33
Inter-American Development Bank Hydro-BID A Public Platform for Modeling Hydrology and Climate Change in Latin America and the Caribbean Raul Munoz Castillo Sr. Water & Sanitation Specialist INE/WSA

Inter-American Development Bank Hydro-BID · AHD for the Latin America and Caribbean Region (LAC) (cont.) South America • 193,000 catchments ... P USLE Support practice factor LS

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Inter-American Development Bank

    Hydro-BIDA Public Platform for Modeling Hydrology

    and Climate Change in Latin America

    and the Caribbean

    Raul Munoz Castillo

    Sr. Water & Sanitation Specialist

    INE/WSA

  • Overview

    Hydro-BID:

    Create a system for integrated, quantitative simulation

    of hydrology and climate change in Latin America and

    the Caribbean, for assessing the potential impacts of

    climate change on water flows and infrastructure and

    supporting the design of adaptive projects and

    strategies.

  • Why Hydro-BID?

    - Consolidated database for all LAC

    - Simple and Flexible platform (downscaling, update)

    - Modular: Easy to couple with other analytical tools

    (WEAP, MODFLOW)

    - Free access for water, environmental agencies, natural

    resources ministries and academia.

    - Capacity: in-house implementation by agencies

  • Intended Uses

    • Estimation of historic flows: Water balance for water resources planning

    and management.

    • Estimation of projected flows: Climate change analysis.

    • Drainage and flood control.

    • Water supply and sanitation utility analysis.

    • Hydroelectric Power Generation feasibility studies.

    • Reservoir management and feasibility studies.

    • Irrigation.

  • AHD for the Latin America and Caribbean Region (LAC)

    ▪ developed an AHD for the

    entire LAC region:

    HydroSHEEDS (NASA)

    ▪ Derived from SRTM terrain

    data, as modified by USGS

    – 15 –arc seconds pixels

    ▪ Data processed to create

    drainage catchments

    (polygons) and linear stream

    segments (flow lines) with

    connectivity

    SRTM: Shuttle Radar Topography Mission

  • Hydro-BID Flow Chart

    Risk Analysis and

    Specifications for

    Adaptive Water

    InfrastructureData InputsWater demand

    Value of water

    Water

    allocation

    model

    (e.g.,

    WEAP)

    Analytical

    Hydrography

    Dataset

    Delineated

    Catchments and

    Stream Network

    Time series of

    projected water

    flows

    GWLF

    Rainfall-Runoff

    Routing Model

    Data Inputs

    Land uses

    Soil types

    Rainfall

    Temperature

    Reference stream

    flows for calibration

    Sediment Loading

    Reservoir Simulation

    Groundwater

    simulation

  • AHD for the Latin America and Caribbean Region (LAC) (cont.)

    South America

    • 193,000 catchments

    and stream segments

    • Average catchment

    area: 92 km2

    • Average stream

    segment length: 11 km

    Central America • 33,000 catchments and

    stream segments

    • Average catchment

    area: 84 km2

    • Average stream

    segment length: 10 km

    It delineates more than 230,000 basins with their respective river segments along LAC

    Caribbean

    • 3,300 catchments and

    stream segments

    • Average catchment

    area: 72 km2

    • Average stream

    segment length: 11 km

  • Hydro-BID allows multiple scale water resources analysis.

    Amazon

    Basin

    Marañón

    Basin

    Upstream

    Catchments

    Downstream

    Catchments

    ComponentsAHD for the Latin America and Caribbean Region (LAC) (cont.)

  • Connectivity between

    Catchments and streams

    Drainage

    (upstream

    and downstream)

    ComponentsAHD for the Latin America and Caribbean Region (LAC) (cont.)

  • Components

    Land Cover- USGS Soil- FAO

    Precipitation-NOAA Temperature-NASA

    Geographic Data Inputs

    AHD for the Latin America and Caribbean Region (LAC) (cont.)

