45
Lessons from the information paradox Samir D. Mathur work in collaboration with Avery, Chowdhury, Giusto, Lunin, Saxena, Srivastava vendredi 19 juin 2009

Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

Lessons from the information paradox

Samir D. Mathur

work in collaboration withAvery, Chowdhury, Giusto,Lunin, Saxena, Srivastava

vendredi 19 juin 2009

Page 2: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

(A) What exactly is the information paradox ?

(B) Fuzzballs: a summary

(C) Conjectures: What happens to a collapsing shell ? The role of large phase space volumes

(D) Cosmology: What is the equation of state of the very early Universe?

Plan of the talk

vendredi 19 juin 2009

Page 3: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

The black hole information paradox

(a) Spacelike slices have a changing geometry in general

(b) The vacuum for quantum fields depends on the geometry of the slice, so particle pairs are created when the slice evolves

vendredi 19 juin 2009

Page 4: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

(c) These state of these pairs is correlated :

(d) There is no correlation with quanta far away: LOCALITY

++

++( ) X ( )We have

NOT

+

+( ) +X ( )

vendredi 19 juin 2009

Page 5: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

In the black hole we can make very long spacelike slices

r=0 horizon

t=constant

r=constant

vendredi 19 juin 2009

Page 6: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

r=0 horizon infalling matter

Hawking radiationNegative energyquanta

++( ) X ( )

1077

light years

vendredi 19 juin 2009

Page 7: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

Entangled state

If the black hole evaporates away,we are left in a configuration which cannot be described by a pure state

(Radiation quanta are entangled, but there is nothing that they are entangled with)

vendredi 19 juin 2009

Page 8: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

What we have:

++( ) X ( )

What we need: something like

1077

light years

How can this happen ?+( ) +X ( )

vendredi 19 juin 2009

Page 9: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

Note that small quantum gravity effects cannot solve the problemψL = ψS + ψA

ψ = e−iEStψS + e−iEAtψA

∆E = EA − ES

∆t =π

∆ES ∼ E

n2 , n ≤ 9

Ψ =Ψ M ⊗N∏

i=1

[ 1√2(↑ ↓) +

1√2(↓ ↑)

]i

Ψ =Ψ M ⊗N∏

i=1

[(

1√2

+ εi)(↑ ↓) + (1√2− εi)(↓ ↑)

]i

|εi| < ε

Sentanglement = N ln 2Sentanglement > (1− ε2) N ln 2

1

ψL = ψS + ψA

ψ = e−iEStψS + e−iEAtψA

∆E = EA − ES

∆t =π

∆ES ∼ E

n2 , n ≤ 9

Ψ =Ψ M ⊗N∏

i=1

[ 1√2(↑ ↓) +

1√2(↓ ↑)

]i

Ψ =Ψ M ⊗N∏

i=1

[(

1√2

+ εi)(↑ ↓) + (1√2− εi)(↓ ↑)

]i

|εi| < ε

Sentanglement = N ln 2Sentanglement > (1− ε2) N ln 2

1

We need ORDER UNITY corrections to the evolution of lowenergy quanta at the horizon

vendredi 19 juin 2009

Page 10: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

The Hawking ‘theorem’ can be made completely rigorous

If we are given that

(a) All quantum gravity effects are confined to within a bounded distance like planck length or string length

and

(b) The vacuum of the theory is unique

Then there WILL be information loss

Note: The information paradox should be distinguished from the ‘Infall problem’: What does an infalling observer feel ?

Infall problem: Heavy objects (E >> kT) over ‘crossing time’

Hawking radiation: E ~ kT quanta over Hawking evaporation time

vendredi 19 juin 2009

Page 11: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

The fuzzball picture

√N − n

√n + 1 ≈

√N

√n + 1

dn

dt∝ (n + 1) n (175)

ωR =1

R[−l − 2 − mψm + mφn] = ωgravity

R (176)

m = nL + nR + 1, n = nL − nR (177)

|λ − mψn + mφm| = 0, N = 0 (178)

λ = 0, mψ = −l, n = 0, N = 0 (179)

ωI = ωgravityI (180)

|0〉 |ψ〉 < 0|ψ〉 ≈ 0 (181)

10

√N − n

√n + 1 ≈

√N

√n + 1

dn

dt∝ (n + 1) n (175)

ωR =1

R[−l − 2 − mψm + mφn] = ωgravity

R (176)

m = nL + nR + 1, n = nL − nR (177)

|λ − mψn + mφm| = 0, N = 0 (178)

λ = 0, mψ = −l, n = 0, N = 0 (179)

ωI = ωgravityI (180)

|0〉 |ψ〉 < 0|ψ〉 ≈ 0 (181)

10

√N − n

√n + 1 ≈

√N

√n + 1

dn

dt∝ (n + 1) n (175)

ωR =1

R[−l − 2 − mψm + mφn] = ωgravity

R (176)

m = nL + nR + 1, n = nL − nR (177)

|λ − mψn + mφm| = 0, N = 0 (178)

λ = 0, mψ = −l, n = 0, N = 0 (179)

ωI = ωgravityI (180)

|0〉 |ψ〉 〈0|ψ〉 ≈ 0 (181)

10

In the traditional black hole, quantum gravity effects are assumed to stretch only over distances , and so the state near the horizon is the vacuum.

But a black hole is made of a large number of quanta , so we mustask if the relevant length scales are or

S = 2π√

n5(√

n1 +√

n̄1)(√

np +√

n̄p) (57)

= 2π√

n5(E

√m1mp

) (58)

S = 2π√

n1n5npnkk (59)

S = 2π√

n1n5nkk(√

np +√

n̄p) (60)

= 2π√

n1n5(E

√mpmkk

) (61)

S = 2π√

n1n5(√

np +√

n̄p)(√

nkk +√

n̄kk) (62)

∼ lp (63)

∼ n1

6 lp (64)

M9,1 → M4,1 × T 4 × S1 (65)

E/(2mkk) = 0.5 (66)

E/(2mkk) = 1.2 (67)

Lz ∼ [g2α′4√n1n5np

V R]1

3 ∼ Rs (68)

∆S (69)

eS (70)

eS+∆S (71)

S = 2π√

n1n5np(1 − f) + 2π√

n1n5npf(√

nk +√

n̄k) (72)

nk = n̄k =1

2

∆E

mk=

1

2Dmk(73)

D ∼ [

√n1n5npg2α′4

V Ry]1

3 ∼ RS (74)

∆S = S − 2π√

n1n5np = 1 (75)

S =A

4G(76)

mk ∼ G5

G24

∼ D2

G5(77)

D ∼ G1

3

5 (n1n5np)1

6 ∼ RS (78)

Nα lp (79)

eS (80)

5

Sbek =A

4G= 2π

√n1n5np (15)

Smicro = 2π√

n1n5np (16)

T = − 1

L

Tzz = (∂M

∂L)S (17)

T = ∈π√N (∈

E∈$√

) ≈ 0 (18)

T L

M= const. (19)

S̃1 (20)

T 4 × S1 (21)

S = 2π√

n1n5(√

np +√

n̄p) (22)

= 2π√

N (2

E

2mp) (23)

N = n1n5 (24)

M9,1 → M3,1 × T 4 × S1 × S̃1 (25)

S = 2π√

n1n5(√

np +√

n̄p)(√

nkk +√

n̄kk) (26)

= 2π√

NE

mpmkk(27)

N1 (28)

N − N1 (29)

E1 (30)

E − E1 (31)

S = 2π√

N1 (2

E1

2mp) (32)

S = 2π√

(N − N1)(E − E1)

mpmkk(33)

ε =E

2mkk(34)

1√ε

(35)

3

S = 2π√

n5(√

n1 +√

n̄1)(√

np +√

n̄p) (57)

= 2π√

n5(E

√m1mp

) (58)

S = 2π√

n1n5npnkk (59)

