirements 777high-resolution SEM images 555human corneal epithelial cell viability

in vitro 822hydrolysis 766, 767with metal salt catalyst 23with solid acids 22

hydrophilic polymer matricesreinforcement 470–473

hydrophobic polymeric matricesreinforcement 459–470

influencechemical modification 494–495structure and morphology490–494

interfacial interactions 554chains entanglement 423–424crosslinking 422–423hydrogen bonding 418–420nanocomposites reinforced424–427

percolated network 420–422

Page 4: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

836 Index

cellulose nanocrystals (CNCs) (contd.)layer-by-layer (LbL) assembly

131–134mapping 618–619mechanical properties 84mechanical test methods 427compressive testing 428shear testing 428–429

mixing of pulp and sulfuric acid772–774

morphology and dimensions396–400

nanocellulose labeling 378–384n-butanol 778orientation 616–617preparation 13, 801–802acid hydrolysis 18–22cryocrushing 17grinding 15–17high-pressure homogenization 13HIUS 17–18hydrolysis 22–23microfluidizer 14–15TEMPO-meditated oxidationmethod 24

processing technology 401electrospinning technology413–416

solution blending method401–409

thermoprocessing method409–413

process scale and processing basics767–772

product drying 777–778production capability 768production cost items 779production facility 772product purification 775–777product separation using centrifuge

774–775PU nanocomposites 591–594Raman frequencies comparison of

pulp 614Raman spectra 612–614rheology and liquid crystal phase

transition 486–489

scale up and production status 780solvent exchange drying 777–778surface treatment of 534synthesis 247–248tensile deformation 619–620tetracycline hydrochloride 822thermoset nanocomposites 252from wood pulp 555X-ray diffraction 766

cellulose nanofibril (CNF) 11, 302acid and enzyme treatments 781aerogels 660cyclic desorption 662–664shape recovery ability 662–664

and AgNC films 824and AgNP composites 825antibacterial ability 824biocompatibility 824bionanocompositematrix, distribution 317–318microstructure effects 325–326polyester matrix 305–307property effects 319–325

characterization 688controlled drug delivery 823crystallinity 615crystallization in 558–565description 780developments 621–622dynamic mechanical characterization

451DMA 453–454nanoindentation 456tensile testing 455–456

flammability properties 251flammability studies 688–689flowable aqueous dispersions 88high-resolution SEM images 555in humid environments 744hydrogels 135, 136immobilization of biomolecules 825influence 56, 86, 553, 554, 802, 803chemical modification 494–495structure and morphology490–494

interfacial interactions 418chains entanglement 423–424

Page 5: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

Index 837

crosslinking 422–423hydrogen bonding 418–420nanocomposites reinforced424–427

percolated network 420–422LbL 132mechanical properties 417mechanical test methodscompressive testing 428shear testing 428–429

methacrylic-based gel-polymerelectrolytes 820

morphology and dimensions396–400

nanopaper 819–820network-like architecture 142orientation 616–617pilot plants 781on polydimethylsiloxane membrane

824polyelectrolyte multilayer preparation

821preparation 246enzymatic hydrolysis 24steps 744

processing technologyelectrospinning technology413–416

solution blending method401–409

thermoprocessing method409–413

Raman frequencies comparison ofpulp 614

Raman spectra 612–614Rayonier Corporation 780rheological property 485–486suspensions 596synthesis 247TEMPO (see 2,2,6,6-tetramethyl-4-

hydroxypiperidine-1-oxyl(TEMPO))

tensile deformation 620–621from wood pulp 555wood pulp treatment 781

cellulose nanofibrillated fiber 525cellulose nanofibrous mats (CNM) 413

cellulose nanomaterialsaccidental release and storage

697–698in biomedicine and pharmaceuticals

821–825consumer exposure and risk

701–703environmental fate and mobility 717environmental receptors 715environmental safety 715–717exposure controls and personal

