23
SolarSafeWater Simposio 19 th October 2005 Influence of TiO 2 Physico-Chemical Characteristics on Photocatalytic E. coli Inactivation D. Gumy a , R. Hajdu a , S. Giraldo a,d , C. Pulgarin a C. Morais b , P. Bowen b J. Kiwi c a) LBE (ENAC-ISTE), b) LPT (STI-IM), c) LPI (SB-ISIC), EPFL, Lausanne1015, Switzerland, d) Catalysis Res. Center, Ind. University of Santander, Bucaramanga, Colombia

Influence of TiO2 Physico-Chemical Characteristics on

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

Influence of TiO2 Physico-Chemical Characteristics on Photocatalytic

E. coli Inactivation

D. Gumya, R. Hajdua, S. Giraldoa,d, C. Pulgarina

C. Moraisb, P. Bowenb

J. Kiwic

a) LBE (ENAC-ISTE), b) LPT (STI-IM), c) LPI (SB-ISIC), EPFL, Lausanne1015, Switzerland,

d) Catalysis Res. Center, Ind. University of Santander, Bucaramanga, Colombia

Page 2: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

Contents

Context – Objectives

1) TiO2 characterization

2) E. coli inactivation with suspended TiO2

3) E. coli inactivation with supported TiO2

Conclusion

Page 3: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

Influence of TiO2 characteristics

Objectives

• To characterize 13 commercial TiO2 powders

• To relate these characteristics with E. coli inactivation

The rate of formation of the oxidative surface species and the interaction between TiO2 and organics and/or bacteria are function of :

- particle size

- aggregated size

- BET specific surface area

- Crystalline phase

- Isoelectric point (IEP)

- other parameters

Page 4: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

TiO2 characterization methods

• Crystalline phase (Anatase, Rutile)

X-ray diffraction measurements (XRD)

• BET (Specific Surface Area)

Gas adsorption measurements

• TiO2 particle size

Transmission electron microscopy (TEM)

• TiO2 aggregate size

Electroacoustic spectroscopy

• Isoelectric Point (IEP) - Zeta potentialElectroacoustic spectroscopy

C. Morais, P. Bowen, LTP, STI

Page 5: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

Electroacoustic spectroscopy

The electroacoustic procedure measures the dynamic (or electrophoretic) mobility μd

(O’Brien et al., Colloid. Interface. Sci, 1995, 173, 406-418. )

Zeta Potential

-60

-40

-20

0

20

40

60

80

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

pH0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Con

duct

ivity

[S/m

]

Zeta Potential Smol. Zeta Potential Conductivity

Attenuation Size

00.05

0.10.15

0.20.25

0.30.35

0.40.45

2 4 6 8 10 12pH

D50 D15 D85

pH < IEP TiO2 surface : positively charged (TiOH2+)

pH = IEP TiO2 surface : neutral

pH > IEP TiO2 surface: negatively charged (TiO-)

μd 1) Zeta potential & IEP

acoustic attenuation spectroscopy 2) Aggregate size distribution(O’Brien, R. W. J. Fluid mech., 1988, 190, 71-85. )

P25

Page 6: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

TiO2 characteristics

Type of TiO2 Crystalline BET Particule Aggregate IEPphase (m2/g) size (nm) radius (nm)

Degussa P25 Ana.-Rutile 56 25-35 370 7.0Degussa P25 TN90 Ana.-Rutile 90 <100 14000 7.0

Mil. PC10 Anatase 10 70 1000 5.7Mil. PC50 Anatase 50 20-30 8200 6.8Mil. PC500 Anatase 335 5-10 1400 6.2

Mil. S5-300A Anatase 280 30-60 1500 7.0Huntsmann AHR Anatase 11 150 6000 <3

Fluka Anatase 9 700 40000 3.5Tayca JA1 Anatase 9 180 9200 <3

Tayca TKS201 Anatase 214 6 130 7.5Tayca TKS203 Anatase 241 6 200 <3Tayca TKP101 Anatase 300 6 1850 4.7Tayca TKP103 Anatase 280 6 350 <3

Page 7: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

E. coli (1)

PeptidoglycanOuter membrane

Cytoplasmicmembrane

Cytoplasm Periplasm

Outer membrane (6 -18 nm)

50% lipopolysaccharides, 35% phospholipids, 15% lipoproteins

Mechanical protection, influence permeability of moderate and large size molecules, etc.