S = 2π√

n1n5nkk(√

np +√

n̄p) (60)

= 2π√

n1n5(E

√mpmkk

) (61)

S = 2π√

n1n5(√

np +√

n̄p)(√

nkk +√

n̄kk) (62)

∼ lp (63)

∼ n1

6 lp (64)

M9,1 → M4,1 × T 4 × S1 (65)

E/(2mkk) = 0.5 (66)

E/(2mkk) = 1.2 (67)

Lz ∼ [g2α′4√n1n5np

V R]1

3 ∼ Rs (68)

∆S (69)

eS (70)

eS+∆S (71)

S = 2π√

n1n5np(1 − f) + 2π√

n1n5npf(√

nk +√

n̄k) (72)

nk = n̄k =1

2

∆E

mk=

1

2Dmk(73)

D ∼ [

√n1n5npg2α′4

V Ry]1

3 ∼ RS (74)

∆S = S − 2π√

n1n5np = 1 (75)

S =A

4G(76)

mk ∼ G5

G24

∼ D2

G5(77)

D ∼ G1

3

5 (n1n5np)1

6 ∼ RS (78)

∼ Nα lp (79)

eS (80)

5

S = 2π√

n5(√

n1 +√

n̄1)(√

np +√

n̄p) (57)

= 2π√

n5(E

√m1mp

) (58)

S = 2π√

n1n5npnkk (59)

S = 2π√

n1n5nkk(√

np +√

n̄p) (60)

= 2π√

n1n5(E

√mpmkk

) (61)

S = 2π√

n1n5(√

np +√

n̄p)(√

nkk +√

n̄kk) (62)

∼ lp (63)

∼ n1

6 lp (64)

M9,1 → M4,1 × T 4 × S1 (65)

E/(2mkk) = 0.5 (66)

E/(2mkk) = 1.2 (67)

Lz ∼ [g2α′4√n1n5np

V R]1

3 ∼ Rs (68)

∆S (69)

eS (70)

eS+∆S (71)

S = 2π√

n1n5np(1 − f) + 2π√

n1n5npf(√

nk +√

n̄k) (72)

nk = n̄k =1

2

∆E

mk=

1

2Dmk(73)

D ∼ [

√n1n5npg2α′4

V Ry]1

3 ∼ RS (74)

∆S = S − 2π√

n1n5np = 1 (75)

S =A

4G(76)

mk ∼ G5

G24

∼ D2

G5(77)

D ∼ G1

3

5 (n1n5np)1

6 ∼ RS (78)

Nα lp (79)

eS (80)

5

It is possible to avoid the paradox if the following happens ...

vendredi 19 juin 2009

Page 12: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

In string theory, it is easier to start with extremal holes:A supersymmetric brane state in string theory: Mass = Charge

|n〉total = (J−,total−(2n−2))

n1n5(J−,total−(2n−4))

n1n5 . . . (J−,total−2 )n1n5 |1〉total (5)

A

4G= S = 2π

√n1n2n3

∆E =1

nR+

1

nR=

2

nR

∆E =2

nR

S = ln(1) = 0 (6)

S = 2√

2π√

n1n2 (7)

S = 2π√

n1n2n3 (8)

S = 2π√

n1n2n3n4 (9)

n1 ∼ n5 ∼ n

∼ n14 lp

∼ n12 lp

∼ n lp

M9,1 → M4,1 ×K3× S1

A

4G∼

√n1n5 − J ∼ S

A

4G∼√

n1n5 ∼ S

e2π√

2√

n1np

1 +Q1

r2

1 +Qp

r2

e2π√

2√

n1n5

w = e−i(t+y)−ikz w̃(r, θ, φ) (10)

B(2)MN = e−i(t+y)−ikz B̃(2)

MN(r, θ, φ) , (11)

2

= 2π√

n1n5(2

√E

2mp) (54)

S = 2π√

n5(√

n1 +√

n̄1)(√

np +√

n̄p) (55)

= 2π√

n5(E

√m1mp

) (56)

S = 2π√

n1n5npnkk (57)

S = 2π√

n1n5nkk(√

np +√

n̄p) (58)

= 2π√

n1n5(E

√mpmkk

) (59)

S = 2π√

n1n5(√

np +√

n̄p)(√

nkk +√

n̄kk) (60)

∼ lp (61)

∼ n16 lp (62)

M9,1 →M4,1 × T 4 × S1 (63)

E/(2mkk) = 0.5 (64)

E/(2mkk) = 1.2 (65)

Lz ∼ [g2α′4√n1n5np

V R]13 ∼ Rs (66)

∆S (67)

eS (68)

eS+∆S (69)

S = 2π√

n1n5np(1− f) + 2π√

n1n5npf(√

nk +√

n̄k) (70)

nk = n̄k =1

2

∆E

mk=

1

2Dmk(71)

D ∼ [

√n1n5npg2α′4

V Ry]13 ∼ RS (72)

∆S = S − 2π√

n1n5np = 1 (73)

S =A

4G(74)

mk ∼G5

G24

∼ D2

G5(75)

D ∼ G135 (n1n5np)

16 ∼ RS (76)

Nα lp (77)

5

Infinite throat

horizon

singularity

‘fuzzball cap’

(SDM 97)

vendredi 19 juin 2009

Page 13: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

Making extremal black holes in string theory:

Wrap strings, branes etc on compact directions

This gives mass and charge at a given location from the viewpoint of noncompact directions ....

Momentum charge Mass = Charge

S ∼ E ∼√

E√

E (81)

n1 n̄1 np n̄p (82)

S = 2π√

2(√

n1 +√

n̄1)(√

np +√

n̄p) ∼√

E√

E ∼ E (83)

S = 2π(√

n1 +√

n̄1)(√

n5 +√

n̄5)(√

np +√

n̄p) ∼ E32 (84)

S = 2π(√

n1 +√

n̄1)(√

n2 +√

n̄2)(√

n3 +√

n̄3)(√

n4 +√

n̄4) ∼ E2 (85)

S = AN

N∏

i=1

(√

ni +√

n̄i) ∼ EN2 (86)

ds2 = −dt2 +∑

i

a2i (t)dxidxi (87)

S = 2π(√

n1 +√

n̄1)(√

n2 +√

n̄2)(√

n3 +√

n̄3)(√

n4 +√

n̄4) (88)

S = 2π(√

n1 +√

n̄1)(√

n2 +√

n̄2)(√

n3 +√

n̄3) (89)

n4 = n̄4 ! 1 (90)

Smicro = 2π√

2√

n1np = Sbek (91)

Smicro = 2π√

n1n5np = Sbek (92)

Smicro = 2π√

n1n5npnkk = Sbek (93)

Smicro = 2π√

n1n5(√

np +√

n̄p) = Sbek (94)

Smicro = 2π√

n5(√

n1 +√

n̄1)(√

np +√

n̄p) = Sbek (95)

Smicro = 2π(√

n5 +√

n̄5)(√

n1 +√

n̄1)(√

np +√

n̄p) (96)

Smicro = 2π(√

n1 +√

n̄1)(√

n2 +√

n̄2)(√

n3 +√

n̄3)(√

n4 +√

n̄4) (97)

n̂i = ni − n̄i (98)

E =∑

i

(ni + n̄i) mi (99)

S = CN∏

i=1

(√

ni +√

n̄i) (100)

Pa =∑

i

(ni + n̄i) pia (101)

R [n1, n5, np, α′, g, LS1 , VT 4 ] (102)

∼ Rs (103)

P =2πnp

L(104)

6

Winding charge

A

4G= S = 2π

√n1n2n3

∆E =1

nR+

1

nR=

2

nR

∆E =2

nR

S = ln(1) = 0 (8)

S = 2√

2π√

n1n2 (9)

S = 2π√

n1n2n3 (10)

