93
Representation Statements Groups Dynamics Metric Application Infinite Primitive Permutation Groups. Yair Glasner (Joint with Tsachik Gelander) School of Mathematics Institute for advanced study. Texas A&M, January 2006

Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Infinite Primitive Permutation Groups.

Yair Glasner (Joint with Tsachik Gelander)

School of MathematicsInstitute for advanced study.

Texas A&M, January 2006

Page 2: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Outline

1 Representation theories

2 Statements of main theorems.

3 Group theoretic part of the proof.

4 Dynamics on the boundary

5 Accessing infinite index subgroups.

6 Application - Frattini Subgroups

Page 3: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

We study groups through their actions.

Finitely generated groups:Linear groups:

Tits alternative,either contains a free group, or virtually solvable,Residually finite,Zariski topology,

Hyperbolic groups:Tits alternative,many quotients,

Permutation groups.Any group is a permutation group,

Page 4: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

We study groups through their actions.

Finitely generated groups:Linear groups:

Tits alternative,either contains a free group, or virtually solvable,Residually finite,Zariski topology,

Hyperbolic groups:Tits alternative,many quotients,

Permutation groups.Any group is a permutation group,

Page 5: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

We study groups through their actions.

Finitely generated groups:Linear groups:

Tits alternative,either contains a free group, or virtually solvable,Residually finite,Zariski topology,

Hyperbolic groups:Tits alternative,many quotients,

Permutation groups.Any group is a permutation group,

Page 6: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

We study groups through their actions.

Finitely generated groups:Linear groups:

Tits alternative,either contains a free group, or virtually solvable,Residually finite,Zariski topology,

Hyperbolic groups:Tits alternative,many quotients,

Permutation groups.Any group is a permutation group,

Page 7: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

We study groups through their actions.

Finitely generated groups:Linear groups:

Tits alternative,either contains a free group, or virtually solvable,Residually finite,Zariski topology,

Hyperbolic groups:Tits alternative,many quotients,

Permutation groups.Any group is a permutation group,

Page 8: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

We study groups through their actions.

Finitely generated groups:Linear groups:

Tits alternative,either contains a free group, or virtually solvable,Residually finite,Zariski topology,

Hyperbolic groups:Tits alternative,many quotients,

Permutation groups.Any group is a permutation group,

Page 9: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

We study groups through their actions.

Finitely generated groups:Linear groups:

Tits alternative,either contains a free group, or virtually solvable,Residually finite,Zariski topology,

Hyperbolic groups:Tits alternative,many quotients,

Permutation groups.Any group is a permutation group,

Page 10: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

We study groups through their actions.

Finitely generated groups:Linear groups:

Tits alternative,either contains a free group, or virtually solvable,Residually finite,Zariski topology,

Hyperbolic groups:Tits alternative,many quotients,

Permutation groups.Any group is a permutation group,

Page 11: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Decompositions.

Orbit decomposition. ⇒ Transitive actions Γ/∆.

Factors (invariant equivalence relations).A group action is called primitive if

No factors.Γ Γ/∆, where ∆ < Γ is maximal.

A group is called primitive if it admits a faithful primitiveaction.

Page 12: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Decompositions.

Orbit decomposition. ⇒ Transitive actions Γ/∆.

Factors (invariant equivalence relations).A group action is called primitive if

No factors.Γ Γ/∆, where ∆ < Γ is maximal.

A group is called primitive if it admits a faithful primitiveaction.

Page 13: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Decompositions.

Orbit decomposition. ⇒ Transitive actions Γ/∆.

Factors (invariant equivalence relations).A group action is called primitive if

No factors.Γ Γ/∆, where ∆ < Γ is maximal.

A group is called primitive if it admits a faithful primitiveaction.

Page 14: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Decompositions.

Orbit decomposition. ⇒ Transitive actions Γ/∆.

