22
INGAS Meeting, Regensburg, 13 October 2011 INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTA Mirko BARATTA INGAS INtegrated GAS Powertrain INGAS INtegrated GAS Powertrain 1 Meeting – Regensburg Subproject A2 Status (month 31-36) Mirko BARATTA – Politecnico di Torino INGAS Subproject SPA2

INGAS Subproject SPA2

  • Upload
    marc

  • View
    56

  • Download
    0

Embed Size (px)

DESCRIPTION

INGAS Subproject SPA2. Meeting – Regensburg Subproject A2 Status (month 31-36) Mirko BARATTA – Politecnico di Torino. INGAS Subproject SPA2. WP A2.2 – Injection system development Main objectives and Status summary: - PowerPoint PPT Presentation

Citation preview

Page 1: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

1

Meeting – RegensburgSubproject A2

Status (month 31-36)Mirko BARATTA – Politecnico di Torino

INGAS Subproject SPA2

Page 2: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

2

• WP A2.2 – Injection system development• Main objectives and Status summary:

- Setup of a model of the real-geometry injector with moving needle, in order to investigate the injector non-linearity for short injection duration.

- Simulations run with lift profiles measured by Siemens

prail=20 bar, ti=500-1000-1500-2000 s => DONE

prail=14-16-18 bar, ti=500-1000-1500-2000 s => READY TO BE RUN

The most significant tests should be selected (e.g. prail-sweep @ ti=1000 s).

-> Should we consider this work as pertaining to Task A2.2.2 (“Development of a new injector concept and optimized nozzle layout”) or Task A2.2.4 (“Analysis and improvement of the over all injection system”)? Based on DoW, PT has no MM in Task A2.2.4.

-> Should PT give a contribution to DA2.7?

INGAS Subproject SPA2

Page 3: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

3

• WP A2.4 - Combustion-system development• Main objectives and Status summary:

– New model validation based on PLIF signal processing within Matlab environment

» Model validation done also @1500 rpm, Full Load– Completion of the mixture formation study

» Mixture formation @ full load (MCE - 1500 rpm, SCE – 1500 rpm, MCE – 5000 rpm – COMPLETED

» Simulations with different cone angle – TO BE DISCUSSED.

INGAS Subproject SPA2

Page 4: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

4

Boundary condition:prail, Trail

Closed boundary

Gas path

Downstreamenvironment

pchamber

Tchamber

Closed passage

Task A2.2.2 – Development of a new injector concept and optimized nozzle layout

Simulation of the real injector layout (3-holes configuration)Transient conditions (variable needle lift – input from Siemens)

Page 5: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

5

Task A2.2.2 – Development of a new injector concept and optimized nozzle layout

Simulation of the real injector layout (3-holes configuration)Transient conditions (variable needle lift – input from Siemens)

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 30

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

time [ms]

Mas

s fl

ow

rat

e [

kg/s

]

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 30

25

50

75

100

125

150

175

200

225

250

Lif

t [

um

]

LiftMass flow rate

Ti=2000sTi=1000s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

time [ms]

Mas

s fl

ow

rat

e [

kg/s

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

25

50

75

100

125

150

175

200

225

250

Lif

t [

um

]

LiftMass flow rate

Page 6: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

6

Task A2.2.2 – Development of a new injector concept and optimized nozzle layout

Simulation of the real injector layout (3-holes configuration)Transient conditions (variable needle lift – input from Siemens)

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 30

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

time [ms]

Mas

s fl

ow

rat

e [k

g/s

]

inletsection 1section 2

Ti=2000sTi=1000s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

time [ms]

Mas

s fl

ow

rat

e [k

g/s

]

inletsection 1section 2

Page 7: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

7

Task A2.2.2 – Development of a new injector concept and optimized nozzle layout

Simulation of the real injector layout (3-holes configuration)Transient conditions (variable needle lift – input from Siemens)

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 311

12

13

14

15

16

17

18

19

20

21

time [ms]

Pre

ssio

ne

tota

le [

bar

]

section 1section 2

Ti=2000sTi=1000s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.611

12

13

14

15

16

17

18

19

20

21

time [ms]

Pre

ssio

ne

tota

le [

bar

]

section 1section 2

Page 8: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

8

Task A2.2.2 – Development of a new injector concept and optimized nozzle layout

Simulation of the real injector layout (3-holes configuration)Transient conditions (variable needle lift – input from Siemens)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Inja

cted

Mas

s [m

g]

Lift Integral [m∙s]

Page 9: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

9

Task A2.2.2 – Development of a new injector concept and optimized nozzle layout

Simulation of the real injector layout (3-holes configuration)Model validation ???

• Solution #1: using data from MCE (AVL presentation in Oulu)

Injection time vs. fuelmass flow (Load-sweep at 2000rpm)

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9

Fuel mass flow [kg/h]

Inje

ctio

n tim

e [m

s]

Injection with needle lift 150

Injection with needle lift 200

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Inja

cted

Mas

s [m

g]

Lift Integral [m∙s]

simulation

exp

extrapolated points

Page 10: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

10

Task A2.2.2 – Development of a new injector concept and optimized nozzle layout

Simulation of the real injector layout (3-holes configuration)Model validation ???

