INPE Course 2013 Mitishitar Integration

Embed Size (px)

Citation preview

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    1/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    GRADUATE PROGRAM IN GEODETICSCIENCES

    Professor: Edson A. Mitishtia

    13/04/2013 INPE_Course_2013 1

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    2/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Combining multiple datasets acquired by different

    sensors in order to get better accuracy and enhancedinference about the environment than could bea a ne roug e use o a s ng e sensor

    13/04/2013 INPE_Course_2013 2

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    3/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Why to integrate Photogrammetric Image

    13/04/2013 INPE_Course_2013 3

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    4/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    LIDAR Pros Photogrammetric Cons

    Dense information fromhomogeneous surfaces

    Almost no positional informationalong homogeneous surfaces

    Direct acquisition of 3D coordinates Complicated and sometimesunreliable matching procedures

    Vertical accuracy is better than its

    planimetric accuracy

    Vertical accuracy is worse than the

    planimetric accuracy

    13/04/2013 INPE_Course_2013 4

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    5/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    High redundancy No inherent redundancy

    Rich in semantic information Positional; difficult to derivesemantic information

    object space breaklines

    breaklines

    Planimetric accuracy is better than Planimetric accuracy is worse thanthe vertical accuracy the vertical accuracy

    13/04/2013 INPE_Course_2013 5

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    6/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Photogrammetry is the art and science of derivingaccurate 3D metric and descriptive object information

    from digital images

    n er or r en a on arame ers

    Exterior Orientation Parameters EOP

    13/04/2013 INPE_Course_2013 6

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    7/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Coordinates of the principal pointRadial and descentering parameters

    Calibration Proceduren epen en a ra on

    In Situ Self-CalibrationMount arameters calibration

    13/04/2013 INPE_Course_2013 7

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    8/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Position and Orientation parameters of the imagerelated with Geodetic Frame

    Direct and Indirect Procedure

    13/04/2013 INPE_Course_2013 8

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    9/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Direct Georeferencing

    A block of imagery georeferenced using GPS/INSs stems

    13/04/2013 INPE_Course_2013 9

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    10/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Direct Georeferencing (Kersting, 2011)

    13/04/2013 INPE_Course_2013 10

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    11/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Direct Georeferencing (Hutton et al, 2005)

    In order to accurately compute the ground coordinates of a point using

    Direct Georeferencing, a number of requirements need to be met :1. The physical misalignments of IMU with respect to the Camera need to becalibrated;

    . e ever-arm o se s rom e camera perspec ve cen er o e anto the GPS antenna need to be calibrated;3. The exact time of image exposure needs to be recorded by the GPS-AidedINS;4. The position and orientation from the GPS-Aided INS navigation data

    5. The camera interior geometry (principal point, lens distortion, focallength) must be well calibrated and stable.

    13/04/2013 INPE_Course_2013 11

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    12/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Indirect Georeferencing

    A block of imagery georeferenced using ground controloints Bundle Ad ustment

    13/04/2013 INPE_Course_2013 12

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    13/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    LIDAR Point Computaion (Kersting, 2011)

    13/04/2013 INPE_Course_2013 13

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    14/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    LIDAR and Photogrammetry Registration

    Using LIDAR data as the source of control for the

    allows for establishing a common reference frame for multi-temporal and multi-source photogrammetric datasets

    13/04/2013 INPE_Course_2013 14

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    15/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    eg s ra on e o o ogy

    rs , a ec s on as o e ma e regar ng e c o ce oprimitives for the registration procedure

    The second issue is concerned with a registrationrans orma on unc on a ma ema ca y re a es e

    datasets under consideration

    13/04/2013 INPE_Course_2013 15

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    16/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    REGISTRATION PRIMITIVES

    Registration problems involving spatial data, the threefundamental, and commonly, used registration primitivesare po n s, nes an area reg ons

    Potential features include road intersections, corners ofbuilding, rivers, coastlines, roads, lakes, or similar

    dominant man-made or natural structures

    13/04/2013 INPE_Course_2013 16

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    17/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Registration Primitives

    Distinct Points Linear FeaturesAreal Feature

    13/04/2013 INPE_Course_2013 17

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    18/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Mathematical Model Collinearity Equation