Factors (invariant equivalence relations).A group action is called primitive if

No factors.Γ Γ/∆, where ∆ < Γ is maximal.

A group is called primitive if it admits a faithful primitiveaction.

Page 15: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Decompositions.

Orbit decomposition. ⇒ Transitive actions Γ/∆.

Factors (invariant equivalence relations).A group action is called primitive if

No factors.Γ Γ/∆, where ∆ < Γ is maximal.

A group is called primitive if it admits a faithful primitiveaction.

Page 16: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Decompositions.

Orbit decomposition. ⇒ Transitive actions Γ/∆.

Factors (invariant equivalence relations).A group action is called primitive if

No factors.Γ Γ/∆, where ∆ < Γ is maximal.

A group is called primitive if it admits a faithful primitiveaction.

Page 17: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Decompositions.

Orbit decomposition. ⇒ Transitive actions Γ/∆.

Factors (invariant equivalence relations).A group action is called primitive if

No factors.Γ Γ/∆, where ∆ < Γ is maximal.

A group is called primitive if it admits a faithful primitiveaction.

Page 18: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Primitive Groups.

Basic question

Understand primitive groups.

Similar questions.

Which groups admit a faithful ....

irreducible unitary representation?

ergodic measure preserving action?

Page 19: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Primitive Groups.

Basic question

Understand primitive groups.

Similar questions.

Which groups admit a faithful ....

irreducible unitary representation?

ergodic measure preserving action?

Page 20: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Primitive Groups.

Basic question

Understand primitive groups.

Similar questions.

Which groups admit a faithful ....

irreducible unitary representation?

ergodic measure preserving action?

Page 21: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Some answers

Group = (finitely generated) + (no finite normal subgroup).

Theorem (Imprecise version)

Linear group is primitive ⇔ ∃ linear rep with simple Zariskiclosure.

Theorem

Γ < Mod(S) is primitive ⇔ Irreducible and not virtually cyclic.

TheoremA hyperbolic group is primitive ⇔ is not virtually cyclic.

Theorem

A group acting minimally faithfully on a tree is always primitive.

Page 22: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Some answers

Group = (finitely generated) + (no finite normal subgroup).

Theorem (Imprecise version)

Linear group is primitive ⇔ ∃ linear rep with simple Zariskiclosure.

Theorem

Γ < Mod(S) is primitive ⇔ Irreducible and not virtually cyclic.

TheoremA hyperbolic group is primitive ⇔ is not virtually cyclic.

Theorem

A group acting minimally faithfully on a tree is always primitive.

Page 23: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Some answers

Group = (finitely generated) + (no finite normal subgroup).

Theorem (Imprecise version)

Linear group is primitive ⇔ ∃ linear rep with simple Zariskiclosure.

Theorem

Γ < Mod(S) is primitive ⇔ Irreducible and not virtually cyclic.

TheoremA hyperbolic group is primitive ⇔ is not virtually cyclic.

Theorem

A group acting minimally faithfully on a tree is always primitive.

Page 24: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Some answers

Group = (finitely generated) + (no finite normal subgroup).

Theorem (Imprecise version)

Linear group is primitive ⇔ ∃ linear rep with simple Zariskiclosure.

Theorem

Γ < Mod(S) is primitive ⇔ Irreducible and not virtually cyclic.

TheoremA hyperbolic group is primitive ⇔ is not virtually cyclic.

Theorem

A group acting minimally faithfully on a tree is always primitive.

Page 25: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Some answers

Group = (finitely generated) + (no finite normal subgroup).

Theorem (Imprecise version)

Linear group is primitive ⇔ ∃ linear rep with simple Zariskiclosure.

Theorem

Γ < Mod(S) is primitive ⇔ Irreducible and not virtually cyclic.

TheoremA hyperbolic group is primitive ⇔ is not virtually cyclic.

Theorem

A group acting minimally faithfully on a tree is always primitive.

Page 26: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Some answers

Group = (finitely generated) + (no finite normal subgroup).

