22
ELIS – Multimedia Lab ELIS – Multimedia Lab Infrared and Vibration based Bearing Fault Detection Using Neural Networks Olivier Janssens, Lothar Verledens, Raiko Schulz ,Veerle Ongenae Kurt Stockman, Mia Loccufier, Rik Van de Walle, Sofie Van Hoecke AITA - 2015 - PISA 1/21

Infrared and Vibration based Bearing Fault Detection Using Neural Networks · 2020. 4. 30. · ELIS – Multimedia Lab Infrared and Vibration based Bearing Fault Detection Using Neural

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Infrared and Vibration based Bearing Fault Detection Using Neural Networks

    Olivier Janssens, Lothar Verledens, Raiko Schulz ,Veerle Ongenae

    Kurt Stockman, Mia Loccufier, Rik Van de Walle, Sofie Van Hoecke

    AITA - 2015 - PISA

    1/21

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Overview

    • Bearings and bearing fault causes

    • Experiments and data set creation

    • Fault-detection architecture

    • Results

    • Conclusion

    2/21

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Bearings: what they do

    3/21 Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Bearings: example where they are used

    4/21 Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Bearing failure

    Downtime

    Costs

    Fault propagation

    Reduced lifetime

    5/21 Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Bearing failure

    Improper lubrication

    Delayed lubrication renewal

    Inadequate lubrication

    Lubricant contamination

    Unsuitable lubrication

    Inadequate bearing

    selection

    Improper mounting

    Load imbalance

    Misalignment

    Indirect failures

    Manufacturing errors

    10% 5% 1% 4%

    25 %

    15%

    20%

    20 %

    [1] C. Radu, The most common causes of Bearing Failure and Importance of Bearing Lubrication,

    RKB Technical review, 2010

    6/21 Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Goal

    Detect and identify which fault(s)/ condition(s) is/are

    present using thermal imaging and vibration data

    7/21 Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Setup & faults/conditions

    1. Servo-motor 5. Disk 9. Metal plate

    2. Coupling 6. Shaft 10. Field of view

    3. Bearing housing 7. Accelerometer 11. Thermal camera

    4. Bearing 8. Thermocouple

    8/21 Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    No fault (NF)

    Mildly reduced lubrication (MRL)

    Heavily reduced lubrication (HRL)

    Outer raceway fault (ORF)

    Setup & faults/conditions

    9/21 Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    1 2 3 4 5

    6 7 8 9 10

    11 12 13 14 15

    16 17 18 19 20

    21 22 23 24 25

    26 27 28 29 30

    31 32 33 34 35

    36 37 38 39 40

    NF

    NF-IM

    MRL

    MRL-IM

    HRL

    HRL-IM

    ORF

    ORF-IM

    Be

    arin

    g 1

    Be

    arin

    g 2

    Be

    arin

    g 3

    Be

    arin

    g 4

    Be

    arin

    g 5

    Data:

    40 recordings (5 bearings * 8 faults/conditions)

    1 hour video per recording

    10 minute vibrations per recording

    Corrected for ambient temperature.

    10/21 Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Multi-sensor solution:

    Thermal images - preprocessing:

    Region of interest detection using Gaussian mixture models [2]

    [2] Z. Zivkovic. Improved adaptive gaussian mixture model for background subtraction. ICPR 2004. pages

    28–31 Vol.2, Aug 2004.

    11/21 Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

    Multi-sensor solution:

    Thermal images - preprocessing:

    Use ROI as timeseries

    12/21

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

    Multi-sensor solution:

    Thermal images - preprocessing:

    Use ROI as timeseries

    13/21

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Multi-sensor solution:

    Thermal images – dataformat:

    Use ROI as timeseries

    It(x,y) It+1(x,y) … I225(x,y)

    1 hour

    • 500 pixels from the seal

    • 1000 pixels from the top

    of the housing

    14/21 Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Fault detection architecture

    MRL

    MRL – IM

    ORF

    ORF – IM

    HB

    HB – IM

    HRL

    HRL – IM

    ORF

    ORF – IM

    HB

    HB – IM

    HRL

    HRL – IM

    MRL

    MRL – IM

    HB

    HB – IM

    HRL

    HRL – IM

    ORF

    ORF – IM

    HRL

    HRL – IM

    HB

    HB – IM

    MRL

    MRL – IM

    ORF

    ORF – IM

    HB

    HB – IM

    HRL

    HRL – IM

    MRL: Mildly reduced lubrication

    ORF: Outer raceway fault

    HB: Healthy bearing

    HRL: Heavily reduced smearing

    Neural network

    Random forest classifier

    Support vector machine

    15/21 Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Multi-sensor solution – Neural network 1:

    Timeserie seal

    Timeserie housing top

    Timeserie housing top 2

    255 n

    odes

    255 n

    odes

    255 n

    odes

    325 n

    odes

    40

    nodes

    MRL (-IM)

    HRL (-IM)

    ORF(-IM)

    HB(-IM)

    Architecture: 675 325 40 2

    16/21 Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Multi-sensor solution – Neural network 2:

    Timeserie housing top 1

    255 n

    odes

    100 n

    odes

    HB (-IM)

    HRL (-IM)

    Architecture: 255 100 2

    17/21 Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Neural network techniques used:

    - Training: Stochastic gradient descent + momentum with Backpropagation

    - Activation function hidden nodes: Rectified linear units

    - Activation output nodes: Softmax

    - Loss function: Cross entropy

    18/21 Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Vibration part:

    Vibration data

    Vibration data

    Peak to peak features

    Kurtosis features Random forest

    ORF (-im)

    HRL (-IM)

    HB(-IM)

    Amplitude at the rotation

    frequency (25 Hz) Linear SVM

    Imbalance

    Balance

    Data Features Classification

    model Classes

    19/21 Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Results

    Fault IR-based precision Multi-sensor precision

    HB 50 % 100 %

    HB - IM 70 % 100 %

    MRL 100 % 100 %

    MRL - IM 80 % 80 %

    HRL 70 % 100 %

    HRL - IM 70 % 90 %

    ORF 30 % 100 %

    ORF - IM 40 % 100 %

    Average 63,75 % 96,25 %

    20/21 Bearings & faults

    Experiment & data set

    Architecture Results &

    conclusion

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Acknowledgment

    21/21

    This work was partly funded by the O&M Excellence project, a

    VIS project of the Institute for the Promotion of Innovation through

    Science and Technology in Flanders (IWT), and has been

    performed in the framework of the Offshore Wind Infrastructure

    Application Lab (http://www.owi-lab.be).

  • ELIS – Multimedia Lab ELIS – Multimedia Lab

    Thank you for listening !

    Questions ?

    22/21