  • Hydrologic Model

    ▪ Based on the Generalized Watershed Loading Function (GWLF)

    Headwater reach flows

    generated with GWLF

    Outflow from catchment

    after inflow + GWLF flow

    subjected to routing method

    Outflow from Watershed

    Application of an RTI-

    designed lag-routing

    method from one

    catchment to another to

    compute flow at the

    outlet

  • Climate Change Scenarios

    • Allows to increase and decrease precipitation

    and temperature on the catchments.

    • Allows to input increase or decrease rate at

    monthly scale

  • HydrCentro de soporte hydrobid(cesh)

    WaterALLOC

    • Disponibilidad Hídrica• Efectos del Cambio

    Climático• Aguas Subterráneas• Transporte de Sedimentos• Embalses• Otorgas de agua• Calidad de las Aguas

    • Mapas de Inundación, riesgo y vulnerabilidad

    • Drenaje Urbano• Erosión y Deposición• Calidad de las Aguas• Rompimiento de Presas• Evaluación de

    Infraestructura

    • Sistema basado en GIS• Balances Hídricos• Análisis hidroeconómicos

    Herramienta de Gestión de los Recursos Hídricos

    Herramienta de Análisis de Inundaciones

    Análisis de Demandas y Distribución de Agua

  • Hydro-BID I → Hydro-BID II

    New Modules:

    • Reservoires

    • Sediments

    • Groundwater

  • Sediment Loads from Watersheds

    Sedday Sediment yield on a given day in (metric ton)

    Qday Surface runoff generated in the day (mm/ha

    Qpeak Peak flow computed as shown below (m3/s)

    Area Drainage area

    KUSLE Soil erosion factor (0.013 metric tom m2 hr/(m3-metricton cm))

    CUSLE Cover management factor

    PUSLE Support practice factor

    LSUSLE Topographic factor

    CFRG Coarse and fragmentation factor

    Modified Universal Soil Loss Equation MUSLE (Williams, 1975)

  • Reservoir Simulation

    Propiedades del Reservorio

    ▪ Reservorios individuales

    ▪ Múltiples reservorios

    ▪ Evolución diaria del

    volumen del reservorio

  • ▪ Método regional acoplado

    ▪ Link el modelo Hydro-BID de aguas superficiales con el modelo de

    aguas subterránea MODFLOW u otros modelos

    Surface water and groundwater interactions

  • Water Resource Allocation (permitting)

    ▪ Water Resource Allocation

    (permitting)

    – Existing abstractions and

    returns

    – New permits

    – Analyze impacts

    downstream allocation

    – Deterministic and

    probabilistic results

    – Forecasts

    Evaluation of Water Supply Risk: A

    Model-based Approach at the

    Braidwood Generating Station, Illinois

    Permit

    Location

    New Permit

  • Hydro-BID Case Studies

    Assessed potential changes in future water

    availability under various climate change

    scenarios

    Rio Piura Basin

    Hydrological and sediment load modeling in

    Chanchay-Lambayeque basin. Modeled the

    interaction between surface and groundwater

    in the upper Piura basin

    Chanchay-Lambayeque and Piura Basins

    Implemented Hydro-BID at the national level

    in Peru; 40 staff trained; 22 basins modeled

    National

    Assessed climate change impact on

    proposed water investments for Quito’s

    water supply

    Chalpi Basin

    Assessed optimal allocation of surface

    water across agricultural and municipal

    users by linking Hydro-BID with an

    economic optimization model

    Pernambuco State

    Evaluated options for addressing seasonal

    water shortages through improvements in

    the efficiency of agricultural and urban

    water uses

    Rio Grande Basin

    Compared two methods of sediment load

    computations and provided sensitivity of

    sediment loads to future climate changes

    Bermejo River Basin

    Implement Hydro-BID at the national

    level; + 40 staff will be trained; + 15

    basins will be modeled

    National

    Develop and operationalize an integrated

    set of tools that support the achievement

    of an optimized water management and

    supply strategy

    Implement Hydro-BID at the regional level

    in Argentina

    Regional

    Implement Hydro-BID at the national

    level in Guatemala

    National

    Completed

    Ongoing

    Future

    Implement Hydro-BID at the national

    level in Bolivia

    National

  • ▪ Escasez frecuente de agua en la

    ciudad de San Salvador de Jujuy

    – 265,000 habitantes (2010)

