38
Intermediate Microeconomics (ii) 6—1 Intermediate Microeconomics (ii) Producer Model 6 The producer model in the short term .......................................................................6—2 6.1 Comparing the consumer and the producer models ....................................6—2 6.3 Creating the producer model..................................................................................6—3 6.3.1 Assumptions in the “short run”.....................................................................6—3 6.3.2 Production technologies ..................................................................................6—3 6.3.3 The Marginal Product of Labor (MPL) .......................................................6—5 6.3.4 The law of diminishing marginal product ................................................6—7 6.4 Profits................................................................................................................................6—8 6.4.1 Profit maximization............................................................................................6—8 6.4.2 Isoprofits .................................................................................................................6—8 6.4.3 Marginal Revenue Product........................................................................... 6—13 6.4.4 Cost curves .......................................................................................................... 6—17 7 The producer model in the long term ...................................................................... 7—27 7.1 Revision......................................................................................................................... 7—27 7.2 Introduction to this week ...................................................................................... 7—27 7.3 Production ................................................................................................................... 7—28 7.3.1 Terms .................................................................................................................... 7—28 7.3.2 Production technologies (for this week) ............................................... 7—28 7.3.3 Technical Rate of Substitution, Returns to Scale and Marginal Products .............................................................................................................................. 7—29 7.4 Profit maximization for producers in the longterm model................... 7—31 7.4.1 Example: CobbDouglas................................................................................. 7—31 7.4.2 Step 1: deriving the costs curve (i) – isoquants .................................. 7—31 7.4.3 Step 2: deriving the cost curve (ii) isocosts ...................................... 7—32 7.4.4 Step 3: cost minimization ............................................................................. 7—32 7.4.5 Step 4: cost curves ........................................................................................... 7—35 7.4.6 Step 5: marginal and average cost curves ............................................. 7—36 7.4.7 Profit maximizing ............................................................................................. 7—37 7.5 Labor and Capital Demand Curves .................................................................... 7—38

Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Embed Size (px)

Citation preview

Page 1: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—1  

Intermediate  Microeconomics  (ii)  Producer  Model      6   The  producer  model  in  the  short  term  .......................................................................  6—2  6.1   Comparing  the  consumer  and  the  producer  models  ....................................  6—2  6.3   Creating  the  producer  model  ..................................................................................  6—3  6.3.1   Assumptions  in  the  “short  run”  .....................................................................  6—3  6.3.2   Production  technologies  ..................................................................................  6—3  6.3.3   The  Marginal  Product  of  Labor  (MPL)  .......................................................  6—5  6.3.4   The  law  of  diminishing  marginal  product  ................................................  6—7  

6.4   Profits  ................................................................................................................................  6—8  6.4.1   Profit  maximization  ............................................................................................  6—8  6.4.2   Isoprofits  .................................................................................................................  6—8  6.4.3   Marginal  Revenue  Product  ...........................................................................  6—13  6.4.4   Cost  curves  ..........................................................................................................  6—17  

7   The  producer  model  in  the  long  term  ......................................................................  7—27  7.1   Revision  .........................................................................................................................  7—27  7.2   Introduction  to  this  week  ......................................................................................  7—27  7.3   Production  ...................................................................................................................  7—28  7.3.1   Terms  ....................................................................................................................  7—28  7.3.2   Production  technologies  (for  this  week)  ...............................................  7—28  7.3.3   Technical  Rate  of  Substitution,  Returns  to  Scale  and  Marginal  Products  ..............................................................................................................................  7—29  

7.4   Profit  maximization  for  producers  in  the  long-­‐term  model  ...................  7—31  7.4.1   Example:  Cobb-­‐Douglas  .................................................................................  7—31  7.4.2   Step  1:  deriving  the  costs  curve  (i)  –  isoquants  ..................................  7—31  7.4.3   Step  2:  deriving  the  cost  curve  (ii)    -­‐  isocosts  ......................................  7—32  7.4.4   Step  3:  cost  minimization  .............................................................................  7—32  7.4.5   Step  4:  cost  curves  ...........................................................................................  7—35  7.4.6   Step  5:  marginal  and  average  cost  curves  .............................................  7—36  7.4.7   Profit  maximizing  .............................................................................................  7—37  

7.5   Labor  and  Capital  Demand  Curves  ....................................................................  7—38      

Page 2: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—2  

6 The  producer  model  in  the  short  term  In  the  first  half  of  the  semester,  we  built  models  to  ascertain  consumer  preferences  based  on  economic  circumstances,  and  we  modeled  how  choice  and  utility  change  with  changing  circumstances.    Then,  we  extracted  from  these  the  demand  function  for  goods,  and  the  supply  functions  for  labor  and  capital.    This  second  chapter  will  be  about  the  converse:  modeling  production  preferences  and  creating  a  supply  function  for  goods,  and  demand  functions  for  labor  and  capital.    Finally,  we  will  equilibrate  these  to  find  optimal  market  production  and  consumption  within  the  model.     Note,  since  this  is  microeconomics,  we  assume  that  each  firm,  and  each  consumer,  is  small  enough  that  they  themselves  are  price  takers:  they  are  not  large  enough  players  to  influence  the  price  of  goods.     This  week,  we  will  build  the  producer  model  in  the  short  term.    The  short-­‐term  constraint  allows  us  to  build  a  simplified  model  where  capital  (“k”)  is  fixed:  only  the  labor  input  varies.  

6.1 Comparing the consumer and the producer models   Consumer   Producer  To  be  maximized:   Utility  (happiness)  

u(x, l,k)  Profit  π (x) = px −wl − rk  

Choice:   Consumption  Bundle  x, l,k{ }  

Production  plan  x, l,k{ }  

Constraint:   Budget  p,w, r, l,L,e1,e2{ }  

Production  technology  x = f (l,k)  

Obtain:   Demand  for  Goods  xD (p, l)  

Goods  supply  curve  xS (p, l)  

Supply  of  Labor  l s (w,L)  

Demand  for  Labor  lD (w,L)  

Supply  of  Capital  KS (r,e1,e2 )  

Demand  for  Capital  KD (r,e1,e2 )  

Page 3: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—3  

6.3 Creating the producer model

6.3.1 Assumptions  in  the  “short  run”  A  usual  production  model  involves  labor  and  at  least  one  other  input.    In  this  simplified  short  run  model,  however,  we  assume  that  all  non-­‐labor  inputs  are  fixed.    Thus,   x = f (l,k)becomes   x = f (l,K )  which  is  equivalent  to   x = f (l) .    Later,  this  restriction  will  be  relaxed.  