Theorem (Imprecise version)

Linear group is primitive ⇔ ∃ linear rep with simple Zariskiclosure.

Theorem

Γ < Mod(S) is primitive ⇔ Irreducible and not virtually cyclic.

TheoremA hyperbolic group is primitive ⇔ is not virtually cyclic.

Theorem

A group acting minimally faithfully on a tree is always primitive.

Page 27: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Some answers

Group = (finitely generated) + (no finite normal subgroup).

Theorem (Imprecise version)

Linear group is primitive ⇔ ∃ linear rep with simple Zariskiclosure.

Theorem

Γ < Mod(S) is primitive ⇔ Irreducible and not virtually cyclic.

TheoremA hyperbolic group is primitive ⇔ is not virtually cyclic.

Theorem

A group acting minimally faithfully on a tree is always primitive.

Page 28: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Some answers

Group = (finitely generated) + (no finite normal subgroup).

Theorem (Imprecise version)

Linear group is primitive ⇔ ∃ linear rep with simple Zariskiclosure.

Theorem

Γ < Mod(S) is primitive ⇔ Irreducible and not virtually cyclic.

TheoremA hyperbolic group is primitive ⇔ is not virtually cyclic.

Theorem

A group acting minimally faithfully on a tree is always primitive.

Page 29: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Precise version of main theorem

Theorem

A finitely generated linear group Γ is primitive if and only if thereexists a linear representation Γ < GLn(k) over an algebraically

closed field, with Zariski closure G = ΓZ

such that,

G0 = H × H × . . .× H a product of simple groups.

Γ acts faithfully and transitively on the H’s.

Page 30: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

countable groups

TheoremLet Γ be a non-torsion, countable quasi-primitive linear group.Then Γ one of the following:

Simple closure: Γ has “Simple Zariski closure” as above.

Affine Γ = ∆ n F n, where F is a prime field 1 ≤ n ≤ ∞ and∆ < GLn(F ) acts without invariant subgroups. E.g. Q∗ n Q

Diagonal Γ = ∆ n H, where H is a nonabeliancharacteristically simple group and ∆ acts with no invariantsubgroups.

In the affine and diagonal case the quasi-primitive action isprimitive and unique.

Example

PSLn(Fp) is a torsion primitive group. The group

Page 31: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

countable groups

TheoremLet Γ be a non-torsion, countable quasi-primitive linear group.Then Γ one of the following:

Simple closure: Γ has “Simple Zariski closure” as above.

Affine Γ = ∆ n F n, where F is a prime field 1 ≤ n ≤ ∞ and∆ < GLn(F ) acts without invariant subgroups. E.g. Q∗ n Q

Diagonal Γ = ∆ n H, where H is a nonabeliancharacteristically simple group and ∆ acts with no invariantsubgroups.

In the affine and diagonal case the quasi-primitive action isprimitive and unique.

Example

PSLn(Fp) is a torsion primitive group. The group

Page 32: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Margulis Soı̆fer

Let Γ be a finitely generated linear group.Our work

Theorem

Γ admits a faithful primitive action ⇔ has simple Zariski closure.

is inspired by the following:

Theorem (Margulis Soı̆fer)

Γ admits an infinite primitive action ⇔ not virtually solvable.

Which in turn was inspired by:

Theorem (Tits alternative)

Γ contains a non-abelian free subgroup ⇔ not virtually solvable.

Page 33: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Margulis Soı̆fer

Let Γ be a finitely generated linear group.Our work

Theorem

Γ admits a faithful primitive action ⇔ has simple Zariski closure.

is inspired by the following:

Theorem (Margulis Soı̆fer)

Γ admits an infinite primitive action ⇔ not virtually solvable.

Which in turn was inspired by:

Theorem (Tits alternative)

Γ contains a non-abelian free subgroup ⇔ not virtually solvable.