    – Rio Grande es la única fuente de

    abastecimiento

    ▪ Restricciones de agua para irrigación

    agrícola

    – 34,000 ha de riego

    Cuencas del Rio Grande y Rio San Francisco

    San Salvador de Jujuy

    Proveer medidas de adaptación que podrían satisfacer la demanda futura de agua para abastecimiento urbano y la demanda futura de agua para irrigación, considerando efectos del cambio climático

    Case Study- Argentina: The Rio Grande Basin

  • ▪ Demanda no-satisfecha, usando la proyección climática del CIMA

    0

    50

    100

    150

    200

    250

    Reference CIMA Ensemble Reference CIMA Ensemble

    Tota

    l Unm

    et W

    ater

    Dem

    and,

    Mm

    3/ye

    ar

    2011-2020 2051-2060

    Option 0 - Current Efficiency

    Option 1 -Improved Urban Water Efficiency

    Option 2 -Improved Irrigation Efficiency

    Option 3 -Improved Urban and Irrigation Efficiency

    0

    50

    100

    150

    200

    250

    Reference CIMA Ensemble Reference CIMA Ensemble

    Tota

    l Un

    me

    t W

    ate

    r D

    em

    an

    d, M

    m3

    /ye

    ar

    2011-2020 2051-2060

    Option 0 - Current Efficiency

    Option 1 -Improved Urban Water Efficiency

    Option 2 -Improved Irrigation Efficiency

    Option 3 -Improved Urban and Irrigation Efficiency

    Reducción en la demanda

    no-satisfecha para el 2060:

    Opción 1 11%

    Opción 2 79%

    Opción 3 85%

    Case Study- Argentina: The Rio Grande Basin (Results)

    ADAPTATION OPTIONS UNDER DIFFERENT CLIMATE PROJECTIOS

  • ▪ Análisis del Plan Maestro de

    Agua Potable: impactos

    climáticos en la oferta hidrica

    ▪ Se creó la base de datos

    AHD de alta resolución para

    delinear todas las cuencas

    que abastecen a Quito.

    ▪ Área promedio de sub-

    cuencas se redujo de 90 km2

    a 5-10 km2.

    Case Study- Ecuador (High Spatial Resolution-Hydro-BID)

  • Case Study – Peru, Phase I

    Punte Sanchez

    Tombo Grande

    ▪ Study Area: Piura Basin

    ▪ Objective: Assess potential impact of

    climate change on water availability in Piura

    Basin (Water Management Plans)

    ▪ Tasks:

    – Build Hydro-BID model for Piura Basin

    – Incorporate climate change projections

    – Simulate water flow time series

    ▪ Results:

    – Flows increase substantially during the middle

    of the wet season under the “high emission”

    scenario (CSIRO-A2). Total annual flow also

    increases.

    – Flows decrease modestly at the beginning and

    end of the wet season under the “low emission”

    scenario (CSIRO-B1). Total annual flow is close

    to current levels.

  • Peru National- Capacity Building

  • Demandas y distribución de aguaHydroBID: aplicaciones principales

  • Inundaciones por rompimiento de presasHydroBID-FLOOD: aplicaciones principales

  • Inundaciones por elevación del nivel del mar

    HydroBID-FLOOD: aplicaciones principales

  • GUYANA

    Río KamaragPt= 40 MW

  • SURINAM

  • National Aggregated Downscaled Sub-regional Dynamics/Investments

    Energy

    Water

    Land

    Water - Supply

    Water - Demands

    To be developed..Infrastructure, investments

    Land Use

  • Sub-Basin Systems Analysis

    HydroBID Sub-Basins

    HydroBID catchments Sub-region Focus

    Region

  • Capacity Building

    Hydro-BID trainee received certificate of completion of the Hydro-BID Workshop on December 14, 2016. Lima, Peru.

  • Thank you!

    WWW.HYDROBIDLAC.ORG