30
INNOVATION, ENTREPRENEURSHIP AND MANAGEMENT SERIES Operationalizing Sustainability Pierre Massotte and Patrick Corsi

INNOVATION, ENTREPRENEURSHIP AND MANAGEMENT SERIES · 6cp.net . Operationalizing Sustainability Pierre Massotte Patrick Corsi . First published 2015 in Great Britain and the United

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

The second of two books making up a comprehensive treatise onsustainability for a variety of academic and executive readers in all walksof post-modern activities.

Following on from the first book, in which the authors discuss themechanisms underlying sustainability and the principles to be taken intoaccount to define its technologies (in the etymological sense), thissecond book implements the ways to make sustainability operationaland attempts to measure it.

The authors present an attempt at unification, based on these concepts,that is implementable. The tactical part of sustainability implementationand operationalization (the “how to do it”) has the intention to discover,suggest and develop new practical elements about futuremethodologies. Various experiments are detailed, which result inunexpected or disruptive results and enable the definition andadaptation of approaches, rules and principles, boosting systemsustainability.

This book tackles fundamental cross-disciplinary issues and paves theway towards a productive interplay between freewill and selfishness. Itprovides a mind-centered roadmap on how sustainability must beaddressed in the field and how the measurement of a sustainablesystem can be performed.

Pierre Massotte is a senior consultant in advanced technologiesprojects. His career focused on manufacturing quality, businesscompetitiveness, then complexity, self-organization, and sustainabilityat IBM. Leading to IBM Academy of Technology, he continued asScientific Director at IBM EMEA, to improve European Manufacturingplants and Development Laboratories operations. He was DeputyDirector at Ecole des Mines d’Alès in France.

Patrick Corsi is an international consultant in designing breakthroughfutures at Cayak InnoV, Paris and IKM, London, UK and Brussels, and anAssociate Practitioner in intensive innovation at the Centre de GestionScientifique at Mines ParisTech in France. Previously, he had anextensive career with IBM Corp., IBM France, THOMSON-CSF, theEuropean Commission as well as a successful start-up experience.

Z(7ib8e8-CBIJCF(www.iste.co.uk

INNOVATION, ENTREPRENEURSHIPAND MANAGEMENT SERIES

OperationalizingSustainability

Pierre Massotte and Patrick Corsi

Pie

rre M

asso

ttePatric

k C

orsi

Opera

tionalizin

g S

usta

inability

Operationalizing Sustainability

“An outstanding advance in foresight methodology.”

Dr. Thierry GAUDIN http://gaudin.org

Member of the Club of Rome−Brussels

Honorary Member of the Club of Budapest−Paris

Founder and President of “Prospective 2100”, a World Foresight Association http://2100.org

Member of the Board of the World Futures Studies Federation www.wfsf.org

One of the four founders of the six countries Program on Innovation Policies

6cp.net

Operationalizing Sustainability

Pierre Massotte Patrick Corsi

First published 2015 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2015 The rights of Pierre Massotte and Patrick Corsi to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2015946704 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-84821-892-5

Contents

Note to all Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Note to the Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

List of Acronyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

Part 1. Sustainability: Toward the Unification of Some Underlying Principles and Mechanisms . . . . . . . . . . . . . 1

Chapter 1. Toward a Sustainability Science . . . . . . . . . . . . . . . . . 3

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. What does unification mean? . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3. Coming back to sustainability: how many “sustainabilities”? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4. Sustainability: what kind of unification? An integration issue? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5. What kind of paradigm do we have to integrate? . . . . . . . . . . . . . . 12 1.6. The issue and the implementation of a new dimension . . . . . . . . . . 14

1.6.1. Preamble: code of matter, power of laws and balance of powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.6.2. The addition of a new dimension: gimmick or necessity? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.6.3. Integration of time and dynamics . . . . . . . . . . . . . . . . . . . . 17 1.6.4. Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7. Extensions of the concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.7.1. Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi Operationalizing Sustainability

1.7.2. Life sciences: power laws, evolution, life and death phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.7.3. The power laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 2. Sustainability in Complex Systems . . . . . . . . . . . . . . . 29