    Collinearity equations is based on the fact that image point, object point,

    and the perspective center are collinear

    The image coordinates of a point areex ressed as a function of the Interior

    Orientation Parameters (IOP), theExterior Orientation Parameters,

    the corresponding object point

    Collinearity condition of the rays

    13/04/2013 INPE_Course_2013 18

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    19/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Mathematical Model Collinearity Equation

    x, y : Image point coordinates corresponding to object point (X, Y, Z)X, Y, Z : Corresponding ground point coordinates

    Xo, Yo, Zo, , , : Exterior orientation parameters: Xo, Yo, and Zo represent theposition of perspective center with respect to ground coordinate system, where ,

    systemsr11 ... r33 : The rotation matrix between the image and ground coordinates systems

    13/04/2013 INPE_Course_2013 19

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    20/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Distinct Points

    Aerial Image Intensity Image Range Image

    13/04/2013 INPE_Course_2013 20

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    21/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Distinct Points

    13/04/2013 INPE_Course_2013 21

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    22/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Distinct Points

    Point get by intersection of three planes

    13/04/2013 INPE_Course_2013 22

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    23/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    on os ar nos p anos o e a o

    13/04/2013 INPE_Course_2013 23

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    24/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Distinct Points Delaunay Triangulation and Normal Vector

    Planes Detection

    13/04/2013 INPE_Course_2013 24

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    25/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Distinct Points Delaunay Triangulation and Normal Vector

    13/04/2013 INPE_Course_2013 25

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    26/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    13/04/2013 INPE_Course_2013 26

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    27/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    13/04/2013 INPE_Course_2013 27

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    28/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    0=+++ dcZbYaX

    13/04/2013 INPE_Course_2013 28

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    29/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Interseo dos trs planos Concorrentes

    =ca

    01111 dXcba

    0. 2222 =+ dYcba p

    03333 dZcba p

    13/04/2013 INPE_Course_2013 29

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    30/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    The centroid of regular building roof is equivalent a single control point

    with 3D coordinates allowin its use in traditional hoto rammetricsystems

    Re ular buildin roof

    13/04/2013 INPE_Course_2013 30

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    31/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    LIDAR Centroid

    roof in the ground space has five steps

    First: Mathematic procedure selects the raw laser scanning pointsaround the building

    Raw LIDAR points close to the building

    13/04/2013 INPE_Course_2013 31

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    32/103

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    33/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    LIDAR Centroid

    Third: Mathematic procedure selects selects interpolated LIDARpoints that lie only on the roof

    Interpolated LIDAR points on the roof

    13/04/2013 INPE_Course_2013 33

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    34/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    LIDAR Centroid

    Fourth: Planimetric centroid coordinates of regular building roof inthe LIDAR coordinates are determined

    n : Number of interpolated LIDAR points that lie on the roof

    13/04/2013 INPE_Course_2013 34

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    35/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    LIDAR Centroid

    Fifth: Z centroid of regular building roof in the LIDAR coordinatesis determined

    e centro coor nate w e eterm ne us ng t e two pro es,with almost equal Z coordinates, closer to the borders of the roof

    m : Number of interpolated

    profileProfiles close to the building border

    13/04/2013 INPE_Course_2013 35

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    36/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Image Space centroid

    The 2D centroid coordinates (xc,yc), in the space image will be

    determined by calculating the 2D mean coordinates of these fourpoints, considering omega and phi close to zero.

    21 axay cc +=

    21 bxby

    cc +=

    Image points used to determine 2D centroidcoordinates in the image system

    13/04/2013 INPE_Course_2013 36

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    37/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    LIDAR Linear Feature

    Intensity Image Range ImageAerial Image

    13/04/2013 INPE_Course_2013 37

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    38/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    LIDAR Linear Feature

    Line get by intersection of two planes

    13/04/2013 INPE_Course_2013 38

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    39/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    LIDAR Linear Feature

    Plane fitting and blunder detection from LIDAR patches(a) and plane intersection for extracting LIDAR lines (b)

    13/04/2013 INPE_Course_2013 39

    O OG A C A A A A

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    40/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Intermediate Points