protective equipment 698hazard data 703oral and dermal exposure routes

702–703physicochemical and safety aspects

688–689physicochemical characteristics

717–720product life-cycle, stages of 691tumorigenesis 704

cellulose nanoparticlesbiodegradation 703–704biokinetics 703–704biopersistence 704properties and

applications 762, 763cellulose nanorods (CNR) 766–767cellulose nanowhiskers (CNW). see

cellulose nanocrystals (CNCs)cellulose nanoyarn (CNY) 13, 89cellulose triacetate (CTA) 748–749cellulose whiskers films 653cellulosic fibres, flammability

characteristics 250cellulosic nanostructures 178cellulosic reinforcement 284compatibility 285–286composite strength 286fiber agglomeration 285low density 285

cetyltrimethylammonium bromide(CTAB) 664–665

cetyl trimethylammonium bromide(CTAB)-coated CNC 822

chain confinement 562chemical pulping process 28

Page 6: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

838 Index

chiral mesoporous carbon films818–820

chiral nematic assembly 126chiral nematic structure formation, in

nanocomposite hydrogels 812,813

chiral optoelectronics, photonichydrogels for 811–815

chitin nanocrystals 219chitosan (CS) 308, 316, 501chromophore 382CNC. see cellulose nanocrystal (CNC)CNC-based nanocomposite hydrogelsresponsive behavior from 815swelling of 814

CNC-PANI-DBSA nanocomposite films817

CNC–polymer nanocompositehydrogels 813

CNF-induced inflammatory response699

CNF–TiO$_2$ hybrid films 599coating treatment 345–346cold crystallization temperature 562complex electric modulus 637compression mold 412cone calorimetry 260–261contact angle hysteresis 735–737continuous process 770, 785–786controlled drug delivery (CDD) 823cotton 762cotton nanowhiskers 590countercurrent filtrate process 776coupling agentsaffinity and adhesion 340barrier properties 354–355mechanical properties 350–352morphological properties 355physical properties 355–357pretreatmentcoating 345–346graft co-polymerization 346–347maleation 347methacrylate graftco-polymerization 347

unified mixing and treatment347–350

reaction mechanisms 344–350thermal properties 352–354types and classification 340–344

covalent bonding 590critical point drying 777cross-linked rubber based

nanocomposites 221–222cross-polarization magic angle spinning

13C NMR spectroscopy(CP/MAS 13C NMR) 65–67

cryocrushing 17cryofracture 384, 386crystalline allomorphs 584crystalline unit cell 58crystallinity 615–616, 765crystallites 53crystallization, in polymer/CNCs (or

CNFs) nanocomposites558–565

ddeflagration index 688deformation behavior, of dry vs. wet

aerogels 663degradation 304degree of surface substitution (DSS)

105depolymerization 526diafiltration process 769, 775dielectric spectroscopy 629differential scanning calorimetry (DSC)

306, 535, 566evaluate thermal properties 193methods of investigations 71thermograms 561, 567PEO/CNC films 572PEO/CNF films 572PEO films 572and relative crystallinity 571–572

differential thermal analysis (DTA) 71dimethylformamide (DMF) 562doped CNC-PANI-DBSA

nanocomposite films 818doxorubicin hydrochloride (DOX) 822droplet on surface, pinning behavior of

737droplet-surface-gas system 736

Page 7: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

Index 839

dust overload, in lungs 700dynamic mechanical analysis (DMA)

321, 448–449, 562of nanocomposite films 750natural rubber/nanocellulose based

green nanocomposites 631dynamic mechanical characterizationCNC 453, 456CNF 451nanoindentation 456tensile testing 455–456

composite material 448–451dynamic mechanical thermal analysis

(DMTA) 192, 193, 535

eecotoxicological study, of CN exposure

effects 716electric modulus 637electron microscopy 67–69, 370–377electron spin resonance spectroscopy

