20
Industrial Robots Industrial Robots A simple example A simple example Basilio Bona ROBOTICA 03CFIOR 1 A simple example A simple example

Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

Industrial RobotsIndustrial Robots

A simple exampleA simple exampleBasilio Bona ROBOTICA 03CFIOR 1

A simple exampleA simple example

Page 2: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

Example 1.1 – vector representation

110

B

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜vA very simple manipulator

v

P

0⎟⎜ ⎟⎜⎝ ⎠

BR

v

AR1( )q t

1 1 1 1

1 1 1 1

cos sin 0 c s 0

sin cos 0 s c 0AB

q q

q q

⎛ ⎞ ⎛ ⎞− −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟= ≡ =⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟R

1 1 1 1

0 0 1 0 0 1B ⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

1

1

cos

sinAB

q

q

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟t1

0B

q⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠Basilio Bona ROBOTICA 03CFIOR 2

Page 3: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

Example 1.2 – vector representation

If t t i t d t th

1 11 1c sc s 0 1⎛ ⎞⎛ ⎞ ⎛ ⎞−− ⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜

If vector represents an oriented segment, thenBv

1 1

1 11 1c ss c 0 1

00 0 1 0A

⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟+= =⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜⎟ ⎟ ⎜ ⎟⎟⎜⎟ ⎟⎜ ⎜ ⎝ ⎠⎝ ⎠⎝ ⎠

v00 0 1 0 ⎜⎟ ⎟⎜ ⎜ ⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞If it represents a geometric point, then

1 1 1 1 1

1 1 1 1 1

c s 0 1 c s c

s c 0 1 c s sAA B

t

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟= + = + +⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟v

1 1 1 1 1

0 0 1 0 0 0

( )

A B⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎛ ⎞

1 1

1 1

(1 ) c s

(1 ) s c

⎛ ⎞+ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟= + +⎜ ⎟⎜ ⎟

Basilio Bona 3ROBOTICA 03CFIOR

1 1( )

0⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

Page 4: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

Example 2.1 – rotations

Basilio Bona 4ROBOTICA 03CFIOR

Page 5: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

Example 2.2 – rotations

Basilio Bona 5ROBOTICA 03CFIOR

Page 6: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

Example 3.1 – DH parameters

3( )q t2( )q t

1 11 ( ) 0 90d a

q tθ α

− 1

2

2 2

3

2 ( ) 0 903 ( ) 0 0 0

q tq t−

3 ( )q

1( )q t

Basilio Bona 6ROBOTICA 03CFIOR

Page 7: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

2R

2q3

1R0R

1 2

1q Denavit – Hartenberg parametersi d θ

1 1 21 ( ) 2

i i i i

q t

i d aθ απ

1 1 2

2 30 ( ) 02 tq

Basilio Bona 7ROBOTICA 03CFIOR

Page 8: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

01R

12R

1 1 2 10 1 1 2 11

00

0 1 0

c s cs c s⎛ ⎞⎟⎜ ⎟⎜ − ⎟⎜= ⎟⎜ ⎟⎜

T2 2 3 2

1 2 2 3 22

00

0 0 1 0

c s cs c s⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟

T1

10 1 00 0 0 1

⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠2 0 0 0

0 0 0 1⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

⎛ ⎞+02R

02t

1 2 1 2 1 3 1 2 2 1

1 2 1 2 1 3 1 2 2 10 11 2

2 2 3 2 10

c c c s s c c cs c s s c s c ss c s

⎛ ⎞− + ⎟⎜ ⎟⎜ − − + ⎟⎜ ⎟⎜= ⎟⎜ + ⎟⎜ ⎟T T

2 2 3 2 100 0 0 1s c s +⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠

Basilio Bona 8ROBOTICA 03CFIOR

Page 9: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

3 1 2 2 1( )

( )

x t c c c

t

= ++ E 1

3 1 2 2 1

3 2 1

( )

( )

y t s c s

z t s

= += +

Eqn. 1

c c c s s⎛ ⎞⎟⎜ ( ) ( )t tφ1 2 1 2 102 1 2 1 2 1

c c c s s

R s c s s c

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜ ⎟= − −⎜ ⎟⎜ ⎟⎜ ⎟

1( ) ( )

( ) 2

t q t

t

φθ π

==

2 20s c

⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

E l l

2( ) ( )t q tψ =

Euler angleseqn. (2.79) page 52

Basilio Bona 9ROBOTICA 03CFIOR

Page 10: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

Knowing the Euler angles, everything will be easy. Assume we do not know them.