6.3.2 Production  technologies  Terminology:  

• A  production  plan  is  the  “choice”  of  production:  a  bundle  of  inputs  and  outputs   (x, l)  

• The  output  is  a  function  of  the  input   x = f (l)  • The  production  choice  set  is  the  set  of  all  feasible  production  plans  given  

a  production  technology  • The  production  frontier  is  the  boundary  of  the  production  choice  set:  

inputs  are  not  wasted  Example  production  technologies  (note,  any  function  can  be  used):  

• A  straight  line  production  technology  o x = f (l) = 4l  

     

5 10 15 20 25 30 35 40

0

50

100

150

200

250

Labour

Prod

ucti

on o

f x

x=4l

Page 4: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—4  

• A  cosine  variable  production  technology  

o x =200 1− cos π

100l

"

#$

%

&'

"

#$

%

&' | l ≤100

400 | l >100

)

*+

,+

-

.+

/+  

 • An  exponential  production  technology  

o x = 40l0.5  

         

0 20 40 60 80 100 120

450

0

50

100

150

200

250

300

350

400

Labour

Prod

ucti

on o

f x

variable cosine

0 20 40 60 80 100

0

50

100

150

200

250

300

350

400

450

Labour

Prod

ucti

on o

f x

x=40l^.5

Page 5: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—5  

6.3.3 The  Marginal  Product  of  Labor  (MPL)  The  Marginal  Product  of  Labor  MPL  is  the  increase  in  productivity  caused  by  a  one-­‐unit  increase  in  labor.    Graphically,  it  is  the  slope  of  the  production  frontier.    Mathematically,  it  is  the  derivative  of  the  function  of  labor  with  respect  to  labor  (the  derivative  of  the  production  function  with  respect  to  labor):  

  MPL =δ f (l)δl

 

6.3.3.1 MPL  of  a  linear  production  technology  Where  the  production  technology  is   x = 4l :  

 f (l) = x = 4l

MPL =δ f (l)l

=δxδl

= 4    

Graphically,  it  is  the  slope.    Here,  the  slope  does  not  change  with  output:  it  is  thus  constant:  

     

Labour

Prod

ucti

on o

f x

x=4l

Production Frontier MPL=slope of Production frontier

MPL=dx/dl=4

Page 6: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—6  

6.3.3.2 MPL  of  a  cosin  variable  production  function  

Where  the  production  function  is   x =200 1− cos π

100l

"

#$

%

&'

"

#$

%

&' | l ≤100

400 | l >100

)

*+

,+

-

.+

/+  

 

x =200 1− cos π

100l

"

#$

%

&'

"

#$

%

&' | l ≤100

400 | l >100

)

*+

,+

-

.+

/+

MPL =δ f (l)δl

=δxδl

=200 1

100sin π100

l"

#$

%

&' | l ≤100

0 | l ≥100

)

*+

,+

-

.+

/+

 

Graphically:  the  slope  increases  until  the  inflexion  point  at   l = 50 ,  where  it  decreases  until   l =100 ,  where  the  production  frontier  is  flat,  thus,  the  slope  is  0.    

     

Labour

Prod

ucti

on o

f x

variable cosine

MPL=dx/dl

Page 7: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—7  

6.3.3.3 MPL  of  an  exponential  production  function  Where  the  production  function  is   x = 40l0.5 :  

 

x = 40l0.5

MPL = δ f (l)δl

=δxδl

= 40•0.5l−(0.5) = 20l−(0.5) = 20l

 

Graphically,  the  slope  is  positive,  and  decreasing:  

 

6.3.4 The  law  of  diminishing  marginal  product  Realistically,  as  the  amount  of  labor  hours  increases,  the  benefit  to  production  eventually  begins  decreasing.    This  is  captured  by  the  variable  cosine  function  and  the  exponent  function.    Further,  the  variable  cosine  function  is  the  most  realistic  because  productivity  increases  until  a  point  of  maximum  efficiency  (the  inflexion  point)  and  then  decreases  to  zero.      

Labour

Prod

ucti

on o

f x x=40l^.5

MPL=20l^-0.5

Page 8: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—8  

6.4 Profits Profits  are  the  revenue  from  production  (amount  produced  multiplied  by  the  price  of  the  good)  with  the  economic  costs  (cost  of  inputs)  subtracted.    Mathematically,  in  the  short-­‐term  model,  it  is  expressed  as  follows:     π = px −wl  Or  profits  are  equal  to  revenue  (price  multiplied  by  quantity  produced)  minus  cost  of  labor  (wage  multiplied  by  labor  hours).    Note,  in  the  short-­‐term  model,  wage  is  the  only  cost  considered.  

6.4.1 Profit  maximization  Whereas  under  the  consumer  model  we  attempted  to  maximize  the  consumer’s  utility  subject  to  their  budget.    Here,  we  attempt  to  maximize  profit  π = px −wlsubject  to  the  production  technology: x = f (l) .    Mathematically,  this  profit  maximization  problem  is  expressed  as  follows:  

 maxx,l

π = px −wl

subject.to | x = f (l)  

There  are  many  ways  to  solve  this  problem,  but  we  will  focus  on  the  following  three  methods:  isoprofits,  marginal  revenue  product  and  cost  curves.  

6.4.2 Isoprofits  Isoprofits  act  like  utility  functions  in  the  consumer  model:  they  represent  combinations  of  labor  and  output  where  the  resulting  profit  is  the  same.    Further,  like  utility  functions,  they  create  an  isoprofit  map,  and  the  further  the  isoprofit  line  that  you  are  on,  the  more  profit  for  the  producer.       P(π, p,w) = x, l( )∈ R+

2 |π = px −wl#$ %&     Or,  the  isoprofits  map  is  dependent  on  profits,  price  and  wages,  and  is  the     map  of  all  real  combinations  of  x  and  l  so  that  the  profits  remain     unchanged.    After  we  plot  the  isoprofit  map,  we  attempt  to  go  on  the  “furthest”  isoprofit  line  by  seeing  where  it  is  tangential  to  the  production  frontier  (dependent  on  the  production  technology).      