(ESR) 590electrospinning process 25, 26, 186,

748electrospinning technology 413–416electrospun CTA mats 748electrospun nanofibers, crystallization

of 565electrostatically adsorbed multilayered

films 670elementary fibrils 801empty palm fruit bunch fiber (EPFBF)

15energy dispersive X-ray diffraction

(EDS) 598environmental health and safety (EHS),

roadmapenvironmental and pollution

prevention benefits 724–725human health effects 723inhalation 723issues for nanomaterials 684–686measurement challenges for CN

687–688measurement methods 722oral and dermal exposure 723–724physicochemical data 722

priorities 720product life-cycle 686–687purpose 720safe exposure levels 721

enzymatic pretreatment 28–29evaporation-induced self-assembly

(EISA), of CNC films 809

ffacile two-step dip coating method 745feeding and mixing pulps, processes for

772fiber aspect ratio 188–189fiber, definition of 697fiber dispersion 187–188fiber-matrix adhesion 188fiber orientation 189–190fiber volume fraction 190fibrous nanocellulose, characterization

86–89fire retardancy 238–239flame retardant 241, 256flammability studies 688–689characterizationcone calorimetry 260–261LOI 258–259PCFC 261UL-94 test 259–260

impregnation 257–258intumescent coatings 254–255nanometric particles 256surface treatment 256–257

fluorescent labeling 378fluoroacrylic latex reinforced

superhydrophobicbiopolymer-clay nanocompositecoatings 754

Förster resonance energy transfer(FRET) 367

Fourier transform (FT) 70Fourier transform infrared (FTIR)

spectroscopy 583–585, 597of BC/PEO composites 588of chitosan /CNC nanocomposite

585, 586of CNC (I) 584––586of PU/ACN nanocomposites 593

Page 8: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

840 Index

Fourier transform (FT)-Ramaninstruments 611

Fourier transform (FT)-Raman spectra618

freeze-dried CNC, TGA curves of 533fully green polymer matrices 302

ggalactoglucomannan (GGM) 672gas chromatography (GC) 75gas permeance 654genotoxic potential, of cellulose

nanomaterials 704glass phase transition temperature, of

cellulose vs. water 535Globally Harmonized System of

Classification and Labeling(GHS) 697

graft copolymerization 346–347

hhard segments (HS) nanocellulose 592H-bonded carbonyl groups 591heat release rate (HRR) curves 262hemicelluloses 672, 763Hermans-Weidinger (HW) 61–62heteropolysaccharides 137high boiling solvents 778high-intensity ultrasonication (HIUS)

17–18high-performance liquid

chromatography (HPLC) 75high-pressure homogenization (HPH)

13–141H NMR spectroscopy 587H2SO4-catalyzed CNCs 822human health effectsand biokinetics 703–704by exposure type 704–714genotoxicity 704

hybrid compositesalignment, of reinforcing fibers 288challenge for 275hierarchical structure 276layers 288matrix, cellulose 288practical character

cost 289eco-friendly character 290formulation and practical design289–290

safety 289soluble matrix materials 287–288summingevidence of synergism 291linkages 292–293load distribution 292nano effects 293rule of mixtures 290–291

thermoplastic matrix 287thermoset resins 287woven fabric 289

hybrid shish–kebab (HSK), formation of558

hydrogels 509hydrogen bonding 418–420hydrolysiswith gaseous acids 22–23with metal salt catalyst 23with solid acids 22TEMPO-meditated oxidation 24

hydrophobic cellulose nanopaper 744

iImerys process 781immobilization of biomolecules 825impregnation 257–258infrared carbonyl absorption band 592infrared spectra 597infrared spectroscopy (IR) 70–71inhalationcellulose dust 699OECD TG 403, 699physical responses 699

inherently conducting polymer (ICP)816

inorganic silicon alkoxide (TEOS) 596interfacial crystallization 556, 558intumescent coatings 254–255inverse complex permittivity 637ionic liquids (ILs) 29–30ionic strengths 135–136isocyanates 343isothermal crystallization 567–571