Cytoplasmic membrane (7.5 nm) phospholipids bi-layer

Selective permeability, maintaining osmotic equilibrium, electron-transport machinery, etc.

GRAM –

• 1-2 μm diameter (~ same as TiO2 aggregate size)

• Outer membrane is negatively charged between pH 3 and 9

Page 8: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

E. coli (2)1. Natural generation in the cell of O2

•- and H2O2 during respiration

Protective mechanism for all aerobic life form:• Superoxyde dismutase (SOD) enzyme (to dismutate O2

•- to H2O2 and O2)• Catalase enzyme (to convert H2O2 to H2O and O2)

2. H2O2 can react with Fe in the cell and generated intern OH• by the Fenton reaction

Fe2+ + H2O2 Fe3+ + OH• + OH-

3. Different mechanisms of reparation (DNA/RNA, etc.)

4. No mechanism to protect bacteria against external OH• attack

5. There are several evidences of membrane and cell wall destruction and of internal materials leachingNo evidence of oxygen reactive species diffusion inside the cell(Sunada et al., J. Photochem. Photobiol., 156 (2003) - Manness et al. J. Appl. Environ. Microbiol., 65 (1999))

Page 9: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

Photocatalytic Experiments

• Suntest Lamp with UV B_C filter (<290 nm)

• I = 70, 100 & 140 mW/cm2

• 4h illumination

• 4 reactors in parallel

• 50 ml Pyrex Glass Reactor

• [E. coli] = ~7 106 CFU/ml

Stationary growth phase (15 h, 37°C, LB)

• Saline solution: NaCl 8 g/l , KCl 0.2 g/l

• pH adjusted to 4.5, 6 and 8.5

• 3 or 4 x repetition

Page 10: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

E. coli abatement

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240Time [min]

CFU

/ml

Degussa P25 Degussa TN90 Fluka Hunstmann AHR Tayca TKP 101

Tayca TKP 103 Tayca TKS 201 Tayca TKS 203 Tayca JA1 Millenium PC10

Millenium PC50 Millenium PC500 Millenium S5300A Millenium S5300B Sans TiO2

[E. coli]ini = 7 106 CFU/ml ; Vill = 50 ml , TiO2 = 0.2 g/l ; I = 70 mW/cm2 ; pH 6

Probably because of the accumulation of organic material in

the bulk

Competition with alive bacteria

P25

Page 11: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

BET < 200 m2/g(except P25, aggregate size > 1 μm)

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 10 20 30 40 50 60

Time [min]

CFU

/ml

Degussa P25 Degussa TN90 Tayca JA1 Millenium PC10 Millenium PC50 Hunstmann AHR Fluka

IEP = 5.7IEP = 7.0

IEP < 3

IEP = 3.5

IEP < 3

• Lag period for TiO2 with acidic IEP, probably due to an electrostatic repulsive effect

• No correlation between BET (or particle size) and E. coli inactivation

Page 12: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

BET > 200 m2/g small aggregate size

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

0 10 20 30 40 50 60

Time [min]

CFU

/ml

Millenium PC500 Millenium S5300A Tayca TKS201 Tayca TKS203 Tayca TKP101 Tayca TKP103

IEP < 3

IEP < 3

IEP > 6

• Apparently: repulsive effect for TiO2 with acidic IEP

• No correlation between BET (or particle size) and E. coli inactivation

IEP = 4.7

IEP = 6.2 !!!

Page 13: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

pH and IEP

Study of the electrostatic attraction between E. coli and TiO2

E. coli: Negatively charged between pH 3 & 9 (carboxylic and phosphate groups)

pH < IEP TiO2 surface : positively charged (TiOH2+)

pH = IEP TiO2 surface : neutral

pH > IEP TiO2 surface: negatively charged (TiO-)

TiO2:

Experiments at different pH

Page 14: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

Photo-inactivation at different pH

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

1,0E+07

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240

Time [min]

CFU

/ml

(1) pH = 8.5 (2) pH = 6.0 (3) pH = 4.5

(1)

(2)

(3)

• No abatement under light irradiation at pH 6 & 8.5

• Small abatement at pH 4.5

[E. coli]ini = 7 106 CFU/ml ; Vill = 50 ml , TiO2 = 0.0 g/l ; I = 70 mW/cm2

Page 15: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

pH and IEP

Type of TiO2 Crystalline BET Particule Aggregate IEP

phase (m2/g) size (nm) radius (nm)Tayca TKS201 Anatase 214 6 130 7.5Tayca TKS203 Anatase 241 6 200 <3