• Solution #2: using data from the old PT publication (ASME ICEF2010-35104)

Page 11: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

Task A2.4.2 – Analysis of mixture formation

Experimental (statistical)

Simulated

Qualitative model validation based on statistical pictures (from the Oulu meeting)

4

Page 12: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

12

Task A2.4.2 – Analysis of mixture formationQuantitative model validation

1500 rpm – RAFR = 1.0 – Homogeneous operation – Full Load

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

= 165° CA BTDC (15° CA ASI)

7

6

5

4

3

2

1

0

Page 13: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

13

Task A2.4.2 – Analysis of mixture formationQuantitative model validation

1500 rpm – RAFR = 1.0 – Homogeneous operation – Full Load

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

= 150° CA BTDC (30° CA ASI)

7

6

5

4

3

2

1

0

Page 14: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

14

Task A2.4.2 – Analysis of mixture formationQuantitative model validation

1500 rpm – RAFR = 1.0 – Homogeneous operation – Full Load

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

= 50° CA BTDC

Page 15: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

15

Task A2.4.2 – Analysis of mixture formationQuantitative model validation

2000 rpm – imep=3 bar – RAFR = 1.8 – Stratified operation

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

= 58� CA BTDC (5 � CA ASI)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

= 50� CA BTDC (13 � CA ASI)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

= 30� CA BTDC

7

6

5

4

3

2

1

0

Page 16: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

16

Task A2.4.2 – Analysis of mixture formation

200° CA BTDC8° CA ASI

Mixture formation @ full load1500 rpm – IMEP=23 bar – EOI=120 deg

12.0

01.0

6.0

3.0

9.0

160° CA BTDC48° CA ASI

5° CA BTDC203° CA ASI

Page 17: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

17

Task A2.4.2 – Analysis of mixture formationMixture formation @ full load

1500 and 5000 rpm – MCE

fm = fraction of flammable mixture

ff = fraction of flammable fuel

360 480 600 720

CA [deg]

0

0.25

0.5

0.75

1

f m, f

f [

-]

fm fffm ff

1500 rpm

5000 rpm

Page 18: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

18

Task A2.4.2 – Analysis of mixture formation

420480540600660720

CA [deg]

00.25

0.50.75

1

f m [

-]

EOI 220EOI 170

EOI 120EOI 70

EOI 302EOI 195

420 480 540 600 660 720

CA [deg]

0

0.25

0.5

0.75

1

f m [

-]

Mixture formation for different EOIs – 2000rpm, IMEP=3 bar

EOI 70

EOI 220

EOI 195

Contours @ TDC

Page 19: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

19

Task A2.4.2 – Analysis of mixture formation

Mixture formation for different EOIs – 2000rpm, IMEP=3 barCorrelation with MCE combustion and emission data (from DA2.11)

-360 -300 -240 -180 -120 -60 0

EOI [deg CA]

0

100

200

300

400

bsf

c [

g/k

Wh

]

0

2

4

6

8

Co

V im

ep [%

]

0

25

50

75

100

Vo

l. efficiency [%

], IME

P_L

(abs) [kP

a]

BSFCCoV imepVolumetric efficiencyIMEP_L (abs)

-360 -300 -240 -180 -120 -60 0

EOI [deg CA]

0

600

1200

1800

2400

NO

x, T

HC

, CH

4 [

pp

m]

0

1

2

3

4

CO

, O2 [%

]

CH4THCCO

NOxO2

Page 20: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

20

• Dissemination

– Mirko Baratta, Nicola Rapetto, Ezio Spessa, Alois Fuerhapter, Harald Philipp, “Numerical and Experimental Analysis of Mixture Formation and Performance in a Direct Injection CNG Engine”, SAE 2012 World Congress, Detroit, MI, USA.

– Mirko Baratta, Andrea E. Catania, Nicola Rapetto, Alois Fuerhapter, Matthias Gerlich, Wolfgang Zoels, “DI-CNG Injector Characterization at Small Energizing Times by Means of Numerical Simulation”, ASME Paper ICES2012-81186, ASME ICED Spring Technical Conference, May 6-9, 2012, Torino, Piemonte, Italy.

INGAS Subproject SPA2

Page 21: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

21

• Next Steps (month 37-42)

– To be discussed

INGAS Subproject SPA2

Page 22: INGAS Subproject SPA2

INGAS Meeting, Regensburg, 13 October 2011INGAS Meeting, Regensburg, 13 October 2011 Mirko BARATTAMirko BARATTA

INGAS INtegrated GAS PowertrainINGAS INtegrated GAS Powertrain

22

• Problems / Changes compared to plan

– No problems, no changes.

INGAS Subproject SPA2