Page 9: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

Index 841

activation energy in 570–571Avrami model 569–570parameters 569PHBV 563

Izod impact test 387

jJeziorny model 572, 574–577

kKenaf fibers 460

llaser light scattering (LLS) 69–70laser scanning confocal microscopy

367latex based polymers 222layer-by-layer (LbL)

assembly 131–134deposition, of nanofibers 670–671thermoplastic cellulose

nanocomposites 186–187Leidenfrost effect 740lignin 763limiting oxygen index

(LOI) 258–259linear thermal expansion 542linen 762liquid crystalline (LC) assembly 125liquid crystal structures 134liquid epoxidized

natural-rubber-toughenedunsaturated polyester(LENR/UPR) 538

liquid natural-rubber-toughenedunsaturated polyester(LNR/UPR) 534, 538

liquid nitrogen freeze-drying method739

liquid propane freeze-drying method739

liquid repellent nanocellulose coatings,on paper 745

low density polyethylene (LDPE) 589nanocomposites 538

LyocellTM filament microfiber 749lysine diisocyanate (LDI) 343, 355

mmagnetic glycerol drop 752maleated polypropylene (MAPP) 618maleation 347maleic anhydride (MA) 343Maxwell–Wagner–Sillars (MWS) effect

636measurement challenges, for cellulose

nanomaterials 687mechanical pulping 772melt-compounding methods 187melting compounding technique

409–413melting temperature 535of cellulose nanocomposites 538,

541melt processing technique 532–534,

556membrane filtration system 776mesoporous chiral nematic bilayer PF

resin film synthesis 810mesoporous photonic cellulose (MPC)

film 803–808mesoporosity 806optical characterization 806properties 803sensing performance 807, 808structural characterization 804–805two-step synthesis 804

methacrylate graft co-polymerization347

methacryloxy-propyl trimethoxysilane(MPMS) 601

methylated CNCs 822microcrystalline cellulose (MCC)

9–10, 823microfibrillated cellulose (MFC). see

cellulose nanofibril (CNF)microfibrils 178microfluidizer 14–15micro-Raman experiment 611microscale combustion calorimetry

(MCC) 261microscopic techniquesnanocellulose labeling 378–384nanocomposite fracture 384–389optical microscopy 366–369, 377

Page 10: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

842 Index

mineral-based reinforcementcharacteristics 276–277compatibility 282–283elastic modulus 281–282fire resistance 278–279force to failure 280–281gas barrier 280intercalation effects 283–284thermal conductivity 279–280thermal stability and

resistance 279toughness 282water-uptake reduction 277–278

modified atmospheric packaging (MAP)653

moisture barrier properties 664moisture sorption, in nanocellulose

665multiwall carbon nanotubes (MWCNT)

148

nnanocelluloses 525, 583, 595, 651, 667aerogels 147–151, 651amorphous cellulose preparation

24–25artificial 56based composites characterization,

spectroscopic techniquesnanocomposites based polymernetworks 590–591

organic–inorganic hybrid materials595–602

organic soluble polymeric matrices589–590

polyurethanes 591–595water-soluble polymeric matrices583–589

characterization 78–86chemical functionality 245classification 9ANC 13CMF 11CNC 11–12CNF 11CNY 13MCC 9–10

CNC preparation 18acid hydrolysis 18–22hydrolysis 22–24TEMPO-meditated oxidationmethod 24

CNF/CMF preparation 13cryocrushing 17grinding 15–16high-pressure homogenization13–14

HIUS 17–18microfluidizer 14–15

CNF preparation, enzymatichydrolysis 24

crosslinking agents 110–113crystallinity 615–616esterificationacetylation, with acetic anhydride103–104

with carboxylic acid 104–105gas phase esterification 105–107

fiber spinning 151gas barrier property 653in hemicellulose based materials

672–673hydrogels, drying of 738hydrophilicity of 657, 658LbL 132lowering water vapor sorption