    13/04/2013 INPE_Course_2013 40

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    41/103

    PHOTOGRAMMETRIC AND LIDAR DATA

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    42/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Mathematical Model Coplanarity Constraint

    Perspective transformation between image and LIDAR control straightlines and the coplanarity constraint for intermediate points along the line

    13/04/2013 INPE_Course_2013 42

    PHOTOGRAMMETRIC AND LIDAR DATA

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    43/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Mathematical Model Co lanarit Constraint

    13/04/2013 INPE_Course_2013 43

    PHOTOGRAMMETRIC AND LIDAR DATA

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    44/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Photogrammetric Patches

    by three 2D points in the image space while in the object space three 3D

    points will be usedLIDAR patches are represented by the set of 3D points that comprise thepatch under consideration in its raw format as collected by the scanner

    Photogrammetric planar patch

    , , .LIDAR patch points are also shownon the roof

    13/04/2013 INPE_Course_2013 44

    PHOTOGRAMMETRIC AND LIDAR DATA

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    45/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    Mathematical Model

    ,namely the photogrammetric SPH= {A, B, C} set and the LIDAR SL=

    {(XP, YP, ZP), P=1 to n}Since the LIDAR points are randomly distributed, no point-to-pointcorrespondences can be assumed between the datasets; nevertheless, all

    13/04/2013 INPE_Course_2013 45

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    46/103

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    47/103

    TRUE ORTHOPHOTO GENERATION

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    48/103

    TRUE ORTHOPHOTO GENERATION

    13/04/2013 INPE_Course_2013 48

    TRUE ORTHOPHOTO GENERATION

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    49/103

    TRUE ORTHOPHOTO GENERATION

    Problema Principal:

    (Edificaes, rvores, Pontes, Postes, etc);

    Existncia de sobras e ocluses Estado da Arte da Gerao de Ortoimagens:

    Automa o da reconstru o dos modelosrepresentativos do terreno e das edificaes

    Levantamentos LIDAR: Maior exatido e maior densidade dos pontos (DSM)

    Indefinio das bordas das edificaes

    Obteno da correta geometria das edificaes(DBM)