2.1. Preamble: theories of interconnected systems . . . . . . . . . . . . . . . 29 2.2. Analysis of feedback phenomena in an assembly manufacturing cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1. Preliminary considerations . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.2. Case study 1: modeling the limitation of work in progress (WIP) by a threshold called “MAQ” . . . . . . . . . . . . 32 2.2.3. Case study 2: modeling the WIP through assignment rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.4. Case study 3: model building based on dynamic management of bottlenecks . . . . . . . . . . . . . . . . . . . . . . 34 2.2.5. Main comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3. Application to complex systems: quantitative characteristics of a deterministic chaos . . . . . . . . . . . . . . . . . . . . . . 37 2.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.2. Quantification of state variables in a production system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4. General considerations about interactions in networked organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5. Role of feedback in mimicry and ascendancy over others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6. Network theory: additional characteristics due to their new structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.1. Mycorrhization networks . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.7. Simplexification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.8. Convergences in network theory . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 3. Extension: From Complexity to the Code of Thought . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1. The code of thought: effects of cognition and psyche in global sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2. Is sustainability the only technological and technocratic approach? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3. The three laws of sustainability: prediction and anticipation in complex systems . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1. Is sustainability a consistent property of any complex system? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.2. Sustainability is also the art of combining paradoxes . . . . . . . . . 59

Contents vii

3.3.3. Adaptation of a manufacturing process: what is so important in planning and scheduling? . . . . . . . . . . . . . . . . . . 59 3.3.4. Predicting the future? Is it a necessity? . . . . . . . . . . . . . . . . . 60

3.4. Consequence: toward a new dimension . . . . . . . . . . . . . . . . . . . 63 3.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.6. Indicators for monitoring the EU sustainable development strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Part 2. Operationalization: Methods, Techniques and Tools – the Need to Manage the Impact . . . . . . . . . . . . . . . . . 69

Chapter 4. From Context to Knowledge: Building Decision-making Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1.1. In the back part of the brain, there is the cerebellum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.1.2. In the temporal lobe of the cerebrum and limbic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1.3. The frontal lobe of the cerebrum (frontal neocortex) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2. How about obtaining a sustainable knowledge? . . . . . . . . . . . . . . 74 4.2.1. The first question: how do we learn from experience? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.2. The second question: how do we learn from experiences and develop a conceptual understanding? . . . . . . . . . . . . . . . . . . . 75 4.2.3. The third question: how do we model a sustainable information and knowledge processing system? . . . . . . . . . . . . . . . 76

4.3. Preliminary consideration: the nature of the problems encountered in test and diagnosis . . . . . . . . . . . . . . . . . . . 77

4.3.1. The world of industry . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3.2. Health and medical care . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3.3. Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4. Preamble: basic concepts for creating knowledge . . . . . . . . . . . . . 80 4.4.1. Description of the basic reasoning techniques . . . . . . . . . . . . . 80 4.4.2. Conventional collaborative techniques for creating knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5. Retroduction and abduction . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.5.1. The retroduction technique . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5.2. The abduction technique . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6. Deduction and induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.6.1. The inductive reasoning technique . . . . . . . . . . . . . . . . . . . . 88

viii Operationalizing Sustainability

4.6.2. Linear characteristics and limitations of induction and deduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7. The development of a relational reasoning graph . . . . . . . . . . . . . 90 4.8. A complete integrated reasoning process . . . . . . . . . . . . . . . . . . 92 4.9. How can a computer analyze different types of reasoning? . . . . . . . 94

4.9.1. Theorem proving by semantic techniques . . . . . . . . . . . . . . . 95 4.9.2. Theorem proving by syntactical techniques . . . . . . . . . . . . . . 95 4.9.3. Theorem proving by grammatical techniques . . . . . . . . . . . . . 96

4.10. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.10.1. Building the planning and scheduling involved in an industrial production system . . . . . . . . . . . . . . . . . . . . . . . . 97 4.10.2. Diagnosis or classification in qualitative processes (medical, system testing, etc.) . . . . . . . . . . . . . . . . . . . . 97 4.10.3. Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 5. From Context to Knowledge: Basic Methodology Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1. Application of abduction and retroduction to create knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.2. Analysis and synthesis as modeling process . . . . . . . . . . . . . . . . 102