664–666mechanical properties 133morphology of 655nanoyarn preparation 25–26polymerization of 668polymers, grafted 110preparation 246pretreatment 27alkaline-acid-alkaline 28bleaching 28enzymatic pretreatment 28–29ionic liquids 29–30oxidation 30–32partial esterification 34pulping processes 27–28steam explosion 32–33

Raman spectroscopy 610–612, 616relative humidity 658

Page 11: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

Index 843

self-assembled nanocomposites139–147

silylation 107–109structural features for absorbing

water 655–656surface roughness and oil/water

adsorption of 667with surface-sulfonated functionality

113–116swelling properties of 656–657thecrystal and thermal conduction

properties of 545–546thermal conductivity of 545thermal degradation 527–532thermal expansion coefficient of 543thermal stability 248, 249thermal transitions of 536–537tunable sorption ability, modification

of 664–669water absorption 657–658water holding capacity 655water repellency 665

nanocellulosic-reinforced polymericfilms 651

nanocomposite hydrogels, chiralnematic structure formation in812, 813

nanocomposites 584applications 617–618CNCs 618–620CNFs 620–621

based polymer networks 590–591biopolymers use in 628cellulosic fibres for 629characterization of 583description 628films 464

nanocrystalline cellulose (NCC). seecellulose nanocrystals (CNCs)

nanocrystallites 53aggregation phenomenon 55

nanofiber-coated microfibers 749nanofibers, layer-by-layer deposition of

670–671nanofibrillated cellulose (NFC) 302,

630. see also cellulose nanofibril(CNF); nanofibrillated cellulose

(NFC); naturalrubber/nanocellulose basedgreen nanocomposites

aerogels 660, 738drying process 661mechanical properties 660shape recovery behavior of 663solvent exchange 661TEMPO-oxidized cellulose fibers660

tert-butanol and water mixing661

tert-butanol exchange 661vacuum/rapid freeze drying 660

microparticles 753with tunable oleophobicity 666–667

nanofibrillation 555nanofibrilsof BNC 89lateral size 54, 55

nanofilms 592nanoindentation 451NANO LCRA 714for cellulose nanomaterialexposure assessment 691–693hazard identification 691risk framework 690–691

implementation 690risk assessment 690screening-level assessment 690

nanomaterials (NM) 446defining risks 689EHS issues 684–686life-cycle risk assessment 690–693physical and chemical

characterization of 688–689nanometric particles 256nanoparticles, characterization of 583nanotechnology 177nanoyarn preparation 25–26natural fibers, heat diffusion in 526natural polymer matricesCNC 314CNF 307–308

natural rubber (NR) 500latex 628properties 628

Page 12: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

844 Index

natural rubber/nanocellulose basedgreen nanocomposites 630, 752

Cole-Cole diagram 638complex impedance 639conduction phenomenon 636dielectric measurements 631–632dielectric permittivity and loss,

temperature dependence of634–642

dipolar relaxation 636dynamic mechanical analysis 631electric modulus 637equivalent circuit parameters 641interface thickness 642interfacial adhesion 635interfacial polarization 636–638NFC and CNC suspensions 630Nyquist diagram 638Nyquist plots 639–640polarization strength 639polymer matrix 630relaxation phenomenon 635strain at break 634strength 634stress–strain curves 633swelling properties 632–633tan 𝛿 curves 635tensile properties 633–634tensile tests 631thermo–mechanical properties

634–635water polarization 636water uptake 630–631Young modulus 634

neutralized suspensions 775NIOSH recommended exposure limits

(RELs) 698NMR spectroscopy 600noncrystallinestructural characteristics 54structural state 54

non-fluorinated aerogel 743nonisothermal crystallizationDSC thermograms and relative

crystallinity 571–572Jeziorny model 572–575Ozawa model 575–577

parameters 574nucleation 562Nylon 6 reinforce 467

ooccupational exposure and riskBritish Standards Institute 697manufacture activities 693NIOSH 696–697production activities 693SDS gap analysis 697–698

occupational exposure limit (OEL) 697occupational hazard/toxicity data

699–701optical microscopy 366optical transparency 195–196organic acids 536organic-inorganic hybrid materials