Page 9: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—9  

6.4.2.1 Example  part  1  –  the  isoprofit  map:  π = px −wl;π = (5)x − (10)l  Here,  let  us  construct  an  example  isoprofit,  where  π = 500 .    Note,  to  work  out  the  “x”,  rearrange  the  equation  so  that  “x”  is  the  subject:    

 π = 5x −10l

x = π5+105l  

   l   x   π = 5x −10l  0   100   500  25   150   500  50   200   500  75   250   500  100   300   500    Note:  here,  the  slope  of  the  isoprofit  line  is  w p =10 5= 2 .    Thus,  we  can  graph  it  as  follows:    

 Note:  this  is  just  one  isoprofit  line.    Like  indifference  curves,  they  come  in  a  map,  represented  by  the  same  graph  but  with  profit  changing  between  them  (like  we  changed  utility  levels  in  the  consumer  model).    Thus,  a  isoprofit  map  with  this  profit  function  would  be  as  follows  (again,  noting  that  each  possible  profit  level  has  an  associated  isoprofit  line):  

     

labor

outp

ut (

x)

isoprofit: x=pi/p+(w/p)(l)

labor

outp

ut (

x)

isoprofit: x=pi/p+(w/p)(l)

Page 10: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—10  

6.4.2.2 Example  part  2(a)  –  maximizing  profit  with  a  linear  production  technology  and  an  isoprofit  map  

We  maximize  profits  by  seeing  where  the  production  frontier  is  tangential  to  the  isoprofit  line.        Given  a  linear  production  technology:   x = 4l ;  and  the  above  profit  function:  π = px −wl |π = 5x −10l  we  solve  the  profit  maximization  problem  as  below.    Since  the  isoprofit  and  production  frontier  are  linear,  we  compare  the  slope  of  the  production  frontier  (MPL )  and  the  slope  of  the  isoprofit  line  (w p ).    Since  MPL > w p | (4 > 2) ,  there  is  no  point  of  tangency  and  the  producer  should  continue  adding  units  of  labor  (each  added  unit  puts  the  producer  on  a  higher  isoprofit  line).        This  is  only  the  case  (labor  increase  always  leading  to  increasing  profit)  in  a  simplified  linear  production  technology,  since  it  does  not  capture  the  concept  of  diminishing  marginal  returns.    Graphically,  this  can  be  shown  as  follows:  

 Since  increases  in  labor  do  not  stop  shifting  the  producer  onto  higher  isoprofit  lines,  the  producer  should  add  an  infinite  amount  of  labor  to  maximize  profit.      

labor

outp

ut (

x)

isoprofits

Prod

uctio

n fro

ntier

Page 11: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—11  

6.4.2.3 Example  part  2(b)  –  maximizing  profit  with  a  cosine  variable  production  technology  and  an  isoprofit  map  

We  maximize  profits  by  seeing  where  the  production  frontier  is  tangential  to  the  isoprofit  line.        

Given  a  cosine  variable  production  technology:   x =200 1− cos π

100l

"

#$

%

&'

"

#$

%

&' | l ≤100

400 | l >100

)

*+

,+

-

.+

/+;  

and  the  above  profit  function:  π = px −wl |π = 5x −10l  we  solve  the  profit  maximization  problem  as  below.    First,  let  us  do  this  graphically,  for  the  sake  of  simplicity.    The  tangent  point  is  the  point  of  optimal  labor  use  for  maximizing  profit.    

 Mathematically,  profit  is  maximized  where  MPL = w p .    Since  we  see  that  the  point  of  intersection  is  before  the  point  “l>100”  (the  production  frontier  is  still  curved  at  the  point  of  intersection),  we  find  the  formula  for  the  MPL in  the  first  section  and  equate  this  with  w / p .  

x =200 1− cos π

100l

"

#$

%

&'

"

#$

%

&' | l ≤100

400 | l >100

)

*+

,+

-

.+

/+

MPL =δ f (l)δl

=δxδl

MPL = 200π100

sin π100

l"

#$

%

&'

MPL = 2π sinπ100

l"

#$

%

&'

    w / p =10 / 5= 2  

 I  can’t  solve  that,  but  it  is  at  approximately  (90,390).      

labor

outp

ut (

x)

Profit maximisation

Page 12: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—12  

6.4.2.4 Example  part  2(c)  –  maximizing  profit  with  an  exponent  production  technology  and  an  isoprofit  map  

We  maximize  profits  by  seeing  where  the  production  frontier  is  tangential  to  the  isoprofit  line.        Given  a  cosine  variable  production  technology:   x = 40l0.5 ;  and  the  above  profit  function:  π = px −wl |π = 5x −10l  we  solve  the  profit  maximization  problem  as  below.    Mathematically,  to  find  the  tangent  point  between  the  production  frontier  and  the  isoprofit  line,  we  equate  MPL = w / p .  

 

x = 40l0.5

MPL =δ f (l)δl

=δxδl

MPL = 20l−(0.5)

       

wp=10 / 5

wp= 2

 

       

MPL =wp

20l−12 = 2

l−12 =

220

l−12

"

#$

%

&'

−21=110"

#$

%

&'−21

l = 101

"

#$

%

&'2

=102 =100

 

Now,  we  substitute  the  “l”  we  found  back  into  the  production  technology  to  find  the  output  at  that  level  of  labor  input:    

 x = 40l0.5

x = 40(100)0.5

x = 400      

Thus,  profit  maximization  occurs  at  l=100,  x=400.    Graphically,  we  find  the  point  of  tangency.      

 labor

outp

ut (

x)

profit max

Page 13: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—13  

6.4.3 Marginal  Revenue  Product  The  marginal  revenue  product  (MRP),  as  the  name  implies,  denotes  the  increase  in  revenue  for  each  additional  unit  of  labor,  i.e.  MRP = p•MPL .    We  solve  the  profit  maximization  problem  here  by  seeing  which  is  the  last  unit  of  labor  where  the  marginal  revenue  product  is  greater  than  the  marginal  cost,  in  this  model,  purely  the  wage;  mathematically,  we  keep  adding  labor  where  MRP > w .        Mathematically,  we  can  find  the  point  where  this  stops  being  the  case  by  equating  the  MRP  with  wage:  

 

MRP = wMRP = p•MPL

!

"#

$

%&

MPL • p = w

MPL =wp

 

 Graphically,  we  plot  the  MRP  and  the  wage  rate  on  a  (labor,$)  plane.        

Page 14: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—14  

6.4.3.1 Example  1  –  profit  maximization  using  MRP  where  there  is  a  linear  production  technology  

We  maximize  profits  by  seeing  where  the  MRP  is  greater  than  wages.        

Given  a  linear  production  technology:   x = 4l ;  and  π = px −wl |π = 5x −10l∴w =10

 we  

solve  the  profit  maximization  problem  as  below.    Mathematically:    Find  MPL             Find  the  MRP  

x = 4l

MPL =δ f (l)δl

=δxδl

MPL = 4

         

MPL = 4p = 5!

"#

$

%&

MRP =MPL • p = 4•5MRP = 20

 

              Equate  with  wage  

        MRP = w20 ≠10

 

 Since  MRP  is  greater  than  wage,  the  producer  can  keep  increasing  labor  whilst  at  the  same  time  increasing  profits.    Graphically:    

 Here,  the  MRP  is  always  greater  that  wage,  thus,  profit  is  always  increasing  (and  is  represented  by  the  green  shaded  area.      

labor

$

MRP

Wage

Profit = MRP-w

Page 15: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—15  

6.4.3.2 Example  2  –  profit  maximization  using  MRP  where  there  is  cosine  variable    We  maximize  profits  by  seeing  where  the  MRP  is  greater  than  wages.        