5.2.1. Fundamental analytic process . . . . . . . . . . . . . . . . . . . . . . . 102 5.2.2 Modeling process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2.3. Abnormal or paranormal analysis and synthesis . . . . . . . . . . . . 106 5.2.4. Application: the main influences due to basic emotions . . . . . . . 107 5.2.5. Comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3. Background on empirical results: integration principles . . . . . . . . . 109 5.3.1. Cyclical and hierarchical theories about theorizing; Heron and Kolb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.3.2. Complementary advice: how to get good knowledge? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4. A review and comparison of some common approaches: TRIZ and C-K theory . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1. TRIZ is about design problem solving . . . . . . . . . . . . . . . . . 112 5.4.2. C-K is dealing with design innovation . . . . . . . . . . . . . . . . . 113 5.4.3. C-K INVENT: toward a methodology for transformational K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Chapter 6. From Knowledge to Context and Back: The C-K Theory and Methodology . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.2. A primer on C-K theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.3. On the nature of the knowledge space . . . . . . . . . . . . . . . . . . . . 120

Contents ix

6.4. On the nature of the concept space . . . . . . . . . . . . . . . . . . . . . . 120 6.5. Discussing the theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.6. Some differentiating points and benefits of C-K theory . . . . . . . . . . 123 6.7. On fielding C-K theory in organizations . . . . . . . . . . . . . . . . . . . 124 6.8. A summary on C-K theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.9. A short glossary on C-K theory . . . . . . . . . . . . . . . . . . . . . . . . 126 6.10. Links with knowledge management . . . . . . . . . . . . . . . . . . . . . 128 6.11. Example on a specific futuristic conceptual case: “a man who can travel through time” . . . . . . . . . . . . . . . . . . . . . . . 130 6.12. Methodological findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Part 3. Reformulating the Above Into Business Models and Solutions for New Growth and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Chapter 7. Principles and Methods for the Design and Development of Sustainable Systems . . . . . . . . . . . . 137

7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.2. How to go further? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.3. Examples of methods and learning related to complex adaptive systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3.1. Why and how to mix different theories? . . . . . . . . . . . . . . . . 141 7.3.2. Errors and mistakes not to make . . . . . . . . . . . . . . . . . . . . . 142

7.4. First example: crisis management . . . . . . . . . . . . . . . . . . . . . . . 143 7.5. Second example: urban organizations . . . . . . . . . . . . . . . . . . . . 144

7.5.1. A village infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.5.2. Urban networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.6. Third example: education and career evolution . . . . . . . . . . . . . . . 148 7.7. A review of survival, resilience and sustainability concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.7.1. Definition of resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 7.7.2. Definition of sustainability . . . . . . . . . . . . . . . . . . . . . . . . 151 7.7.3. Definition of reliability . . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.7.4. Structure and organization of the concepts . . . . . . . . . . . . . . . 154

7.8. Methodologies in sustainability . . . . . . . . . . . . . . . . . . . . . . . . 155 7.8.1. Modeling a sustainable system . . . . . . . . . . . . . . . . . . . . . . 156 7.8.2. Evaluation of the sustainability . . . . . . . . . . . . . . . . . . . . . . 157 7.8.3. Causes of non-achieving sustainability . . . . . . . . . . . . . . . . . 158

7.9. Resilience: methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 7.9.1. Problem of attitude change . . . . . . . . . . . . . . . . . . . . . . . . 162 7.9.2. Solving approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 7.9.3. Methods associated with structured scenarios . . . . . . . . . . . . . 165

x Operationalizing Sustainability

7.9.4. Adaptive management in the Everglades and the Grand Canyon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 7.9.5. Living together and empathy . . . . . . . . . . . . . . . . . . . . . . . 167

7.10. Information system sustainability . . . . . . . . . . . . . . . . . . . . . . 171 7.10.1. General approach to assess reliability and sustainability in a complex system . . . . . . . . . . . . . . . . . . . . . 171 7.10.2. Favoring a step-by-step approach . . . . . . . . . . . . . . . . . . . . 172 7.10.3. Comments about sustainability assessment . . . . . . . . . . . . . . 173