S = 2π√

n1n2n3n4 (11)

n1 ∼ n5 ∼ n

∼ n14 lp

∼ n12 lp

∼ n lp

M9,1 →M4,1 ×K3× S1

A

4G∼

√n1n5 − J ∼ S

A

4G∼√

n1n5 ∼ S

e2π√

2√

n1np

1 +Q1

r2

1 +Qp

r2

e2π√

2√

n1n5

w = e−i(t+y)−ikz w̃(r, θ, φ) (12)

B(2)MN = e−i(t+y)−ikz B̃(2)

MN(r, θ, φ) , (13)

T → T/(n1n2n3) (14)

2

Mass = Charge

vendredi 19 juin 2009

Page 14: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

The setting:

S = 2π√

n5(√

n1 +√

n̄1)(√

np +√

n̄p) (57)

= 2π√

n5(E

√m1mp

) (58)

S = 2π√

n1n5npnkk (59)

S = 2π√

n1n5nkk(√

np +√

n̄p) (60)

= 2π√

n1n5(E

√mpmkk

) (61)

S = 2π√

n1n5(√

np +√

n̄p)(√

nkk +√

n̄kk) (62)

∼ lp (63)

∼ n1

6 lp (64)

M9,1 → M4,1 × T 4 × S1 (65)

E/(2mkk) = 0.5 (66)

E/(2mkk) = 1.2 (67)

Lz ∼ [g2α′4√n1n5np

V R]1

3 ∼ Rs (68)

∆S (69)

eS (70)

eS+∆S (71)

S = 2π√

n1n5np(1 − f) + 2π√

n1n5npf(√

nk +√

n̄k) (72)

nk = n̄k =1

2

∆E

mk=

1

2Dmk(73)

D ∼ [

√n1n5npg2α′4

V Ry]1

3 ∼ RS (74)

∆S = S − 2π√

n1n5np = 1 (75)

S =A

4G(76)

mk ∼ G5

G24

∼ D2

G5(77)

D ∼ G1

3

5 (n1n5np)1

6 ∼ RS (78)

∼ Nα lp (79)

eS (80)

5

IIB string theory

L =∫

dx[−14F a

µνFµνa +i

2ψ̄∂ψ + . . .]

P =2πnp

L=

2π(n1np)LT

p =2πk

LT

k

knk = n1np

e2π√

2√

n1np

S = 2π√

2√n1np

LT = n1L

L

M9,1 → M4,1 × T 4 × S1

D1 D5 P

n1 n5 n1n5 T 4 S1

1

L =∫

dx[−14F a

µνFµνa +i

2ψ̄∂ψ + . . .]

P =2πnp

L=

2π(n1np)LT

p =2πk

LT

k

knk = n1np

e2π√

2√

n1np

S = 2π√

2√n1np

LT = n1L

L

M9,1 → M4,1 × T 4 × S1

D1 D5 P

n1 n5 n1n5 T 4 S1

1

L =∫

dx[−14F a

µνFµνa +i

2ψ̄∂ψ + . . .]

P =2πnp

L=

2π(n1np)LT

p =2πk

LT

k

knk = n1np

e2π√

2√

n1np

S = 2π√

2√n1np

LT = n1L

L

M9,1 → M4,1 × T 4 × S1

D1 D5 P

n1 n5 n1n5 T 4 S1

1

S ∼ E ∼√

E√

E (81)

n1 n̄1 np n̄p (82)

S = 2π√

2(√

n1 +√

n̄1)(√

np +√

n̄p) ∼√

E√

E ∼ E (83)

S = 2π(√

n1 +√

n̄1)(√

n5 +√

n̄5)(√

np +√

n̄p) ∼ E3

2 (84)

S = 2π(√

n1 +√

n̄1)(√

n2 +√

n̄2)(√

n3 +√

n̄3)(√

n4 +√

n̄4) ∼ E2 (85)

S = AN

N∏

i=1

(√

ni +√

n̄i) ∼ EN2 (86)

ds2 = −dt2 +∑

i

a2i (t)dxidxi (87)

S = 2π(√

n1 +√

n̄1)(√

n2 +√

n̄2)(√

n3 +√

n̄3)(√

n4 +√

n̄4) (88)

S = 2π(√

n1 +√

n̄1)(√

n2 +√

n̄2)(√

n3 +√

n̄3) (89)

n4 = n̄4 ! 1 (90)

Smicro = 2π√

2√

n1np = Sbek (91)

Smicro = 2π√

n1n5np = Sbek (92)

Smicro = 2π√

n1n5npnkk = Sbek (93)

Smicro = 2π√

n1n5(√

np +√

n̄p) = Sbek (94)

Smicro = 2π√

n5(√

n1 +√

n̄1)(√

np +√

n̄p) = Sbek (95)

Smicro = 2π(√

n5 +√

n̄5)(√

n1 +√

n̄1)(√

np +√

n̄p) (96)

Smicro = 2π(√

n1 +√

n̄1)(√

n2 +√

n̄2)(√

n3 +√

n̄3)(√

n4 +√

n̄4) (97)

n̂i = ni − n̄i (98)

E =∑

i

(ni + n̄i) mi (99)

S = CN∏

i=1

(√

ni +√

n̄i) (100)

Pa =∑

i

(ni + n̄i) pia (101)

R [n1, n5, np, α′, g, LS1, VT 4] (102)

∼ Rs (103)

P =2πnp

L(104)

6

L =∫

dx[−14F a

µνFµνa +i

2ψ̄∂ψ + . . .]

P =2πnp

L=

2π(n1np)LT

p =2πk

LT

k

knk = n1np

e2π√

2√

n1np

S = 2π√

2√n1np

LT = n1L

L

M9,1 → M4,1 × T 4 × S1

D1 D5 P

n1 n5 n1n5 T 4 S1

1

Charges:D1, D5, P

Compactification to 4+1noncompact dimensions:

Naive expectation: The bound state of thesecharges, placed at the origin, will give rise toan extremal Riessner-Nordstrom black hole

vendredi 19 juin 2009

Page 15: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

‘Effective string’ withtotal winding number

+

L =∫

dx[−14F a

µνFµνa +i

2ψ̄∂ψ + . . .]

P =2πnp

L=

2π(n1np)LT

p =2πk

LT

k

knk = n1np

e2π√

2√

n1np

S = 2π√

2√n1np

LT = n1L

L

M9,1 → M4,1 × T 4 × S1

D1 D5 P

n1 n5 n1n5 T 4 S1

1

L =∫

dx[−14F a

µνFµνa +i

2ψ̄∂ψ + . . .]

P =2πnp

L=

2π(n1np)LT

p =2πk

LT

k

knk = n1np

e2π√

2√

n1np

S = 2π√

2√n1np

LT = n1L

L

M9,1 → M4,1 × T 4 × S1

D1 D5 P

n1 n5 n1n5 T 4 S1

1

D1 branes D5 branes

D ∼ G1

3

5 (n1n5np)1

6 ∼ RS (81)

∼ Nα lp (82)

eS (83)

S ∼ E ∼√

E√

E (84)

n1 n̄1 np n̄p (85)

S = 2π√

2(√

n1 +√

n̄1)(√

np +√

n̄p) ∼√

E√

E ∼ E (86)

S = 2π(√

n1 +√

n̄1)(√

n5 +√

n̄5)(√

np +√

n̄p) ∼ E3

2 (87)

S = 2π(√

n1 +√

n̄1)(√

n2 +√

n̄2)(√

n3 +√

n̄3)(√

n4 +√

n̄4) ∼ E2 (88)

S = AN

N∏

i=1

(√

ni +√

n̄i) ∼ EN2 (89)

ds2 = −dt2 +∑

i

a2i (t)dxidxi (90)

S = 2π(√

n1 +√

n̄1)(√

n2 +√

n̄2)(√

n3 +√

n̄3)(√

n4 +√

n̄4) (91)

S = 2π(√

n1 +√

n̄1)(√

n2 +√

n̄2)(√

n3 +√

n̄3) (92)

n4 = n̄4 ! 1 (93)