Given  a  cosine  variable  production  technology:   x =200 1− cos π

100l

"

#$

%

&'

"

#$

%

&' | l ≤100

400 | l >100

)

*+

,+

-

.+

/+;  

and  π = px −wl |π = 5x −10l∴w =10

 we  solve  the  profit  maximization  problem  as  below.  

 Mathematically,  this  sucks;  so  let’s  do  this  graphically:  

 As  shown  in  the  graph,  the  first  few  units  of  labor  do  not  produce  enough  product  to  justify  the  wage  of  the  laborers.    However,  after  a  point,  and  until  “Profit  max.”  the  MRP  is  greater  than  wages  and  the  hiring  of  extra  laborers  is  justified.    After  “Profit  max.”  the  laborers  cost  more  than  they  make  for  the  firm.      

labor

$

Wage

Profit = MRP-w

Profit max.

MRP=MPL*P

Page 16: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—16  

6.4.3.3 Example  2  –  profit  maximization  using  MRP  where  there  is  cosine  variable    We  maximize  profits  by  seeing  where  the  MRP  is  greater  than  wages.        Given  a  cosine  variable  production  technology:   x = 40l0.5 ;  and  π = px −wl |π = 5x −10l∴w =10

 we  solve  the  profit  maximization  problem  as  below.  

 Mathematically,  we  solve  this  as  follows:     Step  1:  find  MRP         Step  2:  Profit  maxed  at  MRP=w:  

   

MPL =δ f (l)δl

=δxδl

x = 40l0.5

!

"

###

$

%

&&&

MPL = 20l−(0.5)

MRP =MPL • pπ = px −wl |π = 5x −10l∴ p = 5

!

"

###

$

%

&&&

MRP = 20l−(0.5) •(5)=100l−(0.5)

   

MRP = w

100l−12 =10

l−12

"

#$

%

&'

−21=110"

#$

%

&'−21

l = 110"

#$

%

&'−2

=102 =100

 

                    Step  3:  find  optimal  “x”  

         x = 40l0.5

l =100

!

"#

$

%&

x = 40(100)0.5 = 400

 

      Therefore  optimal  consumption  is  at   x = 400 | l =100    Graphically:    

 Since  MRP>W  (until  labor=100),  it  is  profitable  for  a  producer  to  continue  to  hire  labor  until  that  point  (profit  increases  with  each  unit  of  labor,  at  a  decreasing  rate,  until  l=100)  

Labour

$

MRP=100l^-0.5

10

100

Page 17: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—17  

6.4.4 Cost  curves  Using  cost  curves,  we  maximize  profits  using  two  steps:  first,  we  find  the  combination  of  inputs  that  produce  any  quantity  of  output  at  the  lowest  possible  price  (note,  this  is  simple  in  the  single-­‐input,  i.e.  short  term,  model);  second,  we  find  the  amount  of  output  that  maximizes  profit  (here,  the  difference  between  the  cost  curve  we  derived  in  the  first  step  and  the  moneys  earned  from  selling  the  output).  

6.4.4.1 Step  1:  deriving  cost  curves  (total  cost  curve)  First,  we  find  the  lowest  amount  of  labor  for  each  level  of  output:     l(x) = f −1(x)  (Note:   f −1 is  the  inverse  function  of   f (x) )  In  the  short-­‐term  model,  this  is  just  given  by  the  production  frontier  (since  labor  is  the  only  input,  any  less  labor  means  we  wouldn’t  be  able  to  produce  a  sufficient  amount  of  output,  any  more  and  labor  would  be  wasted)    Second,  we  derive  the  cost  curve,  a  formula  tying  minimum  cost  of  input  with  requisite  amount  of  output.     C(x,w) = w• l(x)  

6.4.4.1.1 Example  1:  deriving  cost  curves  (total  cost)  for  a  linear  production  technology  

Cost  curves  describe  the  relationship  between  output  and  the  cost  of  inputs.    Given  a  linear  production  technology:   x = 4l ;  and  π = px −wl |π = 5x −10l  we  find  the  associated  cost  curves  as  below.    

 

x(l) = 4l[ ]∴l(x) = l4

C(x,w) = w• l(x)[ ] = 10( )• 14l

C(x,w) = 2.5l

 

 Here,  we  took  the  inverse  of   f (l) = x(l) to  find   f −1(l) = l(x) :  we  had  the  function  of  x  with  respect  to  l,  now  we  have  the  function  of  l  with  respect  to  x.  

       

5 10 15 20 25 30 35 40

0

20

40

60

80

100

120

140

160

output (x)

l=x/4

C(x,w)=w*l(x)=2.5x

$

Page 18: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—18  

6.4.4.1.2 Example  2:  deriving  cost  (Total  cost)  curves  for  a  cosine  variable  production  function  

Cost  curves  describe  the  relationship  between  output  and  the  cost  of  inputs.    

Given  a  linear  production  technology:   x =200 1− cos π

100l

"

#$

%

&'

"

#$

%

&' | l ≤100

400 | l >100

)

*+

,+

-

.+

/+;  and  

π = px −wl |π = 5x −10l  we  find  the  associated  cost  curves  as  below.  

 

x(l) = 200 1− cos π100

l"

#$

%

&'

"

#$

%

&'

l(x) = x−1(l)

(

)

***

+

,

---

x = 200 1− cos π100

l"

#$

%

&'

"

#$

%

&'

x200

=1− cos π100

l"

#$

%

&'

1− x200

= cos π100

l"

#$

%

&'

cos−1 200− x200

"

#$

%

&'=

π100

l

l =100cos−1 200− x

200"

#$

%

&'

π

l(x) = ±100cos−1 200− x

200"

#$

%

&'

πC(x,w) = p• l(x)π = px −wl |π = 5x −10l(

)*

+

,-

∴C(x,w) = ±500cos−1 200− x

200π

 

   This  is  complicated  mathematically,  but  we  remember  that  we  can  find  the  inverse  of  a  function  by  flipping  it  around  the  line  y=x,  so  graphically,  it  is  much  less  complex.    

     

l(x)

y=x

x(l)

C(x,w)

Page 19: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—19  

6.4.4.1.3 Example  3:  deriving  cost  curves  (total  cost)  for  an  exponent  production  function  

Cost  curves  describe  the  relationship  between  output  and  the  cost  of  inputs.    Given  a  linear  production  technology:   x = 40l0.5 ;  and  π = px −wl |π = 5x −10l  we  find  the  associated  cost  curves  as  below.    

 

l−1(x) = x(l)

l(x) = 40l12

"

#

$$

%

&

''

x = 40l12

x40(

)*

+

,-2

= l12

(

)*

+

,-

2

l = x2

402=

x2

1600

 

 

 

C(x,w) = p• x(l)

= 5( )• x2

1600!

