15
Interdisciplinary Curriculum Design for College Algebra SUSAN STAATS ASSOCIATE PROFESSOR-MATH UNIVERSITY OF MINNESOTA [email protected]

Interdisciplinary Curriculum Design for College Algebra

  • Upload
    sutton

  • View
    37

  • Download
    0

Embed Size (px)

DESCRIPTION

Interdisciplinary Curriculum Design for College Algebra. Susan Staats Associate Professor-Math University of Minnesota [email protected]. Interdisciplinary math is…. Different from “math in context.” Different from an application. - PowerPoint PPT Presentation

Citation preview

Page 1: Interdisciplinary Curriculum Design for College Algebra

Interdisciplinary Curriculum Design for College AlgebraSUSAN STAATSASSOCIATE PROFESSOR-MATHUNIVERSITY OF [email protected]

Page 2: Interdisciplinary Curriculum Design for College Algebra

Interdisciplinary math is… Different from “math in context.” Different from an application. Must support learning that is significant in a partner

discipline. Requires assessment of learning in partner

discipline. Can’t be evaluated from a math standpoint alone.

Page 3: Interdisciplinary Curriculum Design for College Algebra

Today in my ____________ class, we discussed _______________.

— First year university student, describing a non-math subject

Page 4: Interdisciplinary Curriculum Design for College Algebra

Why interdisciplinary college algebra?

Relatively few college algebra students plan a STEM career.

High rates of DFW grades slow progress in major.

Poor alignment with students’ needs and interests.Herriott & Dunbar, 2009Small, 2002; 2006

Page 5: Interdisciplinary Curriculum Design for College Algebra

Conversation 1:Does Math Really Relate to Everything?Review your “student statements” and

challenge each other to find a math connection.

Which connections are substantial and support liberal education goals?

Page 6: Interdisciplinary Curriculum Design for College Algebra

Challenges in creating interdisciplinary algebra curriculum Feeling like a non-expert.

Math curriculum may be defined more rigidly than other fields (Grossman & Stodolsky, 1995, Staats, 2007).

Mathematics faculties often have limited professional interactions with faculty in other disciplines (Ewing, 1999).

Philosophical basis of mathematics contrast to the integrative goals of interdisciplinary education (McGivney-Burelle, McGivney & Wilburne, 2008; Siskin, 2000).

Difficulty of creating materials. Cost and effort of team-teaching.

Page 7: Interdisciplinary Curriculum Design for College Algebra

Components of an interdisciplinary algebra curriculum Introduction

Essay—ideally written by a creative writer Learning goals for algebra and for partner discipline Scaffolding questions for algebra and for partner discipline Interdisciplinary questions Bibliography for further reading

Page 8: Interdisciplinary Curriculum Design for College Algebra

Conversation 2: Placing college algebra in the general education curriculumTo what extend can the design model

connect math to general education curriculum?

Should math be more broadly connected to general education curriculum (e.g. non-STEM subjects)?

Page 9: Interdisciplinary Curriculum Design for College Algebra

A module on educational equity Support elementary education majors in

college algebra Data set on Minnesota graduation rates by

race and by income. Allows problem-solving choices in making

predictions. Teaches risk-ratio calculation.

Page 10: Interdisciplinary Curriculum Design for College Algebra

Risk Ratio sample calculationRisk Ratio =

Sample 2: Risk Ratio for Low Income MN students (2011)

LI potential graduates= 22,693. LI graduates = 13,239HI potential graduates= 48,516. HI graduates = 41,492

R.R. = = = = 2.87

Page 11: Interdisciplinary Curriculum Design for College Algebra

Contextualizing Risk Ratio Calculation

Three theories of achievement gap:

1. Oscar Lewis: Culture of Poverty2. Funds of Knowledge Approach3. Lisa Delpit on structural inequality in schools

Interpret results of predictions and risk calculations from the perspectives of these theorists.

Page 12: Interdisciplinary Curriculum Design for College Algebra

Learning Goals Predict future graduation rates for groups of students in

Minnesota using linear equations.

Evaluate equity in graduation rates by using the risk ratio calculations.

Learn several historical theories about the educational achievement gap.

Use these theories to critique or improve the calculations that you do in this model.

Page 13: Interdisciplinary Curriculum Design for College Algebra

Conversation 3: Learning Goals

Can you find evidence of learning goals in the student samples?

Page 14: Interdisciplinary Curriculum Design for College Algebra

Conversation 4: Affordances and Limitations

What could be gained by supplementing college algebra with intentional interdisciplinary curriculum?

What are the most significant limitations?

Page 15: Interdisciplinary Curriculum Design for College Algebra

ReferencesEwing, J. (Ed.) (1999). Towards excellence: Leading a mathematics department in the 21st century. Providence, RI: American Mathematical Society.Grossman, P. and Stodolsky, S. (1995). Content as context: The role of school subjects in secondary school teaching, Educational Researcher 24(8), 5 - 23. Boston, MA: Pearson.Herriott, S. & Dunbar, S. (2009). Who takes college algebra? PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies, 19(1), 74-87.McGivney-Burelle, J., McGivney, K. & Wilburne, J. (2008). Re-solving the tension between interdisciplinarity and assessment: The case of mathematics. In D. Moss, T. Osborn & D. Kaufman (Eds.), Interdisciplinary education in the age of assessment (pp. 71 – 85). New York: Routledge.Siskin, L. (2000) Restructuring knowledge: Mapping (inter) disciplinary change. In S. Wineburg & P. Grossman (Eds.), Interdisciplinary curriculum: Challenges to implementation (pp. 171 – 190). New York: Teachers College, Columbia University.Small, D. (2002). An urgent call to improve traditional college algebra programs. Retrieved from http://toyama45.maa.org/t_and_l/urgent_call.html. Check if this is the cite I want here.Small, Donald B. (2006). College algebra: A course in crisis. In N. Baxter, N. Hastings, F. Gordon, S. Gordon & J. Narayan (Eds.), A fresh start for collegiate mathematics: Rethinking the courses below calculus (pp. 83-89). Washington, D.C.: Mathematical Association of America.Staats, S. (2007). Dynamic contexts and imagined worlds: An interdisciplinary approach to mathematics applications. For the Learning of Mathematics 27(1), 4-9.