31
Integrating Rational Functions by the Method of Partial Fraction

Integrating Rational Functions by the Method of Partial Fraction

  • View
    241

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Integrating Rational Functions by the Method of Partial Fraction

Integrating Rational Functions by the Method of Partial Fraction

Page 2: Integrating Rational Functions by the Method of Partial Fraction

Examples I

When the power of the polynomial of the numerator is less than that

of the denominator

Page 3: Integrating Rational Functions by the Method of Partial Fraction

Example 1

dxxxx

x

)12)(1(

4822

Page 4: Integrating Rational Functions by the Method of Partial Fraction

)12)(1(

48)(

22

xxx

xxr

Let

)12)(1(

)()2()2()(

)12)(1(

)12)(()1()1)(1(

)12)(1(

)1)(()1()1)(1(

1)1(1)(

)1)(1(

)12)(1(

22

23

22

222

22

222

22

22

22

xxx

dbaxdcaxdcbaxca

xxx

xxdcxxbxxa

xxx

xdcxxbxxa

x

dcx

x

b

x

axr

xx

xxx

The denominator

Page 5: Integrating Rational Functions by the Method of Partial Fraction

8

42

02

0

,

)()2()2()(

4823

dba

dca

dcba

ca

getWe

dbaxdcaxdcbaxca

numeratornewtheandxnumeratororiginaltheComparing

Page 6: Integrating Rational Functions by the Method of Partial Fraction

246,4)4(

482022)6(

:),2(

682

:),4(

242

42

:),3(

)1(

)4(8

)3(42

)2(02

)1(0

bc

aaaaa

getweinthatngSubstituti

abba

getweinthatngSubstituti

dd

daa

getweinthatngSubstituti

acFrom

dba

dca

dcba

ca

Page 7: Integrating Rational Functions by the Method of Partial Fraction

cxxx

x

dxx

x

xx

dxxr

Thus

x

x

xx

x

dcx

x

b

x

axr

d

c

b

a

getweequationslinearofsystemthisSolving

arctan2)1ln(21

)1(21ln4

]1

24

)1(

2

1

4[

)(

,

1

24

)1(

2

1

4

1)1(1)(

2

4

2

4

,,

21

22

22

22

Page 8: Integrating Rational Functions by the Method of Partial Fraction

Example 2

xx

dx2

Page 9: Integrating Rational Functions by the Method of Partial Fraction

)1(

11)(

,

11

,,

10

,,

)1(

)(

)1(

)1(

)1()1(

1

)1(

11)(

2

xxxr

Thus

banda

getweequationslinearofsystemthisSolving

aandba

getwenumeratorstwotheComparing

xx

axba

xx

bxxa

x

b

x

a

xx

Let

xxxxxr

Page 10: Integrating Rational Functions by the Method of Partial Fraction

cx

x

cxx

dxxx

dxxr

Thus

1ln

1lnln

])1(

11[

)(

,

Page 11: Integrating Rational Functions by the Method of Partial Fraction

Example 3

dxx

xx

22

2

)1(

12

Page 12: Integrating Rational Functions by the Method of Partial Fraction

01,2

1,2,1,0

,

)()(

)()1)((

)1()1(

)1(

12)(

)1(

12

23

2

222

22

2

22

2

bdc

dbcaba

SolvingandnumeratorsComparing

dbxcabxax

dcxxbax

numeratornewThe

x

dcx

x

bax

x

xxxr

dxx

xx

Page 13: Integrating Rational Functions by the Method of Partial Fraction

cx

x

cx

x

dxx

x

x

dxxr

1

1arctan

1

)1(arctan

])1(

2

)1(

1[

)(

2

12

222

Page 14: Integrating Rational Functions by the Method of Partial Fraction

Examples II

When the power of the polynomial of the numerator is equal or greater than

that of the denominator

Page 15: Integrating Rational Functions by the Method of Partial Fraction

Example 1

dxx

x

1

22

Page 16: Integrating Rational Functions by the Method of Partial Fraction

cxxx

dxx

xdxx

x

Thus

xx

x

x

x

x

methodAlternativ

xx

x

xxr

getweDividing

dxx

x

1ln32

]1

31[

1

2

,

1

31

1

3)1(

1

2

:

1

31

1

2)(

,,1

2

2

2

22

2

2

Page 17: Integrating Rational Functions by the Method of Partial Fraction

Notice

We can use the same method used in this example as an alternative way to write the given rational function as a sum of simpler rational functions (partial fractions).