Smicro = 2π√

2√

n1np = Sbek (94)

Smicro = 2π√

n1n5np = Sbek (95)

Smicro = 2π√

n1n5npnkk = Sbek (96)

Smicro = 2π√

n1n5(√

np +√

n̄p) = Sbek (97)

Smicro = 2π√

n5(√

n1 +√

n̄1)(√

np +√

n̄p) = Sbek (98)

Smicro = 2π(√

n5 +√

n̄5)(√

n1 +√

n̄1)(√

np +√

n̄p) (99)

Smicro = 2π(√

n1 +√

n̄1)(√

n2 +√

n̄2)(√

n3 +√

n̄3)(√

n4 +√

n̄4) (100)

n̂i = ni − n̄i (101)

E =∑

i

(ni + n̄i) mi (102)

S = CN∏

i=1

(√

ni +√

n̄i) (103)

Pa =∑

i

(ni + n̄i) pia (104)

6

S1 → y y : (0, 2πR) (175)

ClV̂ [l] V̂ (176)

N = n1n5 (177)

√N − n

√n + 1 ≈

√N

√n + 1

dn

dt∝ (n + 1) n (178)

ωR =1

R[−l − 2 − mψm + mφn] = ωgravity

R (179)

m = nL + nR + 1, n = nL − nR (180)

|λ − mψn + mφm| = 0, N = 0 (181)

λ = 0, mψ = −l, n = 0, N = 0 (182)

ωI = ωgravityI (183)

|0〉 |ψ〉 〈0|ψ〉 ≈ 0 (184)

n1, n2, n3 n4 (185)

1/n1n2n3 (186)

(n1n5)αlp (187)

n1n5

knk = n1n5 n5 (188)

n′p = n1 n′

1 = n5,∑

knk = n′pn

′1 (189)

10

S1 → y y : (0, 2πR) (175)

ClV̂ [l] V̂ (176)

N = n1n5 (177)

√N − n

√n + 1 ≈

√N

√n + 1

dn

dt∝ (n + 1) n (178)

ωR =1

R[−l − 2 − mψm + mφn] = ωgravity

R (179)

m = nL + nR + 1, n = nL − nR (180)

|λ − mψn + mφm| = 0, N = 0 (181)

λ = 0, mψ = −l, n = 0, N = 0 (182)

ωI = ωgravityI (183)

|0〉 |ψ〉 〈0|ψ〉 ≈ 0 (184)

n1, n2, n3 n4 (185)

1/n1n2n3 (186)

(n1n5)αlp (187)

n1n5

knk = n1n5 n5 (188)

n′p = n1 n′

1 = n5,∑

knk = n′pn

′1 (189)

10

+

Count of microstates agrees with the Area entropy of black hole

(Strominger Vafa 96)

vendredi 19 juin 2009

Page 16: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

Generic D1D5P CFT stateSimple states: all components the same,excitations fermionic, spin aligned

Close analogy:

Black body radiation, many quanta,only a few in each harmonic

Very ‘quantum’ state

Special state: put all quanta into same harmonic, laser beam

State well described by classical E,Bfields

vendredi 19 juin 2009

Page 17: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

The numerator is r2dr2 = r2Ndr2

N , and we get a cancellation of the factors r2N . We will

see below that in the extremal metric the point rN = 0 acts like an origin of polarcoordinates, so the choice (??) is the correct one to define a coordinate rN with range(0,∞).

We also find that other terms in the metric and gauge field are finite in the extremallimit; this can be verified using (??),(??). We get the extremal solution (in the stringframe)

ds2 = −1

h(dt2 − dy2) +

Qp

hf(dt− dy)2 + hf

(dr2

N

r2N + a2η

+ dθ2

)

+ h

(r2N − na2η +

(2n + 1)a2ηQ1Q5 cos2 θ

h2f 2

)cos2 θdψ2

+ h

(r2N + (n + 1)a2η − (2n + 1)a2ηQ1Q5 sin2 θ

h2f 2

)sin2 θdφ2

+a2η2Qp

hf

(cos2 θdψ + sin2 θdφ

)2

+2a√

Q1Q5

hf

[n cos2 θdψ − (n + 1) sin2 θdφ

](dt− dy)

− 2aη√

Q1Q5

hf

[cos2 θdψ + sin2 θdφ

]dy +

√H1

H5

4∑

i=1

dz2i (4.21)

C2 =a√

Q1Q5 cos2 θ

H1f(−(n + 1)dt + ndy) ∧ dψ

+a√

Q1Q5 sin2 θ

H1f(ndt− (n + 1)dy) ∧ dφ

+aηQp√

Q1Q5H1f(Q1dt + Q5dy) ∧

(cos2 θdψ + sin2 θdφ

)

− Q1

H1fdt ∧ dy − Q5 cos2 θ

H1f

(r2N + (n + 1)a2η + Q1

)dψ ∧ dφ (4.22)

e2Φ =H1

H5(4.23)

f = r2N − a2η n sin2 θ + a2η (n + 1) cos2 θ

h =√

H1H5, H1 = 1 +Q1

f, H5 = 1 +

Q5

f(4.24)

11

The numerator is r2dr2 = r2Ndr2

N , and we get a cancellation of the factors r2N . We will

see below that in the extremal metric the point rN = 0 acts like an origin of polarcoordinates, so the choice (??) is the correct one to define a coordinate rN with range(0,∞).

We also find that other terms in the metric and gauge field are finite in the extremallimit; this can be verified using (??),(??). We get the extremal solution (in the stringframe)

ds2 = −1

h(dt2 − dy2) +

Qp

hf(dt− dy)2 + hf

(dr2

N

r2N + a2η

+ dθ2

)

+ h

(r2N − na2η +

(2n + 1)a2ηQ1Q5 cos2 θ

h2f 2

)cos2 θdψ2

+ h

(r2N + (n + 1)a2η − (2n + 1)a2ηQ1Q5 sin2 θ

h2f 2

)sin2 θdφ2

+a2η2Qp

hf

(cos2 θdψ + sin2 θdφ

)2

+2a√

Q1Q5

hf

[n cos2 θdψ − (n + 1) sin2 θdφ

](dt− dy)

− 2aη√

Q1Q5

hf

[cos2 θdψ + sin2 θdφ

]dy +

√H1

H5

4∑

i=1

dz2i (4.21)

C2 =a√

Q1Q5 cos2 θ

H1f(−(n + 1)dt + ndy) ∧ dψ

+a√

Q1Q5 sin2 θ

H1f(ndt− (n + 1)dy) ∧ dφ

+aηQp√

Q1Q5H1f(Q1dt + Q5dy) ∧

(cos2 θdψ + sin2 θdφ

)

− Q1

H1fdt ∧ dy − Q5 cos2 θ

H1f

(r2N + (n + 1)a2η + Q1

)dψ ∧ dφ (4.22)

e2Φ =H1

H5(4.23)

f = r2N − a2η n sin2 θ + a2η (n + 1) cos2 θ

h =√

H1H5, H1 = 1 +Q1

f, H5 = 1 +

Q5

f(4.24)

11

4.2 Taking the extremal limit

To get the extremal limit we must take

M → 0, δi →∞ (i = 1, 5, p) (4.11)

keeping the Qi fixed. This gives

cosh2 δi =Qi

M+

1

2+ O(M)

sinh2 δi =Qi

M− 1

2+ O(M) (4.12)

We must also take suitable limits of a1, a2 so that the angular momenta are held fixed.It is useful to invert (??):

a1 = −√

Q1Q5

M

γ1 cosh δ1 cosh δ5 cosh δp + γ2 sinh δ1 sinh δ5 sinh δp

cosh2 δ1 cosh2 δ5 cosh2 δp − sinh2 δ1 sinh2 δ5 sinh2 δp

a2 = −√

Q1Q5

M

γ2 cosh δ1 cosh δ5 cosh δp + γ1 sinh δ1 sinh δ5 sinh δp

cosh2 δ1 cosh2 δ5 cosh2 δp − sinh2 δ1 sinh2 δ5 sinh2 δp

(4.13)

Using (??) we find

a1 = −(γ1 + γ2) η

√Qp

M− γ1 − γ2

4

√M

Qp+ O(M3/2)

= −a η

√Qp

M+ a

2n + 1

4

√M

Qp+ O(M3/2)

a2 = −(γ1 + γ2) η

√Qp

M+

γ1 − γ2

4

√M

Qp+ O(M3/2)

= −a η

√Qp

M− a

2n + 1

4

√M

Qp+ O(M3/2) (4.14)

where we have defined the dimensionless combination

η ≡ Q1Q5

Q1Q5 + Q1Qp + Q5Qp(4.15)

and in the second equalities we have used the specific values for γ1 and γ2 given in (??).We thus see that for generic values of γ1, γ2 and Qp the parameters a1 and a2 diverge

when M → 0. There are two exceptions:(a) Qp = 0, which is the case considered in [?, ?]; in this case a1 and a2 go to finite valueswhen M → 0.