595–602organic soluble polymeric matrices

589–590organic solvents, use of 589Organization for Economic Cooperation

and Development (OECD) TestGuideline (TG) 699

organogel films 416organo-mica-cellulose films 671ortho-positronium (o-Ps) 593oscillatory rheometry 489–490oxidation 30–32, 113oxygen barrier mechanism, for

packaging 669oxygen permeability (OP) 653, 669oxygen transmission rate (OTR) 654,

669Ozawa model 575–577

pPEO-BC nanocomposites 587TGA and DTG of 531

permeability measurement 6541H,1H,2H,2H-perfluorodecyltrichloro-

silane (PFOTS)-coated NFC667

pharmaceuticals, cellulosenanomaterials in 821–825

PHBV/CNC nanocomposites 562

Page 13: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

Index 845

PHBV crystallization 562phenol-formaldehyde (PF) resin film

synthesis 810photonic hydrogels 811–815photonic nanopaper. see mesoporous

photonic cellulose (MPC) filmpH sensitivity 785physical storage, of dry cellulose

nanomaterials 688plant fiber, structure and chemical

composition 5plant protein 315PLA/PBAT composites, non-isothermal

crystallization of 669poly(hydroxyalkanoate) (PHA)

562–563poly(L-lactide) (PLLA) 407poly(lactic acid) (PLA) 404, 503crystallization of 564

poly(methylmethacrylate) (PMMA)538

poly(oxyethylene) (POE) 563poly(vinyl alcohol) (PVA) 507, 584polyacrylamide (PAM) 496–497polyaniline (PANI) 816polyaniline (PANI)-nanocellulose

particles 598polycaprolactone (PCL) 311–313, 411,

460, 595crystallization of 564nanofibers 460

polycaprolactone-based waterbornepolyurethane (PCL-based WPU)538

polyethylene (PE) nanocomposites 589polymer crystallization process

555–556, 570presence of fibers 556spherulites 555

polymeric isocyanate 593polymeric materials 543polymeric methylene diisocyanate

(pMDI) 591polymers, crystallization in 558polymethylmethacrylate (PMMA) 378polymethylsilsesquioxane-cellulose

nanofiber (PMSQ-CNF) 417

polyoxyethylene (PEO)CNC filmsmelting characteristics 568preparations of 566

CNF filmsmelting characteristics 568preparations of 566

crystallization, CNCs and CNFseffects on

isothermal crystallization567–571

materials and methods 565–567melting 567nonisothermal crystallization571–577

films, melting characteristics 568TGA and DTG of 531

poly (methyl vinylether-co-maleicacid)-poly (ethylene glycol)(PMVEMA-PEG) 590

polysaccharide hydrogels 495–496polystyrene/bacterial cellulose (PS/BC)

nanocomposites 533polyurethanesCNC/PU nanocomposites 591nanocellulose/waterborne

polyurethanes composites 595polyvinyl acetate (PVAc) 412, 461porous carbon materials 818–819porous cellulose nanofiber structures,

acetylation of 665positron annihilation lifetime

spectroscopy (PALS) 592precipitated calcium carbonate (PCC)

pigments 745protofibrils 801pulping 27–28pyrolysis combustion flow calorimetry

(PCFC) 261–262

qQ-NFC nanopaper 656

r380-Raman crystallinities 612, 615CNC crystallinities (CrI)

determination 615

Page 14: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

846 Index

Raman effect 610Raman imaging 611Raman spectroscopy (RS) 71, 610, 612of bleached kraft pulp fiber 616CNCs and CNFs 612–617crystallinity 615–616orientation of nanocelluloses