3 1 2 2 1( )

( )

x t c c c

y t s c s

= += +

3 1 2 2 1

3 2 1

( )

( )

y t s c s

z t s

= += + 1

2

zs

−=

3

3 1 2 2 1( )

( )

x t c c c

y t s c s

= += +

Squaring and adding

( )23 1 2 2 1

3 2 1

( )

( )

y t s c s

z t s

+= + ( )22 2 2

2 3 2x y a c+ ≡ = +

2a

c−

=2

3

c

Basilio Bona 10ROBOTICA 03CFIOR

Page 11: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

12

3

zs

−=

2 1s z −

22

ac

−=

2 12

2 2

tan qc a

= =−

3

( )( )x t c c= + ( )1

( )x tc

c=

+( )( )3 2 2 1

3 2 2 1

( )

( )

x t c c

y t c s

= +

= +

( )

( )

3 2 2

1

( )

c

y ts

+

=( )1

3 2 2c +

1 3 2 2( ) ( )tan

s cy t y tq

+= = =

11 3 2 2

tan( ) ( )

qc c x t x t+

Basilio Bona 11ROBOTICA 03CFIOR

Page 12: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

Linear velocities

( ) ( ) ( )( )t t t+( ) ( ) ( )( ) ( ) ( )

( )

3 1 2 2 1 1 3 1 2 2

3 1 2 2 1 1 3 1 2 2

( )

( )

x t s c s q t c s q t

y t c c c q t s s q t

= − + −

= + −

( )3 2 2( )z t c q t=

Angular velocities: analytical approach

( )1( )

( ) 0

t q t

t

φθ

=

= W ll th “ l i l iti ”

( )1

0

q t⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ω( )2

( ) 0

( )

t

t q t

θ

ψ

=

=We call these “eulerian velocities”

( )2

0E

q t

⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

ω

( )⎝ ⎠

Basilio Bona ROBOTICA 03CFIOR 12

Page 13: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

Analytic Jacobian (by differentiation)

3 1 2 2 1 3 1 2s c s c s⎛ ⎞− − − ⎟⎜ ⎟⎜ ⎟⎜

3 1 2 2 1 3 1 2

3 20

Lc c c s s

c

⎟⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

J Eqn. 2a

3 2⎝ ⎠

⎛ ⎞1 0

0 0

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜J Eqn. 2b0 0

0 1A ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

J q

Basilio Bona ROBOTICA 03CFIOR 13

Page 14: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

Transformation matrix (see textbook)2π

θ =

1 1

1 1

0 cos sin sin 00 sin cos sin 0E

c ss c

φ φ θφ φ θ

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜= − ≡ −⎟ ⎟⎜ ⎜M

2

1 10 sin cos sin 01 0 01 0 cos

E s cφ φ θθ

≡⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜⎜ ⎝ ⎠⎝ ⎠

M

( )0 c s s qq t⎛ ⎞⎛ ⎞ ⎛ ⎞⎟⎜⎟ ⎟⎜ ⎜( )

( )

1 1 1 21

1 1 1 2

0

0 0E E

c s s qq t

s c c q⎟⎜⎟ ⎟⎜ ⎜⎟⎟ ⎟⎜⎜ ⎜⎟⎟ ⎟⎜⎜ ⎜⎟⎟ ⎟⎜= = − = −⎜ ⎜⎟⎟ ⎟⎜⎜ ⎜⎟⎟ ⎟⎜ ⎟⎜ ⎜⎟ ⎟⎜

Mω ω

( ) 121 0 0 qq t

⎟⎜ ⎜⎟ ⎟⎜ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎟⎜⎝ ⎠ ⎝ ⎠⎝ ⎠

Basilio Bona ROBOTICA 03CFIOR 14

Page 15: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

From the previous slide we have the cartesian velocity in From the previous slide we have the cartesian velocity in base RF we can now compute the Jacobian matrix

1 2 1 10 0s q s s⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜1 2 1 1

11 2 1 1

2

0 0

1 0 1 0A

qc q c c

qq

⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎟⎜⎜ ⎜ ⎜⎟ ⎟ ⎟⎟⎜= − = − ⇒ = −⎜ ⎜ ⎜⎟ ⎟ ⎟⎟⎜⎜ ⎜ ⎜⎟ ⎟ ⎟⎟⎟⎜⎜ ⎜ ⎜⎟ ⎟ ⎟⎝ ⎠⎜ ⎜ ⎜⎟ ⎟ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜

Jω Eq. 3

11 0 1 0q ⎝ ⎠⎜ ⎜ ⎜⎟ ⎟ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠

This is the geometric angular JacobianN i i diff Now we compute it in a different way

Basilio Bona ROBOTICA 03CFIOR 15

Page 16: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

Both joints are rotoidal therefore considering results at pageBoth joints are rotoidal, therefore, considering results at page.