Page 34: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Margulis Soı̆fer

Let Γ be a finitely generated linear group.Our work

Theorem

Γ admits a faithful primitive action ⇔ has simple Zariski closure.

is inspired by the following:

Theorem (Margulis Soı̆fer)

Γ admits an infinite primitive action ⇔ not virtually solvable.

Which in turn was inspired by:

Theorem (Tits alternative)

Γ contains a non-abelian free subgroup ⇔ not virtually solvable.

Page 35: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Margulis Soı̆fer

Let Γ be a finitely generated linear group.Our work

Theorem

Γ admits a faithful primitive action ⇔ has simple Zariski closure.

is inspired by the following:

Theorem (Margulis Soı̆fer)

Γ admits an infinite primitive action ⇔ not virtually solvable.

Which in turn was inspired by:

Theorem (Tits alternative)

Γ contains a non-abelian free subgroup ⇔ not virtually solvable.

Page 36: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Margulis Soı̆fer

Let Γ be a finitely generated linear group.Our work

Theorem

Γ admits a faithful primitive action ⇔ has simple Zariski closure.

is inspired by the following:

Theorem (Margulis Soı̆fer)

Γ admits an infinite primitive action ⇔ not virtually solvable.

Which in turn was inspired by:

Theorem (Tits alternative)

Γ contains a non-abelian free subgroup ⇔ not virtually solvable.

Page 37: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Margulis Soı̆fer

Let Γ be a finitely generated linear group.Our work

Theorem

Γ admits a faithful primitive action ⇔ has simple Zariski closure.

is inspired by the following:

Theorem (Margulis Soı̆fer)

Γ admits an infinite primitive action ⇔ not virtually solvable.

Which in turn was inspired by:

Theorem (Tits alternative)

Γ contains a non-abelian free subgroup ⇔ not virtually solvable.

Page 38: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Margulis Soı̆fer

Let Γ be a finitely generated linear group.Our work

Theorem

Γ admits a faithful primitive action ⇔ has simple Zariski closure.

is inspired by the following:

Theorem (Margulis Soı̆fer)

Γ admits an infinite primitive action ⇔ not virtually solvable.

Which in turn was inspired by:

Theorem (Tits alternative)

Γ contains a non-abelian free subgroup ⇔ not virtually solvable.

Page 39: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Strategy.

Margulis Soı̆fer Our work

Have: Γ not virt-solvable simple Zariski closure.Want: M < Γ maximal of ∞-index maximal with trivial core.How? ∆ < Γ profinitely dense pro dense

Γ // // G

M?�

OO∃

>> >>~~

~~

∆?�

OO∃

GG GG��

��

��

Note:Any subgroup in contained in a maximal subgroup. The onlyproblem is it might be too large.

Page 40: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Strategy.

Margulis Soı̆fer Our work

Have: Γ not virt-solvable simple Zariski closure.Want: M < Γ maximal of ∞-index maximal with trivial core.How? ∆ < Γ profinitely dense pro dense

Γ // // G

M?�

OO∃

>> >>~~

~~

∆?�

OO∃

GG GG��

��

��

Note:Any subgroup in contained in a maximal subgroup. The onlyproblem is it might be too large.

Page 41: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Strategy.

Margulis Soı̆fer Our work

Have: Γ not virt-solvable simple Zariski closure.Want: M < Γ maximal of ∞-index maximal with trivial core.How? ∆ < Γ profinitely dense pro dense

Γ // // G

M?�

OO∃

>> >>~~

~~

∆?�

OO∃

GG GG��

��

��

Note:Any subgroup in contained in a maximal subgroup. The onlyproblem is it might be too large.

Page 42: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Strategy.

Margulis Soı̆fer Our work

Have: Γ not virt-solvable simple Zariski closure.Want: M < Γ maximal of ∞-index maximal with trivial core.How? ∆ < Γ profinitely dense pro dense

Γ // // G

M?�

OO∃

>> >>~~

~~

∆?�

OO∃

GG GG��

��

��

Note:Any subgroup in contained in a maximal subgroup. The onlyproblem is it might be too large.