9

(Giusto SDM Saxena 04)

vendredi 19 juin 2009

Page 18: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

This metric has no horizons, no closed timelike curves, no singularities

Naive geometry for the hole

Geometry forspecial state

Expect generic state has quantum, stringy ‘cap’

With such a structure, there is no information paradox ....

Not all states have been made for all holes, but with these examples, the‘boot is on the other leg’: if someone wants to argue there is a paradox, he needs to show that there do exists states with an ‘information free horizon’

vendredi 19 juin 2009

Page 19: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

Work by many authors ....

Cvetic-Youm, Balasubramanian-Keski-Vakkuri-deBoer-Ross, Maldacena-Maoz ...

Lunin-SDM, Lunin-Maldacena-Maoz, SDM-Saxena-Srivastava, Giusto-SDM-Saxena

Taylor, Skenderis-Taylor, ....

Bena, Bena-Kruas, Bena-Warner, Bena-Warner + Wang, Ruef, Agata, Giusto

Balasubramanian-Gimon-Levi, Berglund-Gimon-Levi, Gimon-Levi, Saxena-Giusto-Potvin-Peet ...

deBoer-El-Showk-Messamah-Van den Bleeken, Balasubramanian-de Boer-El-Showk-Messamah

Jejjala-Madden-Ross-Titchner, Giusto-Ross-Saxena ...

Chowdhury-SDM ...

Related work: Denef, Emparan, deBoer ...

vendredi 19 juin 2009

Page 20: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

2-charge extremal

2-charge extremal+excitation

3-charge extremal: Large classes also known with CFT state not yet identified

Nonextremal: Somefamilies known, radiation agrees

Known states:

Most general state

vendredi 19 juin 2009

Page 21: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

String theory description hasleft and right moving excitations

The Non-Extremal Hole :

?? ??

vendredi 19 juin 2009

Page 22: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

2 The non-extremal microstate geometries: Review

In this section we recall the microstate geometries that we wish to study, and explain how asuitable limit can be taken in which the physics can be described by a dual CFT.

2.1 General nonextremal geometries

Let us recall the setting for the geometries of [13]. Take type IIB string theory, and compactify10-dimensional spacetime as

M9,1 → M4,1 × T 4 × S1 (2.1)

The volume of T 4 is (2π)4V and the length of S1 is (2π)R. The T 4 is described by coordinateszi and the S1 by a coordinate y. The noncompact M4,1 is described by a time coordinate t, aradial coordinate r, and angular S3 coordinates θ,ψ,φ. The solution will have angular momentaalong ψ,φ, captured by two parameters a1, a2. The solutions will carry three kinds of charges.We have n1 units of D1 charge along S1, n5 units of D5 charge wrapped on T 4 × S1, and np

units of momentum charge (P) along S1. These charges will be described in the solution bythree parameters δ1, δ5, δp. We will use the abbreviations

si = sinh δi, ci = cosh δi, (i = 1, 5, p) (2.2)

The metrics are in general non-extremal, so the mass of the system is more than the minimumneeded to carry these charges. The non-extremality is captured by a mass parameter M .

With these preliminaries, we can write down the solutions of interest. The general non-extremal 3-charge metrics with rotation were given in [23]

ds2 = − f√

H̃1H̃5

(dt2 − dy2) +M

H̃1H̃5

(spdy − cpdt)2

+

H̃1H̃5

(r2dr2

(r2 + a21)(r

2 + a22) − Mr2

+ dθ2

)

+

(√

H̃1H̃5 − (a22 − a2

1)(H̃1 + H̃5 − f) cos2 θ

H̃1H̃5

)

cos2 θdψ2

+

(√

H̃1H̃5 + (a22 − a2

1)(H̃1 + H̃5 − f) sin2 θ

H̃1H̃5

)

sin2 θdφ2

+M

H̃1H̃5

(a1 cos2 θdψ + a2 sin2 θdφ)2

+2M cos2 θ√

H̃1H̃5

[(a1c1c5cp − a2s1s5sp)dt + (a2s1s5cp − a1c1c5sp)dy]dψ

+2M sin2 θ√

H̃1H̃5

[(a2c1c5cp − a1s1s5sp)dt + (a1s1s5cp − a2c1c5sp)dy]dφ

+

H̃1

H̃5

4∑

i=1

dz2i (2.3)

4

where

H̃i = f + M sinh2 δi, f = r2 + a21 sin2 θ + a2

2 cos2 θ, (2.4)

The D1 and D5 charges of the solution produce a RR 2-form gauge field given by [6]

C2 =M cos2 θ

H̃1[(a2c1s5cp − a1s1c5sp)dt + (a1s1c5cp − a2c1s5sp)dy] ∧ dψ

+M sin2 θ

H̃1[(a1c1s5cp − a2s1c5sp)dt + (a2s1c5cp − a1c1s5sp)dy] ∧ dφ

−Ms1c1

H̃1dt ∧ dy − Ms5c5

H̃1(r2 + a2

2 + Ms21) cos2 θdψ ∧ dφ. (2.5)

The angular momenta are given by

Jψ = − πM

4G(5)(a1c1c5cp − a2s1s5sp) (2.6)

Jφ = − πM

4G(5)(a2c1c5cp − a1s1s5sp) (2.7)

and the mass is given by

MADM =πM

4G(5)(s2

1 + s25 + s2

p +3

2) (2.8)

It is convenient to define

Q1 = M sinh δ1 cosh δ1, Q5 = M sinh δ5 cosh δ5, Qp = M sinh δp cosh δp (2.9)

Extremal solutions are reached in the limit

M → 0, δi → ∞, Qi fixed (2.10)

whereupon we get the BPS relation

Mextremal =π

4G(5)[Q1 + Q5 + Q5] (2.11)

The integer charges of the solution are related to the Qi through

Q1 =gα′3

Vn1 (2.12)

Q5 = gα′n5 (2.13)

Qp =g2α′4

V R2np (2.14)

2.2 Constructing regular microstate geometries

The solutions (2.3) in general have horizons and singularities. One can take careful limits ofthe parameters in the solution and find solutions which have no horizons or singularities. In[24] regular 2-charge extremal geometries were found while in [6, 7] regular 3-charge extremal

5

where

H̃i = f + M sinh2 δi, f = r2 + a21 sin2 θ + a2

2 cos2 θ, (2.4)

The D1 and D5 charges of the solution produce a RR 2-form gauge field given by [6]

C2 =M cos2 θ

H̃1[(a2c1s5cp − a1s1c5sp)dt + (a1s1c5cp − a2c1s5sp)dy] ∧ dψ

+M sin2 θ

H̃1[(a1c1s5cp − a2s1c5sp)dt + (a2s1c5cp − a1c1s5sp)dy] ∧ dφ

−Ms1c1

H̃1dt ∧ dy − Ms5c5

H̃1(r2 + a2

2 + Ms21) cos2 θdψ ∧ dφ. (2.5)

