37
Interpretations of Precision Neutrino Measurements M. Lindner Max-Planck-Institut für Kernphysik, Heidelberg XIII International Workshop on Neutrino Telescopes Venice, March 10-13, 2009

Interpretations of Precision Neutrino Measurements

Embed Size (px)

DESCRIPTION

Interpretations of Precision Neutrino Measurements. M. Lindner Max-Planck-Institut für Kernphysik, Heidelberg. XIII International Workshop on Neutrino Telescopes Venice, March 10-13, 2009. Future q 13 sensitivity. MINOS OPERA Double Chooz T2K NO n A Reactor II NUE+FPD. b -beams - PowerPoint PPT Presentation

Citation preview

Page 1: Interpretations of Precision  Neutrino Measurements

Interpretations of Precision Neutrino Measurements

M. Lindner

Max-Planck-Institut für Kernphysik, Heidelberg

XIII International Workshop on Neutrino TelescopesVenice, March 10-13, 2009

Page 2: Interpretations of Precision  Neutrino Measurements

Future 13 sensitivity

M. Lindner NEUTEL @ Venice, Mar. 11, 2009 2

-beams factory

protondriver?

range unknown CP phasesynergies w. reactor

MINOSOPERADouble ChoozT2KNOAReactor IINUE+FPD

Page 3: Interpretations of Precision  Neutrino Measurements

Suggestive Seesaw Features

For m3 ~ (m2atm)1/2, mD ~ leptons MR ~ 1011 - 1016GeV

’s are Majorana particles , m probes ~ GUT scale physics! smallness of m high scale of L, symmetries of mD ,MR

/

QFT: natural value of mass operators scale of symmetry

mD ~ electro-weak scaleMR ~ L violation scale ? embedding (GUTs, …)

See-saw mechanism (type I)

m=mDMR-1mD

T mh=MR

Numerical hints:

M. Lindner 3NEUTEL @ Venice, Mar. 11, 2009

Page 4: Interpretations of Precision  Neutrino Measurements

2nd Look Questions

1. 2. 3. generation

log

(m/G

eV)

1

bcs

t

ud

e

2

3

degenerate ~1eV

hierarchical 0.05eV , 0.005eV ~0.005eV

Quarks & charged leptons hierarchical masses neutrinos?

• Less hierarchy in mD or correlated hierarchy in MR ? theoretically connected!

• Mixing patterns: not generically large, why almost maximal, 13 small?

• Why 3 right handed neutrinos? what if MR is singular? ...

Quarks and charged leptons:

mD ~ Hn ; n = 0,1,2 H > 20...200

Neutrinos: m ~ Hn H < ~10

See-saw:

H ~10 >20 ? >20

m= -mDT

MR-1

mD

M. Lindner 4NEUTEL @ Venice, Mar. 11, 2009

Page 5: Interpretations of Precision  Neutrino Measurements

Majorana L

xx

L R

<> = v

R RgN

/

R

L

RD

DRL Mm

m

0 _ _ c

c

Adding Neutrino Mass Terms

1) Simplest possibility: add 3 right handed neutrino fields

like quarks and chargedleptons Dirac mass terms(including NMS mixing)

New ingredients:1) Majorana mass (explicit)2) lepton number violation

6x6 block mass matrixblock diagonalizationMR heavy 3 light ’s

NEW ingredients, 9 parameters SM+

M. Lindner 5NEUTEL @ Venice, Mar. 11, 2009

SM: L=left-handed 2L, R=1R no fermions masses Higgs

Page 6: Interpretations of Precision  Neutrino Measurements

2) new Higgs triplets L:

Other Neutrino Mass OperatorsL L

m=ML - mDMR-1mD

T see-saw type II

left-handed Majorana mass term:

3) Both R and new Higgs triplets L: MLLLc

_

4) Higher dimensional operators: d=5, …

MLLLc_

x x

5-N) …M. Lindner 6NEUTEL @ Venice, Mar. 11, 2009

Page 7: Interpretations of Precision  Neutrino Measurements

Other effective Operators Beyond the SM

higher d operators from integrating out some new physics symmetries: L, flavour, GUTs, …

effects beyond 3 flavours, L-violating operators, … Non Standard Interactions = NSIs effective 4f opersators

• integrating out heavy physics (c.f. GF MW)

f f

M. Lindner 7NEUTEL @ Venice, Mar. 11, 2009

Page 8: Interpretations of Precision  Neutrino Measurements

Effects on 0 Decay

decay

0 decay

Majorana 0 decay

warning:

other lepton number violating processes…

decay of 76Ge observed: =1.5 × 1021 y

• signal at known Q-value• 2 background (resulution)• nuclear backgrounds use different nuclei

M. Lindner 8NEUTEL @ Venice, Mar. 11, 2009

Page 9: Interpretations of Precision  Neutrino Measurements

Relating Rates / Lifetimes to Neutrino Masses

= G(Q,Z) |Mnucl|2 <mee>2

rate of 0 phase space nuclear matrix elements

effectiveMajorana neutrino mass

Fäßler et al., …

0+

0+

0+

1+

2-

k

k

k0νββ

nuclear matrix elements: virtual excitations of intermediate states

e1e2

p p

ν Ek

Ein n

progress in TH errors reduced uncertainties

M. Lindner 9NEUTEL @ Venice, Mar. 11, 2009

Page 10: Interpretations of Precision  Neutrino Measurements

Heidelberg-Moscow experiment

< 0.35 eV ?

| |

free parameters: m1 , sign(m231) , CP-phases 2, 3

Neutrino-less Double -Decay

-

Majorana 02 decay

M. Lindner 10NEUTEL @ Venice, Mar. 11, 2009

Page 11: Interpretations of Precision  Neutrino Measurements

Claim of part of the originalHeidelberg-Moscow experiment cosmology ‚tension‘

Comments:• cosmology: limitation by systematical errors ~another factor 5?• 0nuclear matrix elements ~factor 1-2 theoretical uncertainty in mee

• m2 > 0 allows complete cancellation 0 signal not guaranteed• 0 signal from *some other* new BSM lepton number violating operator very promising interplay of neutrino mass determinations, cosmology, LHC, LVF experiments and theory

aims of new experiments:• test HM claim• (m31

2)1/2 ~ 0.05eV + errors reach 0.01eV CUORE GERDA phases I, II, (III)

m1[eV]

M. Lindner 11NEUTEL @ Venice, Mar. 11, 2009

Page 12: Interpretations of Precision  Neutrino Measurements

… this may