Page 43: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Prodense subgroups

Definition (Prodense subgroups)

A prodense subgroup ∆ < Γ is one that maps onto everyproper quotient Γ/N of Γ.

proposition

A finitely generated group Γ is prodense if and only if it containsa proper prodense subgroup.

Theorem (Abert-G)

Let Γ < G be a dense subgroup is a totally disconnected simplegroup. And let ∆ < Γ be a relatively open subgroup. Then ∆ isprodense.E.g G = PGLn(Qp), Γ = PGLn(Z[1/p]),∆ = PGLn(Z).

Page 44: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Prodense subgroups

Definition (Prodense subgroups)

A prodense subgroup ∆ < Γ is one that maps onto everyproper quotient Γ/N of Γ.

proposition

A finitely generated group Γ is prodense if and only if it containsa proper prodense subgroup.

Theorem (Abert-G)

Let Γ < G be a dense subgroup is a totally disconnected simplegroup. And let ∆ < Γ be a relatively open subgroup. Then ∆ isprodense.E.g G = PGLn(Qp), Γ = PGLn(Z[1/p]),∆ = PGLn(Z).

Page 45: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Free subgroups.

Question

Why free subgroups?

To make sure that ∆ 6= Γ.

Generator in each coset of each normal subgroup.

Uncountable number of normal subgroups?

Page 46: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Free subgroups.

Question

Why free subgroups?

To make sure that ∆ 6= Γ.

Generator in each coset of each normal subgroup.

Uncountable number of normal subgroups?

Page 47: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Free subgroups.

Question

Why free subgroups?

To make sure that ∆ 6= Γ.

Generator in each coset of each normal subgroup.

Uncountable number of normal subgroups?

Page 48: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Free subgroups.

Question

Why free subgroups?

To make sure that ∆ 6= Γ.

Generator in each coset of each normal subgroup.

Uncountable number of normal subgroups?

Page 49: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Contracting elements.

Definition

φ ∈ Homeo(M) is contracting if φ(M \ R) ⊂ A.A, R open & disjoint are the attracting and repellingneighborhoods.

Page 50: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Contracting elements.

Definition

φ ∈ Homeo(M) is contracting if φ(M \ R) ⊂ A.A, R open & disjoint are the attracting and repellingneighborhoods.

Page 51: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Contracting elements.

Definition

φ ∈ Homeo(M) is contracting if φ(M \ R) ⊂ A.A, R open & disjoint are the attracting and repellingneighborhoods.

Page 52: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Contracting elements.

Definition

φ ∈ Homeo(M) is contracting if φ(M \ R) ⊂ A.A, R open & disjoint are the attracting and repellingneighborhoods.

Page 53: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Contracting elements.

Definition

φ ∈ Homeo(M) is contracting if φ(M \ R) ⊂ A.A, R open & disjoint are the attracting and repellingneighborhoods.

Page 54: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Contracting elements.

Definition

φ ∈ Homeo(M) is contracting if φ(M \ R) ⊂ A.A, R open & disjoint are the attracting and repellingneighborhoods.

Page 55: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Contracting elements.

Definition

φ ∈ Homeo(M) is contracting if φ(M \ R) ⊂ A.A, R open & disjoint are the attracting and repellingneighborhoods.

Page 56: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Ping pong lemma

Lemma (ping-pong lemma)

Contracting homeomorphisms with disjoint neighborhoodsgenerate a free group.

Page 57: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Proximal elements

Definition

g ∈ Homeo(M) is proximal with attracting and repelling points a, r ,if for any open neighborhoods a ∈ A, r ∈ R some power gn iscontracting.

Page 58: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Proximal elements

Definition

g ∈ Homeo(M) is proximal with attracting and repelling points a, r ,if for any open neighborhoods a ∈ A, r ∈ R some power gn iscontracting.