7.11. Application: managing the “skill mismatch” in a company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.11.1. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.11.2. Methodological approach . . . . . . . . . . . . . . . . . . . . . . . . 178 7.11.3. Model development and results . . . . . . . . . . . . . . . . . . . . . 180

7.12. Sustainability of the organizations in a company . . . . . . . . . . . . . 181 7.13. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Chapter 8. Toward the Mass Co-design: Why is Social Innovation so Attractive? . . . . . . . . . . . . . . . . . . . 189

8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 8.2. How can we define innovation and social innovation? . . . . . . . . . . 190

8.2.1. Innovation: main principles . . . . . . . . . . . . . . . . . . . . . . . . 190 8.2.2. Social innovation: an evolution . . . . . . . . . . . . . . . . . . . . . . 191

8.3. Sustainability: how can we position social innovation? . . . . . . . . . . 193 8.4. Social innovation examples . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.4.1. Application 1: research and development of future technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 8.4.2. Application 2: marketing and sales: “I think to you” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 8.4.3. Application 3: inclusivity and cognition . . . . . . . . . . . . . . . . 200 8.4.4. Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.5. A contextual change in society . . . . . . . . . . . . . . . . . . . . . . . . 203 8.5.1. Networks are everywhere . . . . . . . . . . . . . . . . . . . . . . . . . 203 8.5.2. Advantages of the Web approach . . . . . . . . . . . . . . . . . . . . 203

8.6. Basic concepts and mechanisms . . . . . . . . . . . . . . . . . . . . . . . 205 8.6.1. The social concept of a process: principle of emergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 8.6.2. The social innovation process mechanism . . . . . . . . . . . . . . . 207 8.6.3. Social innovation: conditions for sustainable implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.7. The principle of circularity: a paradigm shift . . . . . . . . . . . . . . . . 211 8.8. Generalization: how to turn back time . . . . . . . . . . . . . . . . . . . . 212 8.9. Problems of technological evolution . . . . . . . . . . . . . . . . . . . . . 214

Contents xi

8.9.1. In nature, evolution is consistent with Moore’s law . . . . . . . . . . 214 8.9.2. The limits of new technologies and sciences . . . . . . . . . . . . . . 215 8.9.3. Application in industry: where are we going? . . . . . . . . . . . . . 216

8.10. Evolution: application to cellular networks . . . . . . . . . . . . . . . . 218 8.10.1. Extended environments . . . . . . . . . . . . . . . . . . . . . . . . . 218 8.10.2. Social networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

8.11. Conclusions: the new sustainable environment . . . . . . . . . . . . . . 220 8.11.1. Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 8.11.2. Global process engineering . . . . . . . . . . . . . . . . . . . . . . . 221 8.11.3. Intelligence economy . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Chapter 9. On Integrating Innovation and CSR when Developing Sustainable Systems . . . . . . . . . . . . . . . . 225

9.1. The new Smartphones: a tool for an inclusive society . . . . . . . . . . . 225 9.2. Innovation and corporate social responsibility (CSR) behaviors . . . . 228 9.3. Integrating business objectives (CBO) and corporate social responsibility (SCR) . . . . . . . . . . . . . . . . . . . . . . . 230

9.3.1. Implementation comments . . . . . . . . . . . . . . . . . . . . . . . . 230 9.4. Lessons gained from this study case: toward a citizen democracy . . . 234 9.5. Conclusion on crowd and social approaches . . . . . . . . . . . . . . . . 238

Part 4. Reformulating Future Thinking: Processes and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Chapter 10. Sustainability Engineering and Holism: Thinking Conditions are a Must . . . . . . . . . . . . . . . . . . . . . . . . . 241

10.1. Introduction to holism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 10.1.1. What do we mean by holism? . . . . . . . . . . . . . . . . . . . . . . 242 10.1.2. Application to decision and management systems . . . . . . . . . . 243

10.2. Toward a holistic company . . . . . . . . . . . . . . . . . . . . . . . . . . 244 10.3. Culture: on what positive factors can we rely? . . . . . . . . . . . . . . 246 10.4. Sustainability: a framework . . . . . . . . . . . . . . . . . . . . . . . . . 249 10.5. Application: holonic industrial systems . . . . . . . . . . . . . . . . . . 250