616–617of wood pulp CNCs and CNFs 613

rayon 762receding contact angles 735––737reinforcementscellulosic 284–285compatibility 285–286effects 286fiber agglomeration 285low density 285

mineral-based 276–277compatibility 283–284gas barrier 280fire resistance 278–279force to failure 280–281intercalation effects 284–285modulus of elasticity 281–282thermal stability and resistance279

thermal conductivity 279–280toughness 282water uptake reduction 277–278

resorcinol-formaldehyde (RF) aerogels659

responsive chiralactuators 809–811

responsive photonic hydrogels811–815

rheologyCNF 485definition and significance 482influenceof processing conditions 490structure and morphology490–494

and liquid crystal phase transition486

monitoring 509oscillatory rheometry 489theory of polymer 483

robust liquid-repellent surfacedevelopment 751

rubber nanocompositesapplications 227–228latex mixing 222–223matrix polymerscross-linked 221–222natural 219–220synthetic 220–221

mechanical properties 226–227morphology 225solution casting 223solvent interaction 225–226two roll mill mixing 223–224

rubber-toughened cellulose/organoclaynanocomposite coatings 753

Ruland method 765

sSafety Data Sheet (SDS) gap analysis

697–698scanning electron microscope (SEM)

370Segal method 766Segal-WAXS 615CNC crystallinities (CrI)

determination 615self-cleaning superhydrophobic coatings

753semicrystalline polymers 556shish–kebab crystalline, structure of

556short CNF (SCNF) 620silanes 344silane-treated CNC (STCNC) 534silica aerogels 738silylated cellulose nanocrystals (SCNC)

407silylated NFC foams 600silylated NFV foams 601single crystal diffraction 764single wall carbon nanotubes (SWCNT)

149small angle neutron scattering (SANS)

192small angle X-ray scattering (SAXS)

192

Page 15: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

Index 847

sodium hypochlorite product literature791

sodium hypochlorite reaction 783soft segments (SS), crystallization of

592solution blending method 401–409solution casting 223solvent-free esterification, of CNC

surface 668solvent-resistant NFC films 665sorption 73–74spectroscopic techniques 583nanocellulose-based composites

characterizationnanocomposites based polymernetworks 590–591

organic-inorganic hybrid materials595–602

organic soluble polymeric matrices589–590

polyurethanes 591–595water-soluble polymeric matrices583–589

spherulites 555, 556spray-dried CNC powder, dustiness

measurements of 696steam explosion 32–33styrene/ethylhexyl acrylate (ST/EHA),

miniemulsion copolymerizationof 601

substrates, for flexible electronics819–821

sulfonation 113sulfuric acid method 18, 767–768supercritical-dried cellulose aerogels

738supercritical drying 738superhydrophobic films 747superhydrophobic silica aerogels 738superhydrophobic surfaces 732superoleophobic surfaces 732of NFCs 666

super water absorbing nanocelluloseaerogels 658. see also cellulosenanofibril (CNF), aerogels

surface chemical modificationtechniques 532

surface degree of substitution, ofacetylated CNF 665

surface treatment 256–257surface wettability 737sustainable electronicschiral mesoporous carbon films

818–820organic semi-conducting materials

816–818substrates for 819–821

swelling, of composite hydrogels 813,814

synthetic polymers 584synthetic rubber based

bionanocomposites 220–221

tTechnological Association of the Pulp

and Paper Industry (TAPPI)725

TEMPO-mediated oxidized cellulosenanocrystals 594

TEMPO-oxidized CNC 463TEMPO-oxidized nanocellulose

(TOFN) 599coupling reaction 589

tensile strength 386tensile testing 449–451natural rubber/nanocellulose based

green nanocomposites 631tension buckling 809terminal cellulose synthesizing complex

763terpyridines 143tetracycline hydrochloride (TET) 8222,2,6,6-tetramethyl-4-

hydroxypiperidine-1-oxyl(TEMPO) 30, 782

and chemical pretreatments 782commercial plant concerns 790–791disintegration 790homogenizers 790mass balance for recovery 788–790primary alcohol oxidation 782–783reaction kinetics 784–786recovery and reuse 787–788shear sensitivity 787