Page 59: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Proximal elements

Definition

g ∈ Homeo(M) is proximal with attracting and repelling points a, r ,if for any open neighborhoods a ∈ A, r ∈ R some power gn iscontracting.

Page 60: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Proximal elements

Definition

g ∈ Homeo(M) is proximal with attracting and repelling points a, r ,if for any open neighborhoods a ∈ A, r ∈ R some power gn iscontracting.

Page 61: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Proximal elements

Definition

g ∈ Homeo(M) is proximal with attracting and repelling points a, r ,if for any open neighborhoods a ∈ A, r ∈ R some power gn iscontracting.

Page 62: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Proximal elements

Definition

g ∈ Homeo(M) is proximal with attracting and repelling points a, r ,if for any open neighborhoods a ∈ A, r ∈ R some power gn iscontracting.

Page 63: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

The big ping-pong table

A proximal in every normal subgroup. Fix one proximal g ∈ Γ.

Page 64: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

The big ping-pong table

Order (a basis for) normal subgroups N1, N2, N3, . . ..

Page 65: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

The big ping-pong table

Induction ai ∈ Ni and gn play ping-pong.

Page 66: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

The big ping-pong table

A proximal element of N2, not satisfying the ping-pong.

Page 67: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

The big ping-pong table

Conjugate it by a high power of g

Page 68: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

The big ping-pong table

Replace g 7→ gn. Here {a1, a2, gn} play Ping-Pong

Page 69: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

The big ping-pong table

Here {a1, a2, a3, gn} play Ping-Pong.

Page 70: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

The big ping-pong table

Proximal elements from the cosets of N1.

Page 71: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

The big ping-pong table

Proximal elements from the cosets of N1.

Page 72: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

The big ping-pong table

Cosets of all other normal subgroups.

Page 73: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Ingredients for the dynamical argument

Need large normal subgroups,

Need normal subgroups that contain proximal elements,

First step is achieved by representation theoretic tools,

Finite index problems,

not finitely generated problems,

Theorem (Tits, Margulis-Soı̆fer, Breuillard-Gelander)

Assume (ΓZ)0 is not solvable, then exists a projective strongly

irreducible representation over some local field, with a highlyproximal elements.

Page 74: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Ingredients for the dynamical argument

Need large normal subgroups,

Need normal subgroups that contain proximal elements,

First step is achieved by representation theoretic tools,

Finite index problems,

not finitely generated problems,

Theorem (Tits, Margulis-Soı̆fer, Breuillard-Gelander)

Assume (ΓZ)0 is not solvable, then exists a projective strongly

irreducible representation over some local field, with a highlyproximal elements.

Page 75: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Ingredients for the dynamical argument

Need large normal subgroups,

Need normal subgroups that contain proximal elements,

First step is achieved by representation theoretic tools,

Finite index problems,

not finitely generated problems,

Theorem (Tits, Margulis-Soı̆fer, Breuillard-Gelander)

Assume (ΓZ)0 is not solvable, then exists a projective strongly

irreducible representation over some local field, with a highlyproximal elements.

Page 76: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Ingredients for the dynamical argument

Need large normal subgroups,

Need normal subgroups that contain proximal elements,

First step is achieved by representation theoretic tools,

Finite index problems,

not finitely generated problems,

Theorem (Tits, Margulis-Soı̆fer, Breuillard-Gelander)

Assume (ΓZ)0 is not solvable, then exists a projective strongly

irreducible representation over some local field, with a highlyproximal elements.

Page 77: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Ingredients for the dynamical argument

Need large normal subgroups,

Need normal subgroups that contain proximal elements,

First step is achieved by representation theoretic tools,

Finite index problems,

not finitely generated problems,

Theorem (Tits, Margulis-Soı̆fer, Breuillard-Gelander)

Assume (ΓZ)0 is not solvable, then exists a projective strongly

irreducible representation over some local field, with a highlyproximal elements.