"#

$

%&

=x2

320

 

 Graphically:  

     

x(l)

x=y

C(x,w)

l(x)

Page 20: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—20  

 

6.4.4.2 Step  2:  deriving  cost  curves  (marginal  and  average  costs)  The  marginal  and  average  cost  curves  are  required  to  solve  the  profit  maximization  problem,  and  are  derived  from  the  total  cost  curve  as  derived  above.    The  marginal  cost  curve  represents  the  additional  cost  for  each  unit  increase  in  output  (i.e.  the  change  in  total  cost  for  a  given  change  in  output).    The  average  cost  is  merely  the  total  cost  divided  by  the  amount  of  output.    Step  1:  find  total  cost  curve    

  x(l) = l−1(x)C(x,w) = x(l)•w

 

 Step  2:  find  the  marginal  cost  curve  

  MC(x,w) = δC(x,w)δx

 

 Step  3:  find  the  average  cost  curve  

  AC(x,w) = C(x,w)x

 

 The  marginal  cost  curve  will  always  intercept  the  average  cost  curve  at  its  minimum.      Profits  are  made  past  this  point  of  intersection,  and  this  defines  the  product  supply  function.        

Page 21: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—21  

6.4.4.2.1 Example  1:  deriving  cost  curves  (marginal  and  average  cost)  for  a  linear  production  technology  

 Mathematically,  given  a  production  technology  of   x = 4l  and  a  profit  function  of  π = px −wl |π = 5x −10l :    Step  1:  find  the  total  cost  function  

 

x(l) = l−1(x) = x4

C(x,w) = w• x(l)

= 10( ) x4"

#$%

&'

= 2.5x

 

Step  2:  find  the  marginal  cost  function  

 MC x,w( ) = δC(x,w)

δxC x,w( ) = 2.5x

!

"

###

$

%

&&&

MC x,w( ) = 2.5

 

Step  3:  find  the  average  cost  function  

 

AC x,w( ) =C x,w( )

xC x,w( ) = 2.5x

!

"

###

$

%

&&&

AC x,w( ) = 2.5xx

= 2.5

 

 Graphing  this:  

     

output (x)

Tota

l Cos

t=C(

x,w)=

2.5x

$

AC/MC=2.5

$

Page 22: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—22  

6.4.4.2.2 Example  2:  deriving  cost  curves  (marginal  and  average  cost)  for  a  cosine  variable  production  technology  

 Given:  

• Production  technology  of   x =200 1− cos π

100l

"

#$

%

&'

"

#$

%

&' | l ≤100

400 | l >100

)

*+

,+

-

.+

/+    

• Profit  function  of  π = px −wl |π = 5x −10l :    Graphically:    

     

C(x,w)

AC

MC

x

$

Page 23: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—23  

6.4.4.2.3 Example  3:  deriving  cost  curves  (marginal  and  average  cost)  for  an  exponential  production  technology  

 Given:  

• Production  technology  of   x = 40l0.5    • Profit  function  of  π = px −wl |π = 5x −10l :  

 Mathematically  Step  1:  find  the  total  cost  curve    

 

x l( ) = l−1 x( )l x( ) = 40l1/2

x l( ) = l40"

#$

%

&'2

=l2

1600C x,w( ) = w• x(l)

=10• l2

1600=l2

160

TC =C(x,w) = l2

160

 

Step  2:  find  the  marginal  cost  curve  

 

MC =δC x,w( )

δx

C x,w( ) = x2

160=1160

• x2

MC = 2160

• x = x80

 

Step  3:  find  the  average  cost  curve  

 

AC =c x,w( )x

=x2

160•1x

=x160

 

 Graphically  

 

Total Cost = C(x,w)

MC=dTC/dx

AC=TC/x

Page 24: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—24  

6.4.4.3 Step  3:  profit  maximization  using  cost  curves  The  curves  we  derived  above  –  the  total  cost,  marginal  cost  and  average  cost  curves  –  allow  us  to  analyze  the  cost  of  producing  each  unit  of  output.    However,  this  does  not  tell  us  how  much  the  producer  should  produce  given  different  economic  circumstances.    To  work  out  optimum  output,  we  have  to  derive  the  output  supply  curve  “ x p,w( ) ”  –  output  given  cost  of  inputs  and  market  given  prices.    How  much  to  produce,  given  the  cost  curves  derived  above?    Economic  reasoning  suggests  that  we  should  produce  more  and  more  output  until  the  cost  of  producing  an  additional  unit  (MC)  is  equal  to  the  amount  of  revenue  generated  by  the  sale  of  that  unit  of  output:  i.e.  MC=P.    If  we  produce  less,  than  there  are  profit-­‐making  units  that  we  will  miss  out  on.    If  we  produce  more,  we  lose  money  on  the  additional  units  (since  we  pay  more  for  the  inputs  than  we  receive,  i.e.  MC>P).    

6.4.4.3.1 Breakeven  analysis  creating  the  x(p,w)  curve  Where  P=MC=AC,  we  have  the  breakeven  price.    Below  that,  there  is  not  enough  revenue  to  cover  the  average  costs.    Thus,   x p,w( ) ,  giving   x* ,  is  the  MC  curve  above  where  MC=AC.    If  MC  is  always  above  AC,  then   x p,w( ) is  the  whole  of  the  MC  curve.    Formally,  it  can  be  expressed  as  follows:  

  x p,w( ) =MC x,w( ) |MC < AC0 |MC > AC

!"#

$#

%&#

'#    

Why  does  the  slide  say  MC−1 ?  Is  it  because  we  are  inverting  the  function  to  make  “x”  the  subject?      

Page 25: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—25  

6.4.4.3.2 Graphing  the  production  function  

6.4.4.3.2.1 Linear  

 In  the  linear  model,  MC  is  the  same  as  the  AC  curve,  so  the  whole  of  the  MC  curve  gives  the  production  function.    Given  P1,  P>MC  for  all  values  of  “x”,  therefore  there  should  be  unlimited  production,  since  any  increase  in  production  increases  profit.    Given  P2,  P<MC  for  all  “x”,  therefore  there  should  be  no  production,  since  each  unit  of  output  incurs  a  loss.  