    13/04/2013 INPE_Course_2013 49

    MAPEAMENTO INVERSO

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    50/103

    MAPEAMENTO INVERSO

    13/04/2013 INPE_Course_2013 50

    MAPEAMENTO INVERSO

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    51/103

    MAPEAMENTO INVERSO

    13/04/2013 INPE_Course_2013 51

    MAPEAMENTO DIRETO

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    52/103

    MAPEAMENTO DIRETO

    13/04/2013 INPE_Course_2013 52

    MAPEAMENTO DIRETO

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    53/103

    13/04/2013 INPE_Course_2013 53

    IMAGEM AREA PROJEO CENTRAL

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    54/103

    13/04/2013 INPE_Course_2013 54

    ORTOIMAGEM DTM

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    55/103

    13/04/2013 INPE_Course_2013 55

    ORTOIMAGEM DTM Exatido Planimtrica

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    56/103

    Pto DX DY DP21 -7,44 1,63 7,6221 -7 44 1 63 7 62

    Pto DX DY DP34 -9,84 1,85 10,01

    22 -7,19 0,91 7,2523 -9,17 1,81 9,35

    - , , ,36 -7,54 1,75 7,7437 -8,82 1,74 8,99

    - , , ,25 -6,52 1,77 6,7526 -9,07 2,37 9,38

    38 -8,76 1,55 8,9039 -7,97 1,54 8,1240 -6,70 1,79 6,93

    27 -8,87 2,24 9,15

    28 -7,36 2,32 7,7229 -6,76 1,96 7,04

    41 -9,36 2,91 9,80

    42 -9,20 2,63 9,57-

    30 -6,68 1,80 6,91

    31 -8,34 2,66 8,75

    -

    44 -7,44 1,63 7,62

    , , ,33 -9,30 2,02 9,51 Mdia -8,14 1,93 8,38

    Desvio-Padro 1,04 0,45 1,05

    13/04/2013 INPE_Course_2013 56

    ORTOIMAGEM DSM Duplo Mapeamento

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    57/103

    13/04/2013 INPE_Course_2013 57

    TRUE ORTHOPHOTO DSM

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    58/103

    13/04/2013 INPE_Course_2013 58

    TRUE ORTHOPHOTO DSM

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    59/103

    Pto DX DY DP21 -0,02 0,42 0,42

    Pto DX DY DP34 -0,63 0,20 0,66

    - , , ,

    23 -0,39 0,11 0,41

    24 0,05 0,97 0,97

    35 -0,07 0,63 0,6336 0,07 0,02 0,07

    37 0 16 -0 07 0 1825 -0,42 0,03 0,4226 -0,31 0,30 0,4327 0 08 0 43 0 43

    38 0,35 -0,47 0,59

    39 0,15 -0,32 0,35

    28 -0,48 0,32 0,5829 -0,04 -0,02 0,04

    - , - , ,

    41 0,21 -0,15 0,2642 -0,56 0,23 0,60, , ,

    31 -0,07 -0,20 0,2132 -1,41 0,37 1,45

    43 -0,05 -0,53 0,5344 0,35 -0,14 0,38

    33 -0,03 -0,41 0,42 Mdia -0,13 0,12 0,48

    Desvio-Padro 0,38 0,40 0,32

    13/04/2013 INPE_Course_2013 59

    ORTHOPHOTO Urban Area Using DTM

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    60/103

    13/04/2013 INPE_Course_2013 60

    ORTHOPHOTO Urban Area Using DSM

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    61/103

    13/04/2013 INPE_Course_2013 61

    Urban Area Occluded areas

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    62/103

    13/04/2013 INPE_Course_2013 62

    Urban Area Occluded areas

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    63/103

    Urban Area Occluded areas

    13/04/2013 INPE_Course_2013 63

    Urban Area Occluded areas

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    64/103

    Urban Area Occluded areas

    13/04/2013 INPE_Course_2013 64

    Occluded areas Z BUFFER METHOD

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    65/103

    13/04/2013 INPE_Course_2013 65

    Occluded areas ANGLE-BASED METHOD

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    66/103

    13/04/2013 INPE_Course_2013 66

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    67/103

    cc u e areas -

    Varredura radial adaptativa Varredura em espiral

    13/04/2013 INPE_Course_2013 67

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    68/103

    -

    13/04/2013 INPE_Course_2013 68

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    69/103

    13/04/2013 INPE_Course_2013 69

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    70/103

    13/04/2013 INPE_Course_2013 70

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    71/103

    13/04/2013 INPE_Course_2013 71

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    72/103

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    73/103

    13/04/2013 INPE_Course_2013 73

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    74/103

    E UA O DE COLINEARIDADE

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    75/103

    INVERSA

    X X Z Z m x m y m c

    o o= ++ +

    ( ) 11 21 31

    13 23 33

    m x m y m c+ +12 22 32

    m x m y m c

    =

    + +13 23 33

    X f c X Y Z x y Zo o o= ( , , , , , , ), , ,

    Y c X Y Z x y Z o o o= , , , , , ,, , ,

    13/04/2013 INPE_Course_2013 75

    MONOPLOTTING

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    76/103

    13/04/2013 INPE_Course_2013 76

    MONORRESTITUIO DE EDIFICAES

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    77/103

    Monorrestituio sem Iteraes Integrao com dados Laser

    m X X m Y Y m Z Zo o o=

    + + 11 12 13( ) ( ) ( )

    m X X m Y Y m Z Zo o o + + 31 32 33( ) ( ) ( )

    y cm X X m Y Y m Z Z

    X X Y Y Z Z

    o o o

    o o o=

    + +

    + +

    21 22 23( ) ( ) ( )

    Ponto Laser (X,Y,Z) Transformao - (x,y,Z)

    13/04/2013 INPE_Course_2013 77

    MONORRESTITUIO DE EDIFICAES

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    78/103

    Monorrestituio sem Iteraes Integrao com dados Laser

    13/04/2013 INPE_Course_2013 78

    MONORRESTITUI O DE EDIFICA ES

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    79/103

    INTERPOLAO

    Equao de colinearidade: coordenadas laser

    , ,fotogramtricas (xp,yp)