Page 16: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

848 Index

2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl(TEMPO) (contd.)

thermodynamics 786–787water retention measurement 787

thermal analysis (TA) 525, 566thermal conductivity 544of cellulose nanocomposites

545–546of nanocellulose 545

thermal degradation 525of cellulose 526of cellulose nanocomposites

532–534of nanocellulose 527–532

thermal expansion, behaviors of acrylicresin matrix and nanocomposite544

thermal expansion coefficient (TEC)541

of cellulose nanocomposites543–544

of nanocellulose 543thermal stability 248, 249of cellulose 527of CNF 528of sulfuric acid 531of wood fibers 526

thermal transitions 534of cellulose nanocomposites 538of nanocellulose 536

thermoanalytical methods 71thermogravimetric analysis (TGA) 72,

193, 313, 526, 531––533thermomechanical pulp kinetic data,

limitations of 784thermoplastic cellulose nanocompositesadvantageous features 179casting/evaporation 182from aqueous medium 182–183from non-aqueous liquid medium183–186

characterization techniques 190mechanical properties 192–193morphological properties190–192

optical transparency 195–196

thermal properties 193–194electrospinning 186LbL 186–187melt-compounding methods 187performance influencing

factors 187fiber aspect ratio 188–189fiber dispersion 187–188fiber-matrix adhesion 188fiber orientation 189fiber volume fraction 190

potential applications 196–197processing techniques 180–187

thermoplastic starch (TPS) 307, 401,497

thermoset-cellulose nanocomposites250

applications 262–263fire retardancy 238–239flammability properties 251polimers 239–242structure and properties 250

thermosetting polymers 239–242TiO2-coated nanocellulose aerogel

740, 742TiO2 (anatase) nanoparticles 597tissue engineering scaffolds 824–825TOCN films 744transcrystallization (TC) 556, 558transmission electron microscope

(TEM) 370transmittance spectra 592tridecafluoro-1,1,2,2-tetrahydrooctyl)-

trichlorosilane 741tunable gas barrier nanocellulose

composite fabrication 669–673two roll mill mixing 223–225

uunderwriters’ Laboratories (UL-94) test

259–260unplasticized xylan-NFC films 672unsaturated polyester (UPR) 538US National Institute of Occupational

Safety and Health (NIOSH)696, 697

UV-Vis spectroscopy 600

Page 17: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,

Index 849

vvacuum freeze-drying method 739Valonia ventricosa 765vapour-driven Marangoni propulsion

743viral inhibitors 822viscometry of dispersions 76

wwater absorption capacity 652water absorption composites 651waterborne polyurethanes (WBPUs)

404, 595water retention measurement 787water-soluble polymeric matrices

583–589water vapor permeability (WVP) 653water vapor sorption 652–653water vapor transfer rate (WVTR) 653water vapour transmission rate (WVTR)

324WBPU composites 596Wenzel state droplet 734wettability 733wettingcharacterization, principles ofcontact angle hysteresis 735–737surface wettability 737Young equation 733–735

on rough surface 734on solid surface 733

wide-angle X-ray diffraction (WAXD)418

wide-angle X-ray scattering (WAXS)57

wood-based NFC 665

xX-ray diffractograms (XRD) 325, 583,

584, 590, 598for alginate and alginate compounds

585for CNC 585silver dendritic nanostructure 599silver nanoparticles 599

X-ray photoelectron spectroscopy (XPS)595

X-ray scattering methodscrystallinity calculation 61nanocrystallites 59

X-ray spectroscopy 587, 592xylans 672

zZnO embedded nanostructured

cellulose acetate fibrousmembranes 750, 751

Page 18: Index [application.wiley-vch.de]€¦ · aerogels 147.see also nanofibrillated cellulose(NFC),aerogels fromcellulosesolutions 659 ... Handbook of Nanocellulose and Cellulose Nanocomposites,