22
Interpretation of Electrochemical Impedance E+ E- + + + + - - - - + + + + - - - - - + C -d C +d R - R + R E Johan Hjelm [[email protected]] DTU Energy Conversion Risø Campus, Roskilde, Denmark www.energyconversion.dtu.dk

Interpretation of Electrochemical Impedancebatteriselskab.dk/wp-content/uploads/2013/06/20130530_hjlm... · DTU Energy Conversion, Technical University of Denmark 2 DBS Workshop 30/05/2013

Embed Size (px)

Citation preview

Interpretation of Electrochemical Impedance

E+

E-

++

++

----

++

++

----

- +

C-d C+d

R- R+

RE

Johan Hjelm [[email protected]]DTU Energy ConversionRisø Campus, Roskilde, Denmarkwww.energyconversion.dtu.dk

30/05/2013DBS Workshop2DTU Energy Conversion, Technical University of Denmark

Basic impedance elements

M

Resistor

Capacitor

Inductor

Z = R

Z = 1 iωC

= -i ωC

Z = iωL

Angular frequency = ω = 2πf -Zimag

Zreal

Z = R -Zimag

Zreal

Z = (iωC)-1

30/05/2013DBS Workshop3DTU Energy Conversion, Technical University of Denmark

Parallel and Series Connections

Parallel

Series

1/Z = 1/Z1 + 1/Z2

Z = Z1 + Z2 Z Z1 Z2

Z1

Z2

Z =

=

Z1 Z2

Z3

Z4

ZA = Z1 + Z2 ZB = (Z3-1 + Z4

-1)-1

Z =

Z = ZA + ZB

30/05/2013DBS Workshop4DTU Energy Conversion, Technical University of Denmark

Charging of a capacitor (time-domain)

30/05/2013DBS Workshop5DTU Energy Conversion, Technical University of Denmark

Impedance -(R)-(C)-

Series connected circuit

Z = R + -i ωC

30/05/2013DBS Workshop6DTU Energy Conversion, Technical University of Denmark

Impedance -(RC)-

Parallelconnected circuits

30/05/2013DBS Workshop7DTU Energy Conversion, Technical University of Denmark

Impedance R0-(R

1C

1)-(R

2C

2)-

Parallelconnected circuits

R0 R1 R2

C1 C2

Summit frequency -(RC)- fsummit = 1/(RC)

R0 = 5 Ω R1 = 10 Ω R2 = 30 Ω C1 = 1 µF C2 = 10 µF

“Nyquist plot”“Complex plane plot”

30/05/2013DBS Workshop8DTU Energy Conversion, Technical University of Denmark

Impedance R0-(R

1C

1)-(R

2C

2)-

Parallelconnected circuits

R0 R1 R2

C1 C2

fsummit = 1/(2πRC)

R0 = 5 Ω R1 = 10 Ω R2 = 30 Ω C1 = 1 µF C2 = 10 µF

“Bode plot”

30/05/2013DBS Workshop9DTU Energy Conversion, Technical University of Denmark

Impedance R0-(R

1C

1)-(R

2C

2)-

Parallelconnected circuits

R0 R1 R2

C1 C2

“Bode plot”

R0 = 5 Ω R1 = 10 Ω R2 = 30 Ω C1 = 1 µF C2 = 10 µF

fsummit = 1/(2πRC)

30/05/2013DBS Workshop10DTU Energy Conversion, Technical University of Denmark

Impedance R0-(R

1C

1)-(R

2C

2)-

Parallelconnected circuits

R0 R1 R2

C1 C2

fsummit = 1/(RC)

“Bode plot”

R0 = 5 Ω R1 = 10 Ω R2 = 30 Ω C1 = 1 µF C2 = 10 µF

R0

R0 + R1 + R2

30/05/2013DBS Workshop11DTU Energy Conversion, Technical University of Denmark

Impedance – Constant Phase Element

Constant phase element (most often denoted Q or CPE)

Z = 1 Q0(iω)α

Capacitor Z = 1 iωC

= -i ωC

R. de Levie, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 261, 1–9 (1989).

T. Pajkossy, Solid State Ionics, 176, 1997–2003 (2005).

2D distributions, e.g.-surface heterogeneities: Crystal faces, variations in surface properties...

3D distributions, e.g.Geometry induced non-uniform Potential andCurrent distributions

Distributions of activation energies for transport orReaction, even a simple resistance distribution through a layer

30/05/2013DBS Workshop12DTU Energy Conversion, Technical University of Denmark

Constant Phase Element Properties

Distributed properties leading to a frequency (or time-constant) dispersion

Z = 1 Q0(iω)α

Schematic from: M. Orazem and B. Tribollet; Impedance Spectroscopy

30/05/2013DBS Workshop13DTU Energy Conversion, Technical University of Denmark

Constant Phase Element Properties

Distributed properties leading to a frequency (or time-constant) dispersion

“Equivalent” Capacitance -(RQ)-

Summit frequency -(RQ)-

fsummit = 1/(2π(RQ0)1/n)

Ceq = (RQ)1/n/R

30/05/2013DBS Workshop14DTU Energy Conversion, Technical University of Denmark

Diffusion Impedance

Semi-Infinite Warburg Diffusion Impedance

Zinf = σω-1/2 - iσω-1/2

For a one-step, one-electron reaction O+e ̣⟷ R

R

Oe-

Electrode Electrolyte

R O + e-

30/05/2013DBS Workshop15DTU Energy Conversion, Technical University of Denmark

Diffusion Impedance

Finite-length Warburg Diffusion Impedance“non-blocking” outer interface

e-

Electrode Layer (e.g. Flooded Porous Layer)

30/05/2013DBS Workshop16DTU Energy Conversion, Technical University of Denmark

Diffusion Impedance

Finite-space Warburg Diffusion Impedance“blocking” outer interface

e-

Electrode Layer (e.g. Flooded Porous Layer)

30/05/2013DBS Workshop17DTU Energy Conversion, Technical University of Denmark

Diffusion Geometry Matters

Warburg Diffusion Impedances

30/05/2013DBS Workshop18DTU Energy Conversion, Technical University of Denmark

The Randles-Circuit

Semi-Infinite Warburg Diffusion ImpedanceCharge Transfer Resistance parallel to Interfacial Capacitance

ZW-inf = σω-1/2 - iσω-1/2

For a one-step, one-electron reaction O+e ̣⟷ R

R0 R1

C1

ZW-inf

R

Oe-

Electrode Electrolyte

R O + e-

30/05/2013DBS Workshop19DTU Energy Conversion, Technical University of Denmark

Porous Electrodes (Transmission Lines)

From: M. Orazem and B. Tribollet; Impedance Spectroscopy

30/05/2013DBS Workshop20DTU Energy Conversion, Technical University of Denmark

Porous Electrodes (Transmission Lines)

Source: Impedance Spectroscopy, 2nd Edition, Eds. E. Barsoukov & J. Ross Macdonald, John Wiley & Sons, Hoboken, NJ (2005), p.512

30/05/2013DBS Workshop21DTU Energy Conversion, Technical University of Denmark

Porous Electrodes (Transmission Lines)

e-

L

Varying L: thinner → thicker than penetration depth / utilization volume

Varying conductivity of less conducting phase r1 >> r2

30/05/2013DBS Workshop22DTU Energy Conversion, Technical University of Denmark

Equivalence of Circuits

From: Impedance Spectroscopy, 2nd Edition, Eds. E. Barsoukov & J. Ross Macdonald, John Wiley & Sons, Hoboken, NJ (2005), p.94, 95.