The angular momenta are given by

Jψ = − πM

4G(5)(a1c1c5cp − a2s1s5sp) (2.6)

Jφ = − πM

4G(5)(a2c1c5cp − a1s1s5sp) (2.7)

and the mass is given by

MADM =πM

4G(5)(s2

1 + s25 + s2

p +3

2) (2.8)

It is convenient to define

Q1 = M sinh δ1 cosh δ1, Q5 = M sinh δ5 cosh δ5, Qp = M sinh δp cosh δp (2.9)

Extremal solutions are reached in the limit

M → 0, δi → ∞, Qi fixed (2.10)

whereupon we get the BPS relation

Mextremal =π

4G(5)[Q1 + Q5 + Q5] (2.11)

The integer charges of the solution are related to the Qi through

Q1 =gα′3

Vn1 (2.12)

Q5 = gα′n5 (2.13)

Qp =g2α′4

V R2np (2.14)

2.2 Constructing regular microstate geometries

The solutions (2.3) in general have horizons and singularities. One can take careful limits ofthe parameters in the solution and find solutions which have no horizons or singularities. In[24] regular 2-charge extremal geometries were found while in [6, 7] regular 3-charge extremal

5

where

H̃i = f + M sinh2 δi, f = r2 + a21 sin2 θ + a2

2 cos2 θ, (2.4)

The D1 and D5 charges of the solution produce a RR 2-form gauge field given by [6]

C2 =M cos2 θ

H̃1[(a2c1s5cp − a1s1c5sp)dt + (a1s1c5cp − a2c1s5sp)dy] ∧ dψ

+M sin2 θ

H̃1[(a1c1s5cp − a2s1c5sp)dt + (a2s1c5cp − a1c1s5sp)dy] ∧ dφ

−Ms1c1

H̃1dt ∧ dy − Ms5c5

H̃1(r2 + a2

2 + Ms21) cos2 θdψ ∧ dφ. (2.5)

The angular momenta are given by

Jψ = − πM

4G(5)(a1c1c5cp − a2s1s5sp) (2.6)

Jφ = − πM

4G(5)(a2c1c5cp − a1s1s5sp) (2.7)

and the mass is given by

MADM =πM

4G(5)(s2

1 + s25 + s2

p +3

2) (2.8)

It is convenient to define

Q1 = M sinh δ1 cosh δ1, Q5 = M sinh δ5 cosh δ5, Qp = M sinh δp cosh δp (2.9)

Extremal solutions are reached in the limit

M → 0, δi → ∞, Qi fixed (2.10)

whereupon we get the BPS relation

Mextremal =π

4G(5)[Q1 + Q5 + Q5] (2.11)

The integer charges of the solution are related to the Qi through

Q1 =gα′3

Vn1 (2.12)

Q5 = gα′n5 (2.13)

Qp =g2α′4

V R2np (2.14)

2.2 Constructing regular microstate geometries

The solutions (2.3) in general have horizons and singularities. One can take careful limits ofthe parameters in the solution and find solutions which have no horizons or singularities. In[24] regular 2-charge extremal geometries were found while in [6, 7] regular 3-charge extremal

5

(Jejalla, Madden, Ross Titchener ’05)

vendredi 19 juin 2009

Page 23: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

Hawking radiation

Unitary radiation process in CFT

Non-Unitary radiation from semiclassical gravity

Radiation rates agree (Spins, greybody factors ...)

(Callan-Maldacena 96, Dhar-Mandal-Wadia 96, Das-Mathur 96, Maldacena-Strominger 96)

Can we get UNITARY radiation (information carrying) in the GRAVITY description ??

vendredi 19 juin 2009

Page 24: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

Rate agrees with Hawking radiation Compute for particular state

This gravity solution has no horizon, no singularity , but it has an ergoregion, which has ergoregion emission (Cardoso, Dias, Jordan, Hobvedo, Myers 06)

Find exact agreement of ‘ergoregion emission ratewith Hawking radiation rate (Chowdhury+SDM 06)

Thus we get information carrying Hawking emissionfrom this particular microstate

vendredi 19 juin 2009

Page 25: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

How can classical intuition fail in black holes ? : Conjectures

We have changed the interior of a classical sized horizon region ....

vendredi 19 juin 2009

Page 26: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

How could our classical intuition have gone wrong ?

??

vendredi 19 juin 2009

Page 27: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

Consider the amplitude for the shell to tunnel to a fuzzball state

Amplitude to tunnel is very small

But the number of states that one can tunnel to is very large !

vendredi 19 juin 2009

Page 28: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

Toy model: Small amplitude to tunnel to a neighboring well, but there are a correspondingly large number of adjacent wells

In a time of order unity, the wavefunction in the central well becomes a linear combination of states in all wells

vendredi 19 juin 2009

Page 29: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

How long does this tunneling process take ?

If it takes longer than Hawking evaporation time then it does not help ...

ψL = ψS + ψA

ψ = e−iEStψS + e−iEAtψA

∆E = EA − ES

∆t =π

∆E

1

ψL = ψS + ψA

ψ = e−iEStψS + e−iEAtψA

∆E = EA − ES

∆t =π

∆E

1

The wavefunction tunnels to the other well in a time

ψL = ψS + ψA

ψ = e−iEStψS + e−iEAtψA

∆E = EA − ES

∆t =π

∆E

1

where

Tunneling in the double well:

vendredi 19 juin 2009

Page 30: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

For the collapsing shell ...

Thus the collapsing shell turns into a linear combination of fuzzball states in a time shortcompared to Hawking evaporation time

vendredi 19 juin 2009

Page 31: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

Large phase space in black hole

Large phase space at infinity

Wave - function

Wavefunction spreads overlarge phase space

vendredi 19 juin 2009

Page 32: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

Start with a box of volume V

Cosmology

In the box put energy E

Question: What is the state of maximal entropy S, and how much is S(E) ?

1n5

TD1

M9,1 →M3,1 × T 4 × S1 × S̃1

2πk

n1n5L

2πm

L

NS1 P NS1 P + ∆E → NS1 P + PP̄ → radiation ??

n1L

2mp

n1n5

2m5

n1np∼ LV

g2α′3n1np

S ∼ ED−1

D D S = A∏

k=1n

(√

nk +√

n̄k) = 2nA∏

k=1n

(√

nk +√

n̄k)

3

Radiation

Take the limit of very large E

S(E) = ??

vendredi 19 juin 2009

Page 33: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

Black holes

String gas‘Hagedorn phase’

Nα lp (77)

eS (78)

S ∼ E ∼√

E√

E (79)

n1 n̄1 np n̄p (80)

6

(Brandenberger+Vafa)

What happens if we put even more energy ?

vendredi 19 juin 2009

Page 34: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

We now have a microscopic model for the Gregory Laflamme transition(Chowdhury, Giusto, SDM 06)

The Gregory Laflamme transition

The black hole is made of D-branes wrapped on cycles (D1+D5+PP)

The black string is made of these D-branes AND an additional set of braneswrapping the new cycle (D1+D5+PP+KK KK)

The switch happens when the 4-charge system has more entropy than 3-charge

vendredi 19 juin 2009

Page 35: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

black holesare fuzzballs

fuzz fills theUniverse

black holesas branes

branes wrapnew cycles

vendredi 19 juin 2009

Page 36: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

A

4G= S = 2π

√n1n2n3

∆E =1

nR+

1

nR=

2

nR

∆E =2

nR

S = ln(1) = 0 (8)

S = 2√

2π√

n1n2 (9)

S = 2π√

n1n2n3 (10)