    ]),,[( ,1 niiii Zyx pp =

    n = Nmero de pontos laser

    13/04/2013 INPE_Course_2013 79

    MONORRESTITUI O DE EDIFICA ES

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    80/103

    Digitalizao Vetorial Dados 2D

    13/04/2013 INPE_Course_2013 80

    MONORRESTITUI O DE EDIFICA ES

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    81/103

    Representao Vetorial contornos das edificaes

    13/04/2013 INPE_Course_2013 81

    MONORRESTITUI O DE EDIFICA ES

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    82/103

    Representao Vetorial - Exatido

    Area 1 Monorrestituio versus bundle adjustment

    Number of corners used 52

    RMSE discrepancy (E,N,h) (m) 0.310 0.375 0.561

    Maximum discrepancy (E,N,h) 1.347 1.202 -1.155

    13/04/2013 INPE_Course_2013 82

    MONORRESTITUI O DE EDIFICA ES

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    83/103

    Representao Vetorial - Exatido

    13/04/2013 INPE_Course_2013 83

    MONORRESTITUI O DE EDIFICA ES

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    84/103

    Representao Vetorial - Exatido

    13/04/2013 INPE_Course_2013 84

    MONORRESTITUI O

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    85/103

    Digitalizao rea Urbana

    13/04/2013 INPE_Course_2013 85

    MONORRESTITUI O

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    86/103

    Representao - Planimtrica

    13/04/2013 INPE_Course_2013 86

    PHOTOGRAMMETRIC AND LIDAR DATA

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    87/103

    Bundle Adjustment

    control points in the photogrammetric bundle adjustment

    Thirty-six pre-signalized points and twenty-eight centroid points were used

    These points were used to perform the experiments proposed andverify the accuracy of the results

    Type of pre-signalized control points and a typical centroid point determined

    13/04/2013 INPE_Course_2013 87

    PHOTOGRAMMETRIC AND LIDAR DATA

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    88/103

    Used datasetsThe LIDAR dataset was captured using an OPTECH ALTM 2050 laser scannerwith an average flying height of 975m and mean point density of 2.24 points/m2

    (~0.7m point spacing). The range and intensity data were recorded. According tothe sensor and flight specifications, 0.5m horizontal and 0.15m vertical accuracies

    are expected

    13/04/2013 INPE_Course_2013 88

    pec ca ons o e p o ogramme r c a ase

    PHOTOGRAMMETRIC AND LIDAR DATA

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    89/103

    Block configuration- -

    relative survey and the twenty-eight centroid points have 3D LIDARcoordinates determined by methodology proposed

    13/04/2013 INPE_Course_2013 89

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    90/103

    PHOTOGRAMMETRIC AND LIDAR DATA

    B dl Adj t t i i t t id t l

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    91/103

    Bundle Adjustment using points centroid as control

    Bundle ad ustment results usin oints centroid as control oints

    13/04/2013 INPE_Course_2013 91

    and check points analysis

    Bundle Adjustment Low cost digital camera

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    92/103

    13/04/2013 INPE_Course_2013 92

    C C lib ti

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    93/103

    Camera Calibration

    13/04/2013 INPE_Course_2013 93

    Signalized Control Point

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    94/103

    13/04/2013 INPE_Course_2013 94

    Horizontal Discrepancies

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    95/103

    13/04/2013 INPE_Course_2013 95

    Vertical Discrepancies

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    96/103

    13/04/2013 INPE_Course_2013 96

    Bundle Adjustment Results GPS Coordinates

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    97/103

    13/04/2013 INPE_Course_2013 97

    Horizontal Discrepancies

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    98/103

    13/04/2013 INPE_Course_2013 98

    Vertical Discrepancies

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    99/103

    13/04/2013 INPE_Course_2013 99

    Bundle Adjustment Results LIDAR Coordinates

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    100/103

    13/04/2013 INPE_Course_2013 100

    Horizontal Discrepancies

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    101/103

    13/04/2013 INPE_Course_2013 101

    Vertical Discrepancies

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    102/103

    13/04/2013 INPE_Course_2013 102

    EOPs differences from GPS and

  • 8/12/2019 INPE Course 2013 Mitishitar Integration

    103/103

    EOPs differences from GPS andLIDAR Bundle Adjustments

    13/04/2013 INPE_Course_2013 103