Going back to examples. Notice the following:

Page 18: Integrating Rational Functions by the Method of Partial Fraction

)1(

11

)1()1(

1

)1(

)1(

)1(

1

1

2

2

xx

xx

x

xx

x

xx

xx

xx

xx

Example

Page 19: Integrating Rational Functions by the Method of Partial Fraction

222

22

2

22

2

)1(

2

1

1

)1(

2)1(

)1(

12

3

x

x

x

x

xx

x

xx

Example

Page 20: Integrating Rational Functions by the Method of Partial Fraction

Question( Use two methods)

12x

dx

Page 21: Integrating Rational Functions by the Method of Partial Fraction

Example 2

12

3

x

dxx

Page 22: Integrating Rational Functions by the Method of Partial Fraction

1ln2

1

2)(

1

1

)(

1)(

1

22

2

2

3

2

3

2

3

xx

dxxr

x

xx

x

xxx

x

xxr

x

dxx

Page 23: Integrating Rational Functions by the Method of Partial Fraction

Examples III

Sometimes it is easier to find the constants not by solving a system of linear equations but rather by substituting a different appropriate value for x, in each of these equationsز

Page 24: Integrating Rational Functions by the Method of Partial Fraction

Example 1

dxxxxxxx

x

)5)(4)(3)(2)(1(

12015

Page 25: Integrating Rational Functions by the Method of Partial Fraction

54321

)5)(4)(3)(2)(1(

12015)(

)5)(4)(3)(2)(1(

12015

543210

x

a

x

a

x

a

x

a

x

a

x

a

xxxxxx

xxr

dxxxxxxx

x

Page 26: Integrating Rational Functions by the Method of Partial Fraction

)4)(3)(2)(1(

)5)(3)(2)(1(

)5)(4)(2)(1(

)5)(4)(3)(1(

)5)(4)(3)(2(

)5)(4)(3)(2)(1(

5

4

3

2

1

0

xxxxxa

xxxxxa

xxxxxa

xxxxxa

xxxxxa

xxxxxa

numeratornewThe

Page 27: Integrating Rational Functions by the Method of Partial Fraction

1)5)(4)(3)(2(

120

120)5)(4)(3)(2)(1(

,

120120)0(15

)40)(30)(20)(10)(0(

)50)(30)(20)(10)(0(

)50)(40)(20)(10)(0(

)50)(40)(30)(10)(0(

)50)(40)(30)(20)(0(

)50)(40)(3)(20)(10(

0,

0

0

5

4

3

2

1

0

a

a

Thus

numeratororiginalThe

a

a

a

a

a

xa

numeratornewThe

xSubstitute

Page 28: Integrating Rational Functions by the Method of Partial Fraction

8

35

)4)(3)(2(

105

105)4)(3)(2)(1)(1(

,

105120)1(15

)51)(41)(31)(21)(1(

1

1

1

1

a

a

Thus

numeratororiginalThe

a

numeratornewThe

xSubstitute

Page 29: Integrating Rational Functions by the Method of Partial Fraction

4

25

)2)(1)(1)(2)(3(

75

120)3(15)2)(1)(1)(2)(3(

,,3

2

15

)3)(2)(1)(1)(2(

90

120)2(15)3)(2)(1)(1)(2(

,,2

3

3

2

2

a

a

getwexSubstitute

a

a

getwexSubstitute

Page 30: Integrating Rational Functions by the Method of Partial Fraction

8

3

)1)(2)(3)(4)(5(

45

120)5(15)1)(2)(3)(4)(5(

,,5

2

5

)1)(1)(2)(3)(4(

60

120)4(15)1)(1)(2)(3)(4(

,,4

5

5

4

4

a

a

getwexSubstitute

a

a

getwexSubstitute

Page 31: Integrating Rational Functions by the Method of Partial Fraction

cxx

xxxx

dxxxxxxx

dxxr

Therfore

5ln8

34ln

2

5

3ln2

252ln

2

151ln

8

35ln

]583

425

3225

2215

1835

1[

)(

,