6.4.4.3.2.2 Cosine  variable  function  

 To  the  right  of  the  “x(be)”  point,  the  MC  curve  gives  the  production  function.    The  producer  cannot  profit  by  producing  less  than  x(be)  units  of  output,  or  where  there  is  a  price  lower  than  P(be).    At  P2,  the  producer  should  produce  any  output  since  P2<P(be);  i.e.  the  revenue  from  each  unit  of  output  is  less  than  the  costs  for  the  same  unit  of  output.    At  P1,  the  producer  should  produce   x1

* units  of  output.    Any  more,  and  the  cost  of  producing  one  additional  unit  of  output  (MC)  is  greater  than  the  revenue  gained.  

output (x)

$

AC/MC/TC

$

P1

P2

x

$

P(be)

P1

P2

x(be) x*(1)

ACMC

Production function

Page 26: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      6—26  

6.4.4.3.2.3 Exponential  function  

 Here,  the  average  cost  is  always  below  the  marginal  cost,  thus  the  whole  of  the  marginal  cost  curve  is  the  production  function.    At  P1,  we  should  produce  x*1  units  of  output  to  maximize  profit.      

x

$

P(be)

P1

P2

x(be) x*(1)

ACMC

Production function

Page 27: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      7—27  

7 The  producer  model  in  the  long  term    Last  week,  we  solved  the  profit  maximization  problem  for  producers  that  had  a  single  input  (labor)  and  no  (or,  rather,  unconsidered)  fixed  costs.    This  week  we  begin  to  relax  these  assumptions  by  unfixing  capital  ( x = f l,k( )→ x = f l,k( ) )  and  allowing  firms  to  dodge  fixed  costs  by  entering  and  exiting  the  market.    

7.1 Revision We  solved  the  profit  maximization  problem π

max= px −wl  subject  to   x = f l( )  in  

three  ways.      • Using  isoprofits,  we  saw  what  the  furthest  isoprofit  line  that  could  be  

reached  using  the  given  production  technology.      • Using  MRP  (Marginal  Revenue  Product),  we  worked  out  the  increase  in  

revenue  for  each  additional  unit  of  output,  and  equated  it  with  the  price  in  order  to  find  the  last  unit  of  output  that  was  still  profitable.  

• Using  the  cost  curves,  we  derived  the  production  function  (where  the  Marginal  Cost  Curve  is  above  the  Average  Cost  curve),  which,  given  any  price,  gives  an  optimal  output.  

 This  week,  we  will  focus  on  the  cost  curves  method,  so  we  will  revise  it  here.    There  were  two  steps  here:  

1. Find  the  lowest  cost  of  producing  any  volume  of  output  a. In  the   f l,k( )  model  this  was  simple,  we  just  used  the  production  

frontier  2. Find  the  output  supply  curve  –   x(p,w, r)  as  the  MC  curve  where  MC>AC  

a. x p,w, r( ) =MC−1 p,w( ) | p >min AC w, x( )( )0 | p <min AC w, x( )( )

"#$

%$

&'$

($  

7.2 Introduction to this week This  week,  we  move  the  producer  model  to  the  long  run,  and  relax  the  assumption  that  capital  is  fixed:   x = f l,k( )→ x = f l,k( ) .    In  this  model,  capital  represents  all  non-­‐labor  investment,  and  the  associated  cost  is  “r”  –  the  interest  rate  on  the  purchased  capital.    Here,  we,  too,  use  the  cost  curve  method  of  working  out  profit  maximization,  as  we  learned  last  week.    So,  what  happens  to  the  two-­‐step  process?  

1. Find  the  lowest  cost  of  producing  any  volume  of  output  a. This  is  a  bit  more  difficult  here  than  last  week,  since  we  have  to  

find  the  cheapest  was  of  combining  capital  and  labor  for  any  given  amount  of  output  

2. Find  the  output  supply  curve  –  identical  to  last  week  (the  MC  curve  where  MC>AC)  

   

Page 28: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      7—28  

7.3 Production

7.3.1 Terms  • A  production  plan  is  a  combination  of  inputs  (l,  k)  and  outputs  (x):  (x,  k,  l)  • Outputs  are  a  function  of  inputs:   x = f l,k( )  • The  production  choice  set  is  the  set  of  all  feasible  choices  of  inputs  and  

outputs  • The  production  frontier  is  the  limit  of  this  choice  set  –  here  lie  production  

plans  where  inputs  are  fully  utilized  (there  is  no  waste)  

7.3.2 Production  technologies  (for  this  week)  Last  week  we  talked  about  linear,  cosine  variable  and  exponential  production  functions,  but  these  were  only  appropriate  where  there  was  a  single  input.    This  week,  we  shift  to  production  technologies  that  account  for  both  capital  and  labor.    We  use  the  same  production  functions  as  we  did  with  utility  functions  in  the  consumer  model,  since,  as  in  consumers  where  consumption  was  substitutable  in  different  ways,  so  too  are  inputs  in  the  production  model.  

• Cobb-­‐Douglas    o x = f l,k( ) = lαkβ  

• Perfect  complements  o x =min αl,βk{ }  

• Perfect  substitutes  o x =αl +βk  

 Trying  to  plot  the  production  frontier  where  there  are  two  inputs  would  create  a  three-­‐dimensional  graph,  which  is  impractical  for  problem  solving.    Here  is  an  example  of  a  Cobb-­‐Douglas  production  function:  

 Thus,  it  is  beneficial  to  work  out  the  profit  maximization  problem  mathematically.      

Page 29: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      7—29  

7.3.3 Technical  Rate  of  Substitution,  Returns  to  Scale  and  Marginal  Products  

7.3.3.1 Technical  Rate  of  Substitution  This  is  similar  to  the  old  consumer  model  idea  of  the  marginal  rate  of  substitution.         There,  it  represented  the  amount  of   x1you  would  be  willing  to  give  up  to  get  one  additional  unit  of   x2 -­‐  mathematically,  it  represented  the  substitutability  of  goods  such  that  utility  remains  unchanged.     Now,  since  we  have  shifted  to  the  producer  model,  we  look  to  it  in  a  different  way.    How  much  of  one  input  (e.g.  “l”)  must  be  substituted  for  another  (e.g.  “k”)  such  that  output  (“x”)  remains  unchanged.    Mathematically,  it  is  expressed  as  follows:  

  TRS l,k( ) = −δx l,k( ) lδx l,k( ) / k

= −MPLMPK

   à  “l”  and  “k”  not  derivatives?  

  Is  this  the  same  as  − ΔlΔk

???  

 What  does  an  output  mean?  For  example,  a  TRS(l,k)  of  -­‐3  suggests  that  if  you  reduce  capital  by  3  units,  and  add  one  unit  of  labor,  then  output  will  remain  unchanged.  Not  the  other  way  around?     But  this  alone  is  not  enough,  as  illustrated  by  the  following  two  examples:  Example  1:  given  a  production  technology  of   g l,k( ) = l0.5k0.5 :  

 

TRS l,k( ) = −δx l,k( ) lδx l,k( ) / k

g l,k( ) = l0.5k0.5

"

#

$$$

%

&

'''

δx l,k( )l

= 0.5l−0.5k0.5 |δx l,k( )

k= 0.5l0.5k−0.5

TRS l,k( ) = −δx l,k( ) lδx l,k( ) / k

= −0.5l−0.5k0.5

0.5l0.5k−0.5

= −k0.5k0.5

l0.5l0.5= −

k0.5+0.5

l0.5+0.5= −

kl

 

Example  2:  given  a  production  technology  of  h l,k( ) = lk  

 

TRS l,k( ) = −δx l,k( ) lδx l,k( ) / k

h l,k( ) = lk

"

#

$$$

%

&

'''

TRS l,k( ) = − k • l0

l •k0= −

kl

 

 The  two  production  technologies  have  identical  TRS’s,  but  their  scale  is  different.  TRS  does  not  factor  in  scale,  for  that,  we  go  to  “returns  to  scale”.  

