Interplay between theory and experimentin AFM nanomechanical studies of polymers

  • Upload
    liakman

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    1/29

    Interplay between theory and experimentin AFM nanomechanical studies of polymers

    Sergey Belikov and Sergei Magonov

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    2/29

    2006 Veeco Instruments Inc.

    Agenda

    Introduction

    Simulation of Dynamic AFM Modes

    Euler-Bernoulli & Krylov-Bogoljubov-Mitropolsky approachTapping Mode and Frequency Modulation

    High-Resolution Imaging of Molecular Lattices: Experiment & Modeling

    Compositional Mapping of Model Polymer Blends

    Local Mechanical Probing: DvZ (indentation) & AvZ curves

    Tapping Mode Curves: Modeling & Experiment

    Summary

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    3/29

    2006 Veeco Instruments Inc.

    Main AFM Functions: High-Resolution ImagingCompositional MappingQuantitative Probing of Materials Properties

    Outstanding Technical Issues:

    Sensitivity of Optical Detection, Fast Imaging & Mapping, Minimization of Thermal Drift, Efficient Drive of Probe, Imaging under Liquids, Probes

    Key Hurdle:

    Tip-Sample Forces: Understanding, Measurements & Control

    Dynamic AFM & Quantitative Mechanical Data:

    Dream or Reality

    Introduction

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    4/29

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    5/29

    2006 Veeco Instruments Inc.

    Simulation of Dynamic AFM

    Main features of our approach

    1. Euler-Bernoulli with boundary conditions including piezodrive of the cantilever base(rare considered by others)

    2. Solution as a composite3. Van der Pole coordinates (amplitude, phase) transformation & separation of fast and

    slow variables

    4. Application of KBM averaging method

    5. Analysis of KBM-derived differential equations

    6. Classification of dynamic AFM modes (tapping mode, frequency modulation)

    [ ]( )

    [ ]( )

    +++

    +

    =

    ++

    +

    =

    d

    xg ydy y x Z F F

    N g

    d x

    ydy y x Z F F N g

    C r a

    C r a

    102

    1

    02

    1

    2coscos

    1

    21

    1cos

    sincos1

    21

    1sin

    ( )111

    =

    = Qg

    x = A sp

    d = A 0

    phase

    F a force in approach

    F a force in retract

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    6/29

    2006 Veeco Instruments Inc.

    ( ) ( ) ( )( )( )[ ] ( )( )=

    +

    +

    L x pt x Z H x

    t x Z at

    t x Z t

    t x Z ,

    ,,)(2

    ,4

    42

    2

    2

    t A sin0

    Boundary conditions: ( ) t A Z t Z sin,0 00 += ( ) 0,0 =

    t x Z ( ) 0,2

    2

    =

    t L x Z ( ) 0,3

    3

    =

    t L x Z

    L Z

    Z 0

    x

    p

    = 24

    2

    sec

    mS

    EI

    a ( ) [ ] N S Z H m1 [ ] N S pP = m1

    ( ) ( ) ( ) ( ) ( )t xt x zt x zt xU t x Z p ,,,,, +++=

    n

    n

    n

    n

    QQ 214 2

    =

    ( ) t A Z t xU C sin, 0+Oscillation of the base

    Probe Motion in Dynamic AFM

    Solution as a compositeThe tip weight

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    7/29

    2006 Veeco Instruments Inc.

    ( ) ( ) ( ) ( )( ) 21

    112111

    1,,2

    l

    p

    Z t l zt l zt lU H +++=++

    ( ) t A Z t lU C sin, 0+=

    ( ) ( ) ( ) ( ) ( )t ll zt l zt lU t x Z p ,,,, 11 +++=

    ( ) ( ) nt t eat At l z 022101111 coscos, +++=

    ( )( )

    ( )

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    8/29

    2006 Veeco Instruments Inc.

    2

    1

    11111

    21111

    sgn;2

    l

    c

    Z S

    Z F

    +++=++

    ( )d t d t At A +=++= coscossin 1101where

    1

    1

    21

    11 214 QQ

    = 111

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    9/29

    2006 Veeco Instruments Inc.

    Probe Motion in Dynamic AFM

    ( )

    ( )

    =

    ++=

    ++=

    y x

    gd y y x y x x

    y

    ygd y x y x x

    coscos4cossin,cos1

    sincos4sin,cos1

    221

    11

    1

    2211

    1

    ( ) ( )( ) ( )

    ( ) ( )( ) ( ) ( )

    =

    +

    ++=

    ++=

    g x

    gd x x

    x

    gd x x x

    coscos4

    cossin,cos1

    sincos4sin,cos1

    221

    11

    2211

    1

    y= Introducing phase difference(slow variable)