1Ai i−=J k

1 1,Li i i p− −= ×J k r

First we compute the angular Jacobian

0⎛ ⎞ 0⎛ ⎞ ⎛ ⎞

1 0

0

0A

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜J k

10

2 1 1 1

0

0A

s

c

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟= = = −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜J k R

1 0

1A ⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

2 1 1 1

1 0A ⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

These two columns are equal to those in Eqn. 3

Basilio Bona 16ROBOTICA 03CFIOR

Page 17: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

⎛ ⎞

0 p

x

y

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟r This relation is

b d f d0,py

z⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

⎛ ⎞⎛ ⎞

obtained from direct KF – Eqn. 1

( )1 0 0 0 0

0 1 0

1 0 0L p p

x

y

⎛ ⎞⎛ ⎞− ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟= × = = ⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟J k r S k r( )1 0 0, 0 0,

0 0 0L p p

y

z⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞3 1 2 2 1

3 1 2 2 1

y s c s

x c c c

⎛ ⎞ ⎛ ⎞− − −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟= = +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟3 1 2 2 1

0 0⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

Basilio Bona ROBOTICA 03CFIOR 17

Page 18: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

Then we compute3 2c

s

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟r

1

1, 3 2

0p

R

s= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

r

1R

Instead of transforming it in RF 0 and after making the vector product,we make the vector product in RF 1 and then we transform the result

( )2 1 1 1 1L⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤= × =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦J k r S k r

to express it in RF 0

( )1 1 1 1

2 1 1, 1 1,

3 2 3 20 1 0

L p pR R R R

c s

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜

3 2 3 21 0 0

0 0 0 0 0

s c⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟= =⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎟ ⎟ ⎟⎜ ⎜ ⎜

1

0 0 0 0 0R

⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠

Basilio Bona ROBOTICA 03CFIOR 18

Page 19: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

Now we transform from RF 1 to RF 0

3 2 1 1 3 2 3 1 20s c s s c s⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− − − −⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜

0

3 2 1 1 3 2 3 1 20

2 1 3 2 1 1 3 2 3 1 20

0 0 1 0 0L R

c s c c s s

c

⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎡ ⎤ ⎟ ⎟ ⎟ ⎟= = = −⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎢ ⎥ ⎜ ⎜ ⎜ ⎜⎣ ⎦ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜

J R

In conclusions the two Jacobians are

1 1 03 2

0 0 1 0 0R R R

c⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

In conclusions, the two Jacobians are

3 1 2 2 1 3 1 2s c s c s⎛ ⎞− − − ⎟⎜ ⎟

( )3 1 2 2 1 3 1 2

1 2 3 1 2 2 1 3 1 2

0L L L

c c c s s⎜ ⎟⎜ ⎟⎜ ⎟= = + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

J J J

It coincides with the results of Eqn. 2a

3 20 c⎜ ⎟⎟⎜⎝ ⎠

q

Basilio Bona ROBOTICA 03CFIOR 19

Page 20: Industrial Robots - polito.it€¦ · Example 1.2 –vector representation If t t itd t th 11 11 ⎛⎞⎛⎞⎜⎜cs01− ⎟⎟⎛⎞⎜cs− ⎟ ⎜⎜⎟⎟⎜ ⎟ If vector represents

Linear Jacobians are independent from the methods used to compute them(since we use always Cartesian representation)

Instead, angular Jacobians, depends on the conventions used to expressthe TCP orientation

s c s c s⎛ ⎞⎟⎜In conclusions:

3 1 2 2 1 3 1 2

3 1 2 2 1 3 1 2L

s c s c s

c c c s s

− − − ⎟⎜ ⎟⎜ ⎟⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜ ⎟J

3 20 c

⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

1 0

0 1

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟J1

0

0

s

c

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟J0 1

0 0A= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

J1

0

1 0A

c= −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

J

Analytical Jacobian Geometric Jacobian

Basilio Bona 20ROBOTICA 03CFIOR