10.5.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 10.5.2. The design of a holonic manufacturing system (HMS) . . . . . . . 251 10.5.3. Holism: a contribution to a better sustainability . . . . . . . . . . . 253

10.6. Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Chapter 11. Sustainable Cognitive Engineering: Brain Modeling; Evolution of a Knowledge Base . . . . . . . . . . . . . 257

11.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 11.2. Sustainable cognition: definition and concepts . . . . . . . . . . . . . . 258

xii Operationalizing Sustainability

11.3. Concepts and “slippage” needs: effects related to new generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 11.4. Basic structure of our brain: a probabilistic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

11.4.1. Application to a human population: macro behavior and conditional probabilities . . . . . . . . . . . . . . . . . . . . . 262 11.4.2. Bayes theorem: a universal statistical concept . . . . . . . . . . . . 264 2.4.3. Impact of the Bayes theorem on information system sustainability and decision theory . . . . . . . . . . . . . . . . . . . 265

11.5. Application and probabilistic reasoning in updating a knowledge base: a more sustainable model . . . . . . . . . . . . . . . . . . . 266

11.5.1. Two applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 11.5.2. Complex reasoning: a question of plausibility and probabilistic estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

11.6. Sustainable cognition: brain structure, understanding micro-to-macro links . . . . . . . . . . . . . . . . . . . . . . . . 271 11.7. More recent developments . . . . . . . . . . . . . . . . . . . . . . . . . . 271 11.8. Detection of novelties through adaptive learning and fractal chaos approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 11.9. Neuro computing: new opportunities provided by quantum physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 11.10. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 11.11. Quantum physics: impact on future organizations . . . . . . . . . . . 280

Chapter 12. Brain and Cognitive Computing: Where Are We Headed? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

12.1. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 12.2. Achievements: is neuroscience able to explain how to perform sustained assumptions and studies?. . . . . . . . . . 284 12.3. Artificial brain: evolution of the simulation models . . . . . . . . . . . 289 12.4. Examples of challenges to be well controlled . . . . . . . . . . . . . . . 290

Part 5. Towards an Approach to the Measurement of Sustainability and Competitivity . . . . . . . . . . . . . . . . . . . . . . . 293

Chapter 13. On Measuring Sustainability . . . . . . . . . . . . . . . . . . . 295

13.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 13.2. Some basic criteria specific to the new “Sustainable” era . . . . . . . . 296 13.3. What are the nature and limits of the new paradigm, in terms of sustainability evolution? . . . . . . . . . . . . . . . . . . . . . . . . 297 13.4. A reminder about competitivity and sustainability properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Contents xiii

13.5. Synthesis: the present dimensions of a production system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 13.6. An under-assessed value: time . . . . . . . . . . . . . . . . . . . . . . . . 305 13.7. Application and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

13.7.1. Time is the source of streams and flows . . . . . . . . . . . . . . . . 307 13.7.2. Time and power: some considerations about streams and throughputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 13.7.3. Measurement of sustainability in a chaotic system: Lyapunov experiments . . . . . . . . . . . . . . . . . . . . . 310 13.7.4. Consequences at governance level to get a sustainable system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

13.8. Two new dimensions: thought and information within network theory . . . . . . . . . . . . . . . . . . . . . . . . . 313

13.8.1. From storytelling… . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 13.8.2. … to “talking bullshit” . . . . . . . . . . . . . . . . . . . . . . . . . . 315 13.8.3. An improved understanding of a “New World” complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

13.9. Synthesis: cognitive advances provided by the new exchange and communication tools . . . . . . . . . . . . . . . . . . . 316

13.9.1. The cognitive behaviors associated with this classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 13.9.2. Synthesizing the cognitive advances . . . . . . . . . . . . . . . . . . 319

13.10. Consequences and characteristics linked to a global network notion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

13.10.1. Generalizing the knowledge at organization level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 13.10.2. The behaviors associated with human beings’ psychological features . . . . . . . . . . . . . . . . . . . . . . . . . . 322

13.11. Back to the code of matter: contributions to “Simultaneous Time” and “Network Theory” . . . . . . . . . . . . . . . . 323 13.12. Application of quantum interactions . . . . . . . . . . . . . . . . . . . 326 13.13. Sustainability: how to widen the scope of competitiveness indicators? . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 13.14. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 13.15. Social interactions and massively multiplayer online role playing games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

General Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Note to all Contributors

Sustainability isn’t really a new topic!