S = 2π√

n1n2n3n4 (11)

n1 ∼ n5 ∼ n

∼ n14 lp

∼ n12 lp

∼ n lp

M9,1 →M4,1 ×K3× S1

A

4G∼

√n1n5 − J ∼ S

A

4G∼√

n1n5 ∼ S

e2π√

2√

n1np

1 +Q1

r2

1 +Qp

r2

e2π√

2√

n1n5

w = e−i(t+y)−ikz w̃(r, θ, φ) (12)

B(2)MN = e−i(t+y)−ikz B̃(2)

MN(r, θ, φ) , (13)

T → T/(n1n2n3) (14)

2

A

4G= S = 2π

√n1n2n3

∆E =1

nR+

1

nR=

2

nR

∆E =2

nR

S = ln(1) = 0 (8)

S = 2√

2π√

n1n2 (9)

S = 2π√

n1n2n3 (10)

S = 2π√

n1n2n3n4 (11)

n1 ∼ n5 ∼ n

∼ n14 lp

∼ n12 lp

∼ n lp

M9,1 →M4,1 ×K3× S1

A

4G∼

√n1n5 − J ∼ S

A

4G∼√

n1n5 ∼ S

e2π√

2√

n1np

1 +Q1

r2

1 +Qp

r2

e2π√

2√

n1n5

w = e−i(t+y)−ikz w̃(r, θ, φ) (12)

B(2)MN = e−i(t+y)−ikz B̃(2)

MN(r, θ, φ) , (13)

T → T/(n1n2n3) (14)

2

A

4G= S = 2π

√n1n2n3

∆E =1

nR+

1

nR=

2

nR

∆E =2

nR

S = ln(1) = 0 (8)

S = 2√

2π√

n1n2 (9)

S = 2π√

n1n2n3 (10)

S = 2π√

n1n2n3n4 (11)

n1 ∼ n5 ∼ n

∼ n14 lp

∼ n12 lp

∼ n lp

M9,1 →M4,1 ×K3× S1

A

4G∼

√n1n5 − J ∼ S

A

4G∼√

n1n5 ∼ S

e2π√

2√

n1np

1 +Q1

r2

1 +Qp

r2

e2π√

2√

n1n5

w = e−i(t+y)−ikz w̃(r, θ, φ) (12)

B(2)MN = e−i(t+y)−ikz B̃(2)

MN(r, θ, φ) , (13)

T → T/(n1n2n3) (14)

2

=2πn1np

n1L=

2πn1np

LT(105)

∼ [

√n1n5npg2α′4

LS1VT 4]13 (106)

Sbek =A

4G(107)

eSbek (108)

Smicro = Sbek (109)

Smicro = ln[256] ∼ 0 (110)

A = 0 (111)

Smicro = Sbek = 0 (112)

Smicro = 4π√

n1np (113)

T 4 × S1 K3× S1 (114)

Sbek =A

2G= 4π

√n1np = Smicro (115)

n′1 = np n′

5 = n1 (116)

n′1n

′5 = n1np (117)

Smicro = ln[N ] (118)

Sbek =A

4G(119)

A

4G∼√

n1n5 ∼ Smicro = 2π√

2√

n1n5 (120)

A

4G∼

√n1n5 − J ∼ Smicro = 2π

√2√

n1n5 − J (121)

∑k nk = n1np (122)

∑k nk = n′

1n′5 (123)

#F (x− t) (124)

AdS3 × S3 (125)

2πk

LT(126)

S = 2π√

n1n2n3(√

n4 +√

n̄4) (127)

7

=2πn1np

n1L=

2πn1np

LT(105)

∼ [

√n1n5npg2α′4

LS1VT 4]13 (106)

Sbek =A

4G(107)

eSbek (108)

Smicro = Sbek (109)

Smicro = ln[256] ∼ 0 (110)

A = 0 (111)

Smicro = Sbek = 0 (112)

Smicro = 4π√

n1np (113)

T 4 × S1 K3× S1 (114)

Sbek =A

2G= 4π

√n1np = Smicro (115)

n′1 = np n′

5 = n1 (116)

n′1n

′5 = n1np (117)

Smicro = ln[N ] (118)

Sbek =A

4G(119)

A

4G∼√

n1n5 ∼ Smicro = 2π√

2√

n1n5 (120)

A

4G∼

√n1n5 − J ∼ Smicro = 2π

√2√

n1n5 − J (121)

∑k nk = n1np (122)

∑k nk = n′

1n′5 (123)

#F (x− t) (124)

AdS3 × S3 (125)

2πk

LT(126)

S = 2π√

n1n2(√

n3 +√

n̄3) (127)

S = 2π√

n1n2n3(√

n4 +√

n̄4) (128)

7

2-charges

3-charges

4-charges

2 charges+ nonextremality

3-charges+ nonextremality

Microscopic entropy formulae: Count of brane states agrees with Bekenstein Area entropy

But simple extensions of these expressions also work exactly far fromextremality (including the case of the neutral Schwarzschild hole) ...

(Horowitz Maldcena Strominger 96, Horowitz Lowe Maldacena 96)

Extremal holes

Near extremal holes

vendredi 19 juin 2009

Page 37: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

Nα lp (77)

eS (78)

S ∼ E ∼√

E√

E (79)

n1 n̄1 np n̄p (80)

6

Nα lp (77)

eS (78)

S ∼ E ∼√

E√

E (79)

n1 n̄1 np n̄p (80)

6

Nα lp (77)

eS (78)

S ∼ E ∼√

E√

E (79)

n1 n̄1 np n̄p (80)

6

Nα lp (77)

eS (78)

S ∼ E ∼√

E√

E (79)

n1 n̄1 np n̄p (80)

6

Three charges (4+1 d black hole)

Two charges

Nα lp (77)

eS (78)

S ∼ E ∼√

E√

E (79)

n1 n̄1 np n̄p (80)

S = 2π√

2(√

n1 +√

n̄1)(√

np +√

n̄p) ∼√

E√

E ∼ E (81)

S = 2π(√

n1 +√

n̄1)(√

n5 +√

n̄5)(√

np +√

n̄p) ∼ E32 (82)

S = 2π(√

n1 +√

n̄1)(√

n2 +√

n̄2)(√

n3 +√

n̄3)(√

n4 +√

n̄4) ∼ E2 (83)

S = AN

N∏

i=1

(√

ni +√

n̄i) ∼ EN2 (84)

6

Nα lp (77)

eS (78)

S ∼ E ∼√

E√

E (79)

n1 n̄1 np n̄p (80)

S = 2π√

2(√

n1 +√

n̄1)(√

np +√

n̄p) ∼√

E√

E ∼ E (81)

S = 2π(√

n1 +√

n̄1)(√

n5 +√

n̄5)(√

np +√

n̄p) ∼ E32 (82)

S = 2π(√

n1 +√

n̄1)(√

n2 +√

n̄2)(√

n3 +√

n̄3)(√

n4 +√

n̄4) ∼ E2 (83)

S = AN

N∏

i=1

(√

ni +√

n̄i) ∼ EN2 (84)

6

How do we get such large entropies ?

Nα lp (77)

eS (78)

S ∼ E ∼√

E√

E (79)

n1 n̄1 np n̄p (80)

S = 2π√

2(√

n1 +√

n̄1)(√

np +√

n̄p) ∼√

E√

E ∼ E (81)

S = 2π(√

n1 +√

n̄1)(√

n5 +√

n̄5)(√

np +√

n̄p) ∼ E32 (82)

S = 2π(√

n1 +√

n̄1)(√

n2 +√

n̄2)(√

n3 +√

n̄3)(√

n4 +√

n̄4) ∼ E2 (83)

S = AN

N∏

i=1

(√

ni +√

n̄i) ∼ EN2 (84)

6

Four charges (3+1 d black hole)

Degrees of freedom live at brane intersections, groupings of these degreesgives different states

vendredi 19 juin 2009

Page 38: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

N charges,postulate .....