    Two fast variables

    Averaging over fast variable ( ) gives:

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    10/29

    2006 Veeco Instruments Inc.

    [ ]( )

    [ ]( )

    +

    ++++=

    +++=

    ggd ydy y x Z F F m x

    gd x ydy y x Z F F

    m

    x

    cr a

    cr a

    0

    2211

    1

    0

    2211

    21

    1

    cos4coscos1

    2

    sin4sincos1

    2

    KBM Approach

    ( )( )

    1

    sgn,, +=

    m

    Z F c ( ) ( ) ( ) ( )1,;1, +== zF zF zF zF r a

    ( )

    ( )

    +

    ++=

    +=

    ggd ydy y x y x x

    gd ydy y x y x x

    2

    0

    22111

    1

    2

    0

    22111

    1

    cos4cossin,cos2

    sin4sinsin,cos2

    The transition to stationary solutions gives:

    Viscoelasticity willbe added!

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    11/29

    2006 Veeco Instruments Inc.

    [ ]( )

    [ ]( )

    +++

    +

    =

    ++

    +

    =

    d xg

    ydy y x Z F F N g

    d x

    ydy y x Z F F N g

    C r a

    C r a

    102

    1

    02

    1

    2coscos

    1

    21

    1cos

    sincos1

    21

    1sin

    KBM Approach

    md N 21 =

    Stationary solutions:

    ( )111 == Qg

    x = A sp

    d = A 0

    phase Z c height

    Tapping mode (Amplitude modulation) Frequency modulation

    g constant (usually 0) constant (usually /2)Curves: AvZ, vZ

    ( A and are obtained by solving theequations for each Z c)

    Curves: r vZ, AvZ,

    ( r and A are obtained by solvingthe equations for each Z c)

    Images: F a and F r depend on surface location ( XY )

    Two FM modes

    constant excitationconstant amplitude

    ZvXY, vXY ( r = sp)

    ( Z and are obtained by solving theequations for each r )

    Height ZvXY, Phase vXY (A =A sp)

    ( Z and are obtained by solving theequations for fixed Asp)

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    12/29

    2006 Veeco Instruments Inc.

    ( )

    +=

    =

    00 coscos

    2cos

    sin

    ydy y x Z F N

    d x

    [ ]( )

    [ ]( )

    =++

    +=+

    d xg ydy y x Z F F

    N

    d xg

    ydy y x Z F F N

    cr a

    cr a

    0 1

    2

    10

    2coscos1

    21sincos

    1

    ( )( )

    ++=1

    1 2

    1

    11

    du

    u

    uua zF

    ak

    KBM Approach

    J.E. Sader & S.P.Jarvis APL 2004 ,84 , 1801

    u = cos y

    [ ]( )

    [ ]( )

    ++=

    ++=

    0

    0

    coscos1

    cos

    sincos1

    sin

    ydy y x Z F F N

    d

    x ydy y x Z F F

    N

    cr a

    cr a

    F F F r a ==1 =Tapping mode ( )

    2 =Frequency modulation ( )J. Cleveland et al APL 1998 , 72 , 2613

    Experimental data ( x(A), , Zc, g ) and use of two equations mighthelp to restore F a and F r in dynamic AFM modes

    tsF F F r a

    Conservative case

    ==

    Garcia&Perez Surf Sci Rep 2002 , 47 , 197

    x = A0=const; 211l Z Sk =

    ( ) [ ]

    d A Ad F

    kA f

    f Ak d f ts coscos21

    ,,, 002

    00

    000 ++=

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    13/29

    2006 Veeco Instruments Inc.

    15 nm

    20 nm

    20 nm

    20 nm

    0.8 nm0.8 nm 0.4 nm

    Si probes (5-10 nm)

    Carbon spike (~3nm) Diamond probe (~5nm)

    T XT Y TX

    0.5TX

    2T X2T X T Y

    Tapping Mode Imaging of Polydiacetylene Crystal

    bc

    T x

    T y

    How to explain the presence of 2T x and 0.5T x spacings in AFM images?

    15 nm 15 nm

    How true is true molecular resolution?