Humanity has faced this concept for many years. Yet, so far, the scope covered by the term “sustainability” hasn’t been very wide, even if, in a sense, its “soul” was present. As an example, both within IBM and École des Mines, we used to present sustainability by introducing such names as “global quality” or “global optimization”, etc. This was done while conducting sustainability actions and sometimes without the measuring the actual range of our contribution, either at the social or ecological level. Could we possibly have these kinds of pioneers?

The answer is no. Actually, any evolution, even in advanced technological fields, is based on stepwise jumps, which may bear the names of mutation, self-organization or adaptation. Even when considering a paradigm change, the fundamental roots of evolution remain the same and any process remains but a process.

To reinforce our working baseline, experiences and assets within the sustainability subject matter, we have opted for grounding the proposed approach on examples, test cases, results and skills, all gained everywhere over several decades.

In preparing and launching this book (in twinned operations with its companion book Sustainability Calling [MAS 15b] during a sustained period of more than four years over 2011–2015), we strived to create the present original synthesis from the sum of information that we collected, with the

xvi Operationalizing Sustainability

view to elaborate a technology suited to an actual and current sustainability concept.

However, a smaller fraction of the contributing elements may originate from authors unidentified to us. Or possibly, of whom we involuntarily lost trace of the names. All authors explicitly mentioned in the two bibliographies, and those who may perhaps not appear as well, certainly contributed either directly or indirectly to the development of an emerging “sustainability science”. Furthermore, creating an exhaustive account of sustainability topics is a daunting endeavor, which would likely require an entire library, if not simply an impossible task to achieve. While we wish to express our sincere gratitude to each and every one of the diverse authors for having enlightened us and for their useful contribution to this necessary and promising field, we therefore remain candidly apologetic for our any possible oversight resulting from these omissions.

Note to the Reader

“Sustainability is a keyword. We were happy to build a plane that is sustainable in terms of energy. We could also make life in the cockpit sustainable, as well as for a human being. And this, we didn’t know if it was possible”.

André Borshberg, Solar Impulse pilot, upon landing in Hawaii on July 3rd 2015 at sunrise, after a nonstop 5 days and 5 nights solar energy flight from Nagoya, Japan [SOL 15].

The ten principles of the UN Global Compact (UN Advisory Board, July 26th, 2000)

xviii Operationalizing Sustainability

Will mankind one day secure a guide to a sustainable world? This book is an attempt. Like solar impulse and other far-fetched dreams, only attempts, trials and feedback can pave the new way. Although we share a definite clarity about this ultimate aim, steering the way through a highly complex world is not easy. Only smaller steps can be proposed to decision makers for the time being.

There exists by now a real concern for the life-sustaining capacities of the Earth. If only in the realm of climate change, the international Kyoto Protocol 1997 treaty slowly came into force for a number of countries in 2005. The United Nations Framework Convention on Climate Change (UNFCCC) proceedings now include the 2015 Paris COP21 Climate Change Conference. Yet, the concern is of an encompassing nature and it is called by one word only: sustainability.

The present book is the complementary book to Sustainability Calling: Underpinning Technologies, by the same authors and publishing houses (published in September 2015) [MAS 15b].

For a comprehensive understanding of the foundations of sustainability, it is recommended to first read the above book, which provides the models, methods and tools to investigate and tackle the deeper notion of sustainability in a strategic way. However, the present book implements the ways to make sustainability operational and attempts at measuring it and, for practitioners, can be read without the first one. Together, the two books constitute a comprehensive treaty on sustainability for a variety of academic and executive readers in all walks of post-modern activities.

In Sustainability Calling: Underpinning Technologies, the authors discuss the mechanisms underlying sustainability and the principles to take into account to define its technologies (in the etymological sense), even if and when the aggregation and integration of these principles and mechanisms can not be done yet with presently available technology.