Page 30: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      7—30  

7.3.3.2 Returns  to  scale  Let  us  start  with  scaling  all  of  the  inputs  by  a  constant:  “t”.  

• g l,k( ) = l0.5k0.5 → (tl)0.5(tk)0.5  

o = t0.5l0.5t0.5k0.5 = t0.5+0.5l0.5k0.5 = t l0.5( ) k0.5( )= t •g l,k( )

 

• h l,k( ) = lk→ tl • tk  

o = t2 lk( )= t2 •h l,k( )

 

Here,  the  production  functions  are  differentiated  by  scale.    Now,  let  us  create  some  terminology  to  describe  these  different  returns  to  scale:  

• Iff   f tl, tk( ) < t • f l,k( ) ,  we  have  decreasing  returns  to  scale  • Iff   f tl, tk( ) = t • f l,k( ) ,  we  have  constant  returns  to  scale  • Iff   f tl, tk( ) > t • f l,k( ) ,  we  have  increasing  returns  to  scale  

 With  the  consumer  model,  the  “level”  of  utility  did  not  matter:  if  it  was  maximized,  than  that  was  the  optimal  choice  for  the  consumer.    However,  in  the  producer  model,  returns  to  scale  are  crucial!  Where  optimum  production  is  100,  or  1000  can  mean  the  difference  between  being  profitable  or  not  (and  closing  the  business).    

7.3.3.3 Marginal  Product  of  inputs  Since  we  have  different  inputs,  the  MPL  and  MPk  may  be  different,  and  are  not  necessarily  congruent  with  the  returns  to  scale.    Let  us  take  the  above  as  an  example:  

• g l,k( ) = l0.5k0.5  

o

MPL =δ l,k( )l

= 0.5k0.5l−0.5

=k0.5

2l0.5

     

MPk =δ l,k( )k

= 0.5l0.5k−0.5

=l0.5

2k0.5

 

• h l,k( ) = lk→ tl • tk  

o MPL =δ l,k( )l

= k       MPk =

δ l,k( )k

= l  

What  does  this  mean  though?  • g l,k( ) -­‐  as  either  input  increases,  the  marginal  product  decreases,  there  

are  decreasing  marginal  products  • h l,k( )  -­‐  there  are  constant  returns  

 But,  we  can  also  do  it  the  other  way,  by  increasing  one  input  and  seeing  the  effect  on  output:  if   f l, tk( ) > tf l,k( ) ,  we  have  an  increasing  marginal  product  of  Capital.  

Page 31: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      7—31  

7.4 Profit maximization for producers in the long-term model Like  we  mentioned  before,  our  goal  is  to  maximize  the  profits  of  the  producer  subject  to  their  production  technology.    Mathematically,  our  problem  may  be  expressed  as   π

max= px −wl  subject  to   x = f l,k( ) .  

 To  do  this,  there  is  a  two-­‐step  process:    

• First,  find  out  the  cheapest  possible  combination  of  inputs  for  each  level  of  output;    

o C w, r, x( ) = wl w, r, x( )+ rk w, r, x( )  • Second,  find  the  amount  of  output  to  produce  given  a  market  price  by  

equating  price  with  marginal  cost.    

7.4.1 Example:  Cobb-­‐Douglas  

Let’s  learn  this  using  the  example  production  technology f l,k( ) = 20• l25 •k

25  given  

the  market  prices  w=20,  r=10,  p=5.  

  Decreasing  returns  to  scale:      f (tl, tk) = 20• t

25 • l

25 • t

25 •k

25

= t45 20l

25k

25 = t

45 f l, l( ) < tf l, l( )

 

  Decreasing  MPL :       f tl,k( ) = 20t25l25k

25 = t

25 • f l,k( ) < tf l,k( )  

  Decreasing  MPK :       f l, tk( ) = 20t25l25k

25 = t

25 • f l,k( ) < tf l,k( )  

7.4.2 Step  1:  deriving  the  costs  curve  (i)  –  isoquants  An  isoquant  is  a  line  on  a  (l,  k)  plane  that  describes  all  of  the  combinations  of  l  &  k  that  give  the  same  level  of  output.    The  slope  of  this  line  is  the  TRS  (as  described  above),  the  amount  of  one  good  that  would  be  given  up  to  replace  with  another  such  that  output  remains  constant.    They  are  equivalent  to  indifference  curves.      

 

TRS l,k( ) = −δx l,k( ) δlδx l,k( ) /δk

f l,k( ) = 20• l25 •k

25

δx l,k( )l

= 20• 25l−35 •k

25 |δx l,k( )

k= 20• 2

5k−35 • l

25

TRS l,k( ) = −δx l,k( ) lδx l,k( ) / k

= −20 • 2

5• l

−35 •k

25

20 • 25•k

−35 • l

25

= −k25 •k

35

l25 • l

35

= −kl

 

Page 32: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      7—32  

7.4.3 Step  2:  deriving  the  cost  curve  (ii)    -­‐  isocosts    Isocosts  are  lines  that  describe  combinations  of  l  &  k  that  cost  the  same  –  this  is  equivalent  to  a  budget  line.  To  draw  this,  we  rewrite  the  cost  equation  with  k  as  

the  subject:   k = Cr−wrl .    The  slope  is  –w/r.  