    0.49 nm c 1.41 nm

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    14/29

    2006 Veeco Instruments Inc.

    LabVIEW AFM Simulator

    Z

    Z1

    D

    1

    2

    O

    R

    O1

    O2

    R1R2

    P1

    P2

    XX1

    X2

    = iii PF cos2 / 3

    2T

    0.5T

    Tapping mode: Hertz model

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    15/29

    2006 Veeco Instruments Inc.

    R = 5 nmR = 0.15 nm R = 100 nm

    X

    Y

    Y

    X

    Y

    X

    Y Y

    X

    X X

    Y

    Height corrugations ~

    0.2 nm

    Height corrugations ~

    0.03 nm

    Height corrugations ~

    0.01 nm

    Imaging in Light Tapping (A sp=20 nm)

    Lattice Pattern: Dependence on Tip Radius

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    16/29

    2006 Veeco Instruments Inc.

    Asp =19 nmAsp =20 nm A sp =17 nm

    Y-bifurcation

    X-bifurcation12 peaks 11 peaks 9 peaks 8 peaks

    Tip with R = 5 nm

    YYY

    X X X

    X

    Y

    X

    Y

    X

    Y

    Experimental patterns

    Lattice Pattern: Imaging at Different Forces

    Y-bifurcation

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    17/29

    2006 Veeco Instruments Inc.

    Lattice w/Defects: Effect of Tip Radius & Force

    R = 150 pm, A sp = 19 nm R = 1 nm, A sp = 18 nm R = 5 nm, A sp = 18 nm

    X

    Y

    X

    Y

    X

    Y

    X

    Y

    X

    Y

    X

    YAtomic-scale images change their pattern as tip size and/or tip force increasesthat makes their assignment to real surface structures very difficult.

    A presence of single atomic or molecular defects in AFM images does not mean that true atomic-scale resolution in imaging of the surrounding lattice was achieved.

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    18/29

    2006 Veeco Instruments Inc.

    Sharp Spherical

    76nm10 nm

    Olympus Team-Nanotec

    Imaging with Sharp & Spherical Probes

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    19/29

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    20/29

    2006 Veeco Instruments Inc.

    2.2 GPa (6.0%)14.9 MPa (8.2%)

    EPDM PP

    Indentation & Phase Imaging of iPP/EPDM Blend

    0.73

    0.93

    0.50

    Asp /A 0

    0.33

    PPPP EPDMheight phase, sin

    0.20

    10 m10 m10 m

    EPDM PP

    I d i f M l il P l h l

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    21/29

    2006 Veeco Instruments Inc.

    380.5 MPa (4.8%)

    Indentation of Multilayer Polyethylene

    40.4 MPa (4.0%)

    PE-0.86 PE-0.92 Sneddon & Oliver-Pharr Models

    ( )

    ( )

    =1

    0

    2

    2

    2

    11

    ),(

    x

    dx x f x Ea E akD

    Smax

    hi hmaxpenetration, nm

    F o r c e , n N

    1.4 MPa (7.7%)

    76 nm

    PDMS

    (adhesion and viscoelasticity will be added!)

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    22/29

    2006 Veeco Instruments Inc.

    AFM Nanoindentation : nm-Scale Depth

    ~ 11 nm

    elastic plastic

    1 st

    1 st

    2 nd

    2 nd

    1st2 nd

    3 rd

    Elastic and Plastic Deformation of Single Crystals of Alkane C 390H782

    d l l

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    23/29

    2006 Veeco Instruments Inc.

    AFM Nanoindentation : Lateral Resolution

    z

    A

    z

    A

    250 nN90 nN 1.3 uN Asp /A 0=0.5V/1.0V Asp /A 0=1.0V/2.0V

    Force Volume (AvZ curves) of SBS triblock copolymer

    100 nm500 nm

    z

    A

    Deflection curves (nanoindentation) Amplitude curves (tapping mode)

    Si l ti f AvZ & vZ Curves i T i g M d

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    24/29

    2006 Veeco Instruments Inc.

    Simulation of AvZ & vZ Curves in Tapping Mode

    [ ]( )

    [ ]( )

    ++=

    ++=

    0

    0

    coscos1

    cos

    sincos1

    sin

    ydy y x Z F F N

    d x

    ydy y x Z F F N

    cr a

    cr a

    Tapping mode

    ( )

    =

    2

    0

    8

    0

    41

    38

    z z

    z z

    zU pp ( ) ( ) z RU zF pprp 2=

    MaugisMaterial-related avalanche

    Lennard-Jones

    Instrument- or environment-

    related avalanche

    Derjaguin

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    25/29

    2006 Veeco Instruments Inc.

    Simulation of TM Amplitude & Phase curves

    ModelingA sp /A 0

    Experiment (Si substrate)Asp /A 0 Asp /A 0

    Phase, Phase, Phase,

    Saddle-node bifurcation in amplitude/phase coordinates is a

    birth or annihilation of stable and unstable stationary points thathappened as Z is changing.

    S. L. Lee, S. W. Howell, A. Raman, R. Reifenberger Ultramicroscopy 2003 , 97 , 185

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    26/29

    2006 Veeco Instruments Inc.

    A

    z

    Phase,

    R1

    Conservative case: Tip size effect (R 1

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    27/29

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    28/29

  • 8/7/2019 Interplay between theory and experimentin AFM nanomechanical studies of polymers

    29/29