The objective of the present book is to exhibit an attempt of unification, based on these concepts, one that is implementable. The tactical part about sustainability implementation and operationalization (the “how to do”) is also meant to discover, suggest and develop new practical elements about a future method. The authors attempt to answer the issues of main importance; yet an exhaustive account necessitates at least three times the volume of this

Note to the Reader xix

book. It provides a mind-centered roadmap on how sustainability must be addressed in the field and how the measurement of a sustainable system can be performed.

To begin with, the following introduction develops a vision and a process to determine how a question relevant to sustainability can be answered. Let us always keep in mind that sustainability can be investigated as a new science given its specificities.

List of Acronyms

ACPVI Analyse en Composantes Principales basées sur les Variables Instrumentales (see PCAIV)

AFNOR Agence Française de Normalisation

AHT average handling time

AI artificial intelligence

AIDS acquired immune deficiency syndrome

ANNs artificial neural networks

ANSI American National Standards Institute

APS advanced planning and scheduling

ATM asynchronous transfer mode

ASS after sale service

BA business analytics

BCG Boston Consulting Group (Strategy)

BCI brain–computer interface

BFI big factors inventory

BPR business process engineering

CAD computer-aided design

CBR case-based reasoning

CEO Chief Executive Officer

CFO Chief Finance Officer

CHON carbon – hydrogen – oxygen – nitrogen

CHP combined heat and power

xxii Operationalizing Sustainability

CIM computer integrated manufacturing

CIO Chief Information Officer

CMM capability maturity model

CRM customer relationship management

CSC Corporate Service Corps

CSR corporate social responsibility collaborative work

CW competitive watch

DMS decision making system

DNA deoxyribonucleic acid

DSS decision support system

ECB European Central Bank

EI economic intelligence (business intelligence)

EMA École des Mines d’Alès

EPFL École Polytechnique Fédérale de Lausanne (Switzerland)

EPR Einstein–Podolsky-Rosen(thought experiment)

EPT European Patent Office (http://www.epo.org)

ERP enterprise resources planning

EU European Union

FA functional analysis

FAST FAST diagram (Function Analysis System Technique)

FFT fast Fourier transform

FLOPS floating-point operations per second

FR functional requirements (functional analysis)

GCI global competitiveness index

GDP gross domestic product

HEC Hautes Etudes Commerciales

HP Hewlett-Packard

HMS holonic manufacturing system

IBM international business machines

ICT information and communication technologies

IDEF0 Icam definition for function modeling

IKB innovation knowledge base

IMF International Monetary Fund

List of Acronyms xxiii

IMS Intelligent Manufacturing System (European initiative)

INRA Institut National de la Recherche Agronomique (France)

IP intellectual property

ISC initial sensitivity conditions ISC Innovation Steering Committee

IS information systems

IT information technologies

KADS knowledge acquisition and documentation structuring

KBS knowledge-based systems

KDB knowledge data base

KF knowledge fluency

KM knowledge management (management of knowledge and know-how)

KSF key success factors

LED light-emitting diode

LHS left hand side

LLE local linear embedding

LOC lines of code

MAQ maximum allowable quantity

MES manufacturing execution system

MIDs mobile internet services

MMO massively multiplayer online

MTBF mean time between failures

MTTR mean time to repair

NBIC Nanotechnology – Biotechnology – Information technologies – Cognitive sciences

NFC near field communication

NGO Non-Governmental Organization

NHS National Health Service

NIH non-invented here

NIH National Institute of Health

NLDS nonlinear dynamic systems

NPD new product development

xxiv Operationalizing Sustainability

OBS organization breakdown structure (functional structure)

OCD objective costs design

OR operations research

OTSM-TRIZ a general theory of powerful thinking

P2P peer-to-peer

PC production control /personal computer /personal computing

PCT patent cooperation treaty (www.wipo.org/pct/)

PCAIV principal component analysis based on instrumental variables (see ACPVI)