Pairs of TiO2 with different surface charge but similar surface properties

Page 16: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

Tayca TKS

Electrostatic attraction seems to be a determinant factor for Tayca TKS

IEP = 7.5 IEP <3

Tayca TKS 201

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 10 20 30 40 50 60Time [min]

CFU

/ml

pH = 4.5 pH = 6 pH = 8.5

Tayca TKS 203

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 10 20 30 40 50 60

Time [min]

CFU

/ml

pH = 4.5 pH = 6 pH = 8.5

Surface negatively charged for the 3 pHSurface negatively charged for pH 8.5

and positively charged for pH 4.5 & 6.0

Page 17: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

Degussa P25

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 15 30 45 60 75 90 105 120

Time [min]

CFU

/ml

(1) P25 - Dark conditions - pH 6.0 (2) Light only - pH 6.0 (3) pH 4.5 (4) pH 6.0 (5) pH 8.5

(1)

(2)

(3)(4)

(5)

E. coli abatement : pH 8.5 ~ pH 6 ~ pH 4

Electrostatic attraction seems not to be a determinant factor with P25 ???

Direct observation with microscopic methods (optical, TEM, AFM)

Page 18: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

TEM

1. Determination of particles and clusters size up to the nanometer range (450’000x)

2. Interaction between P25 and E. coli

At pH 6:

TiO2: TiOH2+ on surface (P25: IEP = 7)

300-400 nm

E. coli: – charged (between pH 3 & 9) (carboxylic and phosphate groups)

~ 1 μm

Partial contact, a significant part of the TiO2 particle remain in the solution outside the electrostatic field of E. coli

Page 19: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

TiO2 Supported

Ahlstrom paper NW 10

• Non-woven web (natural and synthetic fibers, 0.2 mm thick)

• TiO2 P-25 and PC500 coated using an inorganic binder - SiO2 - IEP < 2

• TiO2 loading: 5.5, 10.0 and 13 g/m2

• High photoactivity for phenolic compounds degradation with the same experimental conditions(Gumy et al., Sol. Energy, 2005, in press)

• SEM picture of NW10 (25x) • Thin film reactor (5mm) with coated TiO2

Page 20: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

Reactor - Suntest

- Continuously recirculated:Flow = 150 ml/min

- I = 140 [mW/cm2] (~6% UV)

Volume without support:

- Vtotal = 200 ml ; Vill.= 100 ml

Volume with support:

- Vtotal = 100 ml ; Vill = 25 ml

- Øint. = 40 mm ; Øsupport = 30 mm

Page 21: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

Paper NW10 – E. coli

Continuously recirculated reactor, Vtotal = 100 ml ; Vill = 25 ml, SNW10 = 65 cm2

1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

0 15 30 45 60 75 90 105 120

Time (min)

E. c

oli

CFU

/ml

NW10 P25NW10 PC500Light0.2 g/l suspended P25

Bacterial inactivation is not enhanced by fixed TiO2 probably because there is not enough “contact” between bacteria and TiO2

This could be due to the electrostatic repulsion between SiO2-TiO2 and the bacteria

Page 22: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

Conclusion & perspective

• Correlation between IEP (therefore electrostatic attraction) and inactivation kinetics was observed

• No correlation between BET (and/or particle size) and inactivation kinetics was observed

• Mixed anatase/rutile P25 was the more active catalysts for bacterial inactivation

• TiO2 coated on “paper” with silica binder do not enhanced the photoinactivationof E. coli (probably because of the presence of silica binder)

• Direct observation by microscopic technique to understand better the interaction between bacteria and TiO2

Page 23: Influence of TiO2 Physico-Chemical Characteristics on

SolarSafeWater Simposio 19th October 2005

Acknowledgments

Sonia Giraldo and Rita Hajdu

• OFES for its financial assistance (projects No 02.0030 and 02.0316 within the SOLWATER and AQUACAT contracts No ICA4-CT.2002-10001 and ICA3-CT-2002-10016 of the European Community)

• CTI/KTI TOP NANO 21 under Grant 5897.5 (Bern, Switzerland) and of COST D-19 under Grant No COO 2.0068

• EPFL-Colombia cooperation program

and You!