Page 78: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Ingredients for the dynamical argument

Need large normal subgroups,

Need normal subgroups that contain proximal elements,

First step is achieved by representation theoretic tools,

Finite index problems,

not finitely generated problems,

Theorem (Tits, Margulis-Soı̆fer, Breuillard-Gelander)

Assume (ΓZ)0 is not solvable, then exists a projective strongly

irreducible representation over some local field, with a highlyproximal elements.

Page 79: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Lipschitz = contraction

Theorem

A projective transformation is contracting, if and only if it isLipschitz on some open neighborhood.

Quantitative estimates.

Page 80: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Lipschitz = contraction

Theorem

A projective transformation is contracting, if and only if it isLipschitz on some open neighborhood.

Quantitative estimates.

Page 81: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Obtaining Lipschitz transformations

Page 82: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Obtaining Lipschitz transformations

Page 83: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Obtaining Lipschitz transformations

Page 84: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Obtaining Lipschitz transformations

Page 85: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Obtaining Lipschitz transformations

Page 86: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Frattini Subgroups

Definition

The Frattini subgroup φ(G) of a group G is

The intersection of all maximal subgroups.

The subgroup of all “non-generators”.

Lemma

If Γ is primitive then φ(G) = 〈e〉.

Page 87: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Frattini Subgroups

Definition

The Frattini subgroup φ(G) of a group G is

The intersection of all maximal subgroups.

The subgroup of all “non-generators”.

Lemma

If Γ is primitive then φ(G) = 〈e〉.

Page 88: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Frattini Subgroups

Definition

The Frattini subgroup φ(G) of a group G is

The intersection of all maximal subgroups.

The subgroup of all “non-generators”.

Lemma

If Γ is primitive then φ(G) = 〈e〉.

Page 89: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

Computations of Frattini Subgroups.

Theorem (Frattini subgroups)

We compute Frattini subgroups in all geometric settings.

Linear groups (Platonov [66], Wehrfritz [68]),

Mapping class groups (Ivanov [92]),

Hyperbolic groups (I. Kapovich [03]),

Trees ⇒ Answers a question of Higman and Neumann [54](f.g. case),

Page 90: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

The Higman Neumann question

Theorem (Conj. Higman and Neumann 54)

Let G = A ∗C B be a finitely generated amalgamated freeproduct, then φ(G) < C.

Proof.

f : G → Aut(T ), Bass-Serre Tree.

By Main Theorem φ(f (G)) = 〈e〉.φ(G) < ker(f ) < C

Page 91: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

The Higman Neumann question

Theorem (Conj. Higman and Neumann 54)

Let G = A ∗C B be a finitely generated amalgamated freeproduct, then φ(G) < C.

Proof.

f : G → Aut(T ), Bass-Serre Tree.

By Main Theorem φ(f (G)) = 〈e〉.φ(G) < ker(f ) < C

Page 92: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

The Higman Neumann question

Theorem (Conj. Higman and Neumann 54)

Let G = A ∗C B be a finitely generated amalgamated freeproduct, then φ(G) < C.

Proof.

f : G → Aut(T ), Bass-Serre Tree.

By Main Theorem φ(f (G)) = 〈e〉.φ(G) < ker(f ) < C

Page 93: Infinite Primitive Permutation Groups.yairgl/Texas.pdfFinitely generated groups: Linear groups: Tits alternative, either contains a free group, or virtually solvable, Residually finite,

Representation Statements Groups Dynamics Metric Application

The Higman Neumann question

Theorem (Conj. Higman and Neumann 54)

Let G = A ∗C B be a finitely generated amalgamated freeproduct, then φ(G) < C.

Proof.

f : G → Aut(T ), Bass-Serre Tree.

By Main Theorem φ(f (G)) = 〈e〉.φ(G) < ker(f ) < C