PERT program of evaluation and review technique

PLOOT plant layout optimization

PLC product lifecycle

PMI Project Management Institute

PPC pay per call

PPT pay per time

P-TECH pathway in technology

R&D research and development

RAS reliability – availability – serviceability

RFID radio frequency identification

RHS right hand side

RNA ribonucleic acid

ROI return on investment

RPG role playing game

RSS really simple syndication

SA system analysis

SADT structure analysis and design technique

SCEM supply chain event management

SCI sustainable competitiveness index

SCP system controlled by product

SDS sustainable development strategy

SEEA system of integrated environmental and economic accounting

SHS social and human sciences

SIC sensitivity to initial conditions

List of Acronyms xxv

SMAC social, mobile, analytics, connected

SME small and medium enterprise

SPQL shipped product quality level

SPS sustainable production system

SSME service science, management and engineering

SW strategic watch

SWOT strengths, weakness, opportunities and threats (Strategy)

TBC time-based competitivity

TQM total quality management

TT takt time

TRIZ theory of inventive problem solving (Teoriya Resheniya Izobretatelskikh Zadatch – TRIZ, Russian acronym)

TW technology watch

UAV unmanned aerial vehicle (e.g. drones)

UML unified modeling language

UN United Nations

VA value analysis

WIP work in progress

WIPO World Intellectual Property Organization (www.wipo.org)

WWW world wide web

NOTE.– The world “backlog” is often used in the specific manufacturing context and means “equal to all customer of supplier orders received and not yet shipped or delivered” [GRE 87]. Outside this context, a backlog retains its usual meaning of accumulation, supply or arrears.

Introduction

I.1. Introduction

In the 2000s, in order to adapt and secure its future, the School of Mines (EMA) in Ales, France, took the decision to disseminate the “entrepreneurship approach” and the “Web environment” concept, while focusing on other missions as well, such as technological research or economic action. In terms of sustainable institution, the objective of the EMA was to adapt and develop a new way of thinking, to implement the right organization and resources to be competitive, to ensure its survival and to develop employment. The aim of this approach was to develop EMA’s competitiveness through advancing sciences and its innovative vision.

Questions were asked about the relevance of R&D in a high level engineering school. For instance, concerning research topics, what is the relationship between quarks and men, a computer and the cosmos, prebiotics and the interstellar midst? Or between country macrohistory, brain development and governance?

The answer given shows that we cannot consider one concept and ignore the other, because all is interdependent. Should we instead remain confined to the unique field of industrial activity? The discussions led to reconsider the R&D strategy for the EMA institutional business in terms of the scientific and engineering areas to be covered or developed. As well as the philosophical, societal, and environmental approaches, a multidisciplinary and transdisciplinary laboratory called “Centre Intersciences” was proposed. Some key elements were already defined in 2002 [MAS 02], that remain

xxviii Operationalizing Sustainability

valid and we will now use as an introduction to this book, which focuses on operationalizing sustainability.

A sustainability property can be viewed as the intrinsic ability of an “open” system. To elaborate a more comprehensive approach, it is necessary to handle sustainability as a science, with its own ontologies, goals and technologies. To date, only partial modeling approaches exist and there is no overall coherence, although a wide range of scientists and experts from various fields are working on the subject. The fact is that multidisciplinary and transdisciplinary approaches are not common. Moreover, few standards exist while a large number of lobbies are actively involved.

I.2. Historical approach in sciences

The rational thinking is based on the Discours de la Méthode from René Descartes developed in the 17th Century. This way of thinking, now conventional, stipulates that the world is rational, mathematical, knowledgeable and splittable. Later in literature, the French dramaturgy “classicism” appeared with regular theater comedies based on the rule of unity of place, time and action. Famous artisans of this doctrine were Boileau, Corneille or Racine.

These expressions “classicism” or “three unities”, as applied to literature, imply notions of order, clarity, moral purpose and good taste. Many of these notions were directly inspired by the works of Aristotle and Horace, and then by classical Greek and Roman masterpieces. They enabled the structuring of our reasoning in order to decompose a problem into subproblems, then to find a local solution to each subproblem.

These statements can be globalized (holonic approach): they give high praise to everything that can be systematized, organized and broken down; they lead to moving toward an encyclopedic knowledge. They still influence our scientific approaches, which are too often fragmented, clustered and centralized. However, such a search for “truth” has its own limits as the environment has changed: the world is more complex, the methods and algorithms used by mathematicians have become far more complicated; as a result, the previous statements have reached a dead-end.

Because of these limitations, the time has come to invent “other solutioning approaches”; more generally, to change our practices and