Nα lp (77)

eS (78)

S ∼ E ∼√

E√

E (79)

n1 n̄1 np n̄p (80)

S = 2π√

2(√

n1 +√

n̄1)(√

np +√

n̄p) ∼√

E√

E ∼ E (81)

S = 2π(√

n1 +√

n̄1)(√

n5 +√

n̄5)(√

np +√

n̄p) ∼ E32 (82)

S = 2π(√

n1 +√

n̄1)(√

n2 +√

n̄2)(√

n3 +√

n̄3)(√

n4 +√

n̄4) ∼ E2 (83)

S = AN

N∏

i=1

(√

ni +√

n̄i) ∼ EN2 (84)

6

‘Fractional brane soup’

M theory: Space is a 10-torus

Find that N can go upto 9

Black holes: Stress tensor is sum of brane antibrane stress tensors

Can solve expansion with this equation of state ....

(Chowdhury+Mathur 06)

vendredi 19 juin 2009

Page 39: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

(A) There is no inflation, but nonlocal correlations stretch all across Universe because of nature of brane bound state ...

(B) At very early times, it is entropically favorable to have N=9 kinds of charges. As the Universe expands, we expect to go down to 8 charges, then 7, etc... till at the end we are left with radiation

(C) At each `jump’ we get a large entropy enhancement

(D) We should really ask the question: Why is this NOT the state of the very early Universe ? So far we have always taken the maximal entropy configuration ... should there be a different principle ?

(E) Maybe left with branes/antibranes trapped as in KKLT ? Annihilation is slow: Hawking radiation rate ~

vendredi 19 juin 2009

Page 40: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

Infinite throat

horizon

singularity

People looked for ‘hair’ at the horizon which would carry the information of the hole ...

But we dont find any ....

So what have we learnt ?

vendredi 19 juin 2009

Page 41: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

In string theory we have extra dimensions, which we will take to becompact circles

If we want a black hole in 3+1 d, then we have 6 compact directions

If we work PERTURBATIVELY, the extra directions give gauge fields and scalars ...

A a

But we dont any hair from scalar or vector fields either ....

vendredi 19 juin 2009

Page 42: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

What turns out to happen:

Non-perturbative effects arising from these compact directions DO give hair

A compact circle can make a topological structure called a Kaluza-Klein mnopole

At some other point we get an anti-monopole

This gives one particular microstate of the black hole

It is a very special, nongeneric state

vendredi 19 juin 2009

Page 43: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

We can get a more complex state with more monopoles and anti-monopoles .....

The generic state is complicated at short distances, and quantum fluctuations are large (a FUZZBALL). But we do not get the traditionalgeometry of the extremal hole ...

vendredi 19 juin 2009

Page 44: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

Summary:

String theory suggests that the black hole interior is a horizon sized ‘fuzzball’ ...

This will solve the black hole information puzzle ...

S = 2π√

n5(√

n1 +√

n̄1)(√

np +√

n̄p) (57)

= 2π√

n5(E

√m1mp

) (58)

S = 2π√

n1n5npnkk (59)

S = 2π√

n1n5nkk(√

np +√

n̄p) (60)

= 2π√

n1n5(E

√mpmkk

) (61)

S = 2π√

n1n5(√

np +√

n̄p)(√

nkk +√

n̄kk) (62)

∼ lp (63)

∼ n1

6 lp (64)

M9,1 → M4,1 × T 4 × S1 (65)

E/(2mkk) = 0.5 (66)

E/(2mkk) = 1.2 (67)

Lz ∼ [g2α′4√n1n5np

V R]1

3 ∼ Rs (68)

∆S (69)

eS (70)

eS+∆S (71)

S = 2π√

n1n5np(1 − f) + 2π√

n1n5npf(√

nk +√

n̄k) (72)

nk = n̄k =1

2

∆E

mk=

1

2Dmk(73)

D ∼ [

√n1n5npg2α′4

V Ry]1

3 ∼ RS (74)

∆S = S − 2π√

n1n5np = 1 (75)

S =A

4G(76)

mk ∼ G5

G24

∼ D2

G5(77)

D ∼ G1

3

5 (n1n5np)1

6 ∼ RS (78)

∼ Nα lp (79)

eS (80)

5

S = 2π√

n5(√

n1 +√

n̄1)(√

np +√

n̄p) (57)

= 2π√

n5(E

√m1mp

) (58)

S = 2π√

n1n5npnkk (59)

S = 2π√

n1n5nkk(√

np +√

n̄p) (60)

= 2π√

n1n5(E

√mpmkk

) (61)

S = 2π√

n1n5(√

np +√

n̄p)(√

nkk +√

n̄kk) (62)

∼ lp (63)

∼ n1

6 lp (64)

M9,1 → M4,1 × T 4 × S1 (65)

E/(2mkk) = 0.5 (66)

E/(2mkk) = 1.2 (67)

Lz ∼ [g2α′4√n1n5np

V R]1

3 ∼ Rs (68)

∆S (69)

eS (70)

eS+∆S (71)

S = 2π√

n1n5np(1 − f) + 2π√

n1n5npf(√

nk +√

n̄k) (72)

nk = n̄k =1

2

∆E

mk=

1

2Dmk(73)

D ∼ [

√n1n5npg2α′4

V Ry]1

3 ∼ RS (74)

∆S = S − 2π√

n1n5np = 1 (75)

S =A

4G(76)

mk ∼ G5

G24

∼ D2

G5(77)

D ∼ G1

3

5 (n1n5np)1

6 ∼ RS (78)

Nα lp (79)

eS (80)

5

Lesson:

Underlying physics:

There are Exp[S] orthoginal wavefunctions for the different black hole

We cannot fit so many orthogonal wavefunctions in too small a region : horizon sized ‘fuzzball’

√N − n

√n + 1 ≈

√N

√n + 1

dn

dt∝ (n + 1) n (175)

ωR =1

R[−l − 2 − mψm + mφn] = ωgravity

R (176)

m = nL + nR + 1, n = nL − nR (177)

|λ − mψn + mφm| = 0, N = 0 (178)

λ = 0, mψ = −l, n = 0, N = 0 (179)

ωI = ωgravityI (180)

|0〉 |ψ〉 < 0|ψ〉 ≈ 0 (181)

10

√N − n

√n + 1 ≈

√N

√n + 1

dn

dt∝ (n + 1) n (175)

ωR =1

R[−l − 2 − mψm + mφn] = ωgravity

R (176)

m = nL + nR + 1, n = nL − nR (177)

|λ − mψn + mφm| = 0, N = 0 (178)

λ = 0, mψ = −l, n = 0, N = 0 (179)

ωI = ωgravityI (180)

|0〉 |ψ〉 < 0|ψ〉 ≈ 0 (181)

10

√N − n

√n + 1 ≈

√N

√n + 1

dn

dt∝ (n + 1) n (175)

ωR =1

R[−l − 2 − mψm + mφn] = ωgravity

R (176)

m = nL + nR + 1, n = nL − nR (177)

|λ − mψn + mφm| = 0, N = 0 (178)

λ = 0, mψ = −l, n = 0, N = 0 (179)

ωI = ωgravityI (180)

|0〉 |ψ〉 〈0|ψ〉 ≈ 0 (181)

10

vendredi 19 juin 2009

Page 45: Institut de Physique Théorique · 2009. 6. 19. · The Hawking ‘theorem’ can be made completely rigorous If we are given that (a) All quantum gravity effects are confined to

In the early Universe we had a highly dense matter distribution ...

This may be similar to a matter crushed inside a black hole ...

ψL = ψS + ψA

ψ = e−iEStψS + e−iEAtψA

∆E = EA − ES

∆t =π

∆ES ∼ E

n2 , n ≤ 9

1

Cosmology:

??

More difficult questions:

Can we construct all states for extremal holes? Nonextremal holes ?

How do we describe the structure of a generic state ?

How do we describe the infall of massive objects into generic states ?

vendredi 19 juin 2009