7.4.4 Step  3:  cost  minimization    So,  our  goals  here  are  to  find  the  lowest  cost  combination  of  labor  and  capital  to  produce  any  given  value  of  x.    As  we  could  expect,  we  look  for  the  lowest  possible  isocost  curve  that  is  tangent  to  the  requisite  isoquant,  and  we  do  this  by  equating  their  slope  functions.    The  slope  of  the  isoquant  is  the  TRS,  and  the  slope  of  the  isocost  is  the  ratio  of  wages  to  interest  rates,  so  we  have  to  find:  

  TRS(l,k) = wr  

 This  can  be  illustrated  as  follows:  

 Mathematically,  we  express  the  problem  as  follows:     The  cost  minimization  problem  is  expressed  as:       min

l,kCost = wl + rk  

    subject  to       x l,k( ) = x     We  solve  the  problem  by  ensuring  that:  

   

TRS l,k( ) = wr

wherex l,k( ) = x

 

 

Cap

ital

Isoquant

Isocost

cost minimisation point (TRS=w/r)

Labor

Page 33: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      7—33  

But  this  doesn’t  solve  the  whole  problem,  in  order  to  do  so;  we  have  to  follow  the  following  steps:  

1. Set  TRS l,k( ) = wr  and  solve  to  find  “l”  or  “k”  

2. Substitute  this  into  the  production  function    3. Solve  for  the  other  input  4. Substitute  this  into  the  equation  for  the  original  input  

7.4.4.1 Example  

Let’s  take  thee  example  production  technology f l,k( ) = 20• l25 •k

25  given  the  

market  prices  w=20,  r=10,  p=5.    Find  the  tangent  point  of  the  isoquant  and  isocost  curves         Slope  of  isoquant  =  TRS     Slope  of  isocost  =  w/r  

 

f l,k( ) = 20• l25 •k

25

TRS l,k( ) =δ f l,k( ) /δlδ f l,k( ) /δk

=20• 2

5• l

−35 •k

25

20• 25•k

−35 • l

25

=kl

   wr=20( )10( )

= 2    

   

  Equate  the  two  

 

 

wr=kl

k = l •wr

 

     

Page 34: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      7—34  

Substitute  this  into  the  production  function    

 

f l,k( ) = 20• l25 •k

25

k = l •wr

!

"

###

$

%

&&&

x = 20• l25 • l •w

r'

()

*

+,

25

 

   Solve  for  “l”  

 

x = 20• l25 • l w

r!

"#

$

%&

25

x20!

"#

$

%&

52= l • l •w

r

l2 = x20!

"#

$

%&

52•rw

l = x20!

"#

$

%&

54•rw!

"#

$

%&

12  

 Solve  for  “k”  by  plugging  this  into  the  production  function  

 

l = x20!

"#

$

%&

54•rw!

"#

$

%&

12

k = wrl

'

(

))))

*

+

,,,,

k = wr

x20!

"#

$

%&

54•rw!

"#

$

%&

12

!

"

##

$

%

&&=wr•

x20!

"#

$

%&

54•rw!

"#

$

%&

12

k = wr

!

"#

$

%&

12•

x20!

"#

$

%&

54

 

   

Page 35: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      7—35  

7.4.5 Step  4:  cost  curves    If  we  do  this  kind  of  problem  solving  for  each  possible  “x”,  we  can  derive  the  cost  curve,  the  minimum  cost  for  each  possible  value  of  “x”.  

 This  gives  us  the  cost  curve,  but  now  we  want  to  put  it  in  dollar  terms.    

 

C w, r, x( ) = rk +wl

k = wr

!

"#

$

%&

12•

x20!

"#

$

%&

54

l = x20!

"#

$

%&

54•rw!

"#

$

%&

12

C w, r, x( ) = r wr

!

"#

$

%&

12•

x20!

"#

$

%&

54+w x

20!

"#

$

%&

54•rw!

"#

$

%&

12=

x20!

"#

$

%&

54r wr

!

"#

$

%&

12+w r

w!

"#

$

%&

12

!

"

##

$

%

&&

=x20!

"#

$

%&

54

rw( )12 + rw( )

12

!

"#

$

%&

C w, r, x( ) = x20!

"#

$

%&

542 rw( )

12

 

   

Cap

ital

Labor

Cost Curve

Page 36: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      7—36  

7.4.6 Step  5:  marginal  and  average  cost  curves  We  can  now  derive  our  marginal  and  average  cost  curves.  

 C w, r, x( ) = x

20!

"#

$

%&

542 rw( )

12

     

 

MC =δC x, r,w( )

δx

=12054

x20!

"#

$

%&

142 rw( )

12

=x20!

"#

$

%&

14 rw( )

12

8

 

   

 

AC =C x,c,w( )

x

=

x20!

"#

$

%&

542 rw( )

12

x

=1x

x20!

"#

$

%&

542 rw( )

12 =

120

x20!

"#

$

%&−1 x20!

"#

$

%&

542 rw( )

12

=x20!

"#

$

%&

14 rw( )

12

10  

   

Page 37: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      7—37  

7.4.7 Profit  maximizing    The  above  has  shown  us  how  to  minimize  the  costs  of  production,  and  what  the  minimum  costs  of  production  are  for  each  level  of  output.    However,  we  still  haven’t  shown  how  much  a  producer  must  produce  to  maximize  his  profit  at  each  price-­‐point:  creating  the  Output  Supply  Curve:   x p,w, r( ) .    This  is  the  same  as  in  the  short  run  model,  our  output  supply  curve  is  the  Marginal  Cost  Curve  where  MC>AC  (i.e.  above  the  breakeven  point).    

  x p,w, r( ) =MC−1 p,w( ) | p ≥minAC0 | p <minAC

#$%

&%

'(%

)%      

Why  the  inverse  MC?  Is  it  because  we  are  making  x  the  subject?  

7.4.7.1 Example  

Where,  C w, r, x( ) = x20!

"#

$

%&

542 rw( )

12

 We  have  the  following  cost  curves  (as  above):  

 MC = x

20!

"#

$

%&

14 rw( )

12

8

   

AC = x20!

"#

$

%&

14 rw( )

12

10

 

Since  the  equations  are  equal,  but  for  the  denominator  on  the  “rw”  term,  and  the  AC  curve  has  a  higher  denominator,  the  MC  curve  is  necessarily  above  the  AC  curve  for  all  values  of  “x”.    Thus,  the  Output  Supply  Curve  is  equal  to  the  MC  curve.  

 

p =MC w, r, x( )

p = x20!

"#

$

%&

14 rw( )

12

8

p• 8

rw( )12

=x20!

"#

$

%&

14

p4 84

rw( )12•4= 84 p4

rw( )2=x20

x p, r,w( ) = 20•84 • p4

rw( )2

 

 

Page 38: Intermediate Microeconomics (Producer Model) · PDF fileIntermediate*Microeconomics*(ii)* * 6—1* * IntermediateMicroeconomics!(ii)! ProducerModel(* * 6*The*producer*model*in*the*short*term

Intermediate  Microeconomics  (ii)      7—38  

7.5 Labor and Capital Demand Curves We  used  to  derive  the  Capital  and  Labor  Demand  curves  via  a  function  of  wages,  interest  rates  and  level  of  output  (itself  a  function  of  wages,  interest  rates  and  prices).    By  substituting  the  Output  Supply  Curve  into  the  Demand  Functions,  we  can  make  them  a  function  of  Interest  Rates,  Wages  and  Prices,  a  simpler  equation  to  solve.    

 l w, r, x w, r, p( )( )→ l w, r, p( )k w, r, x w, r, p( )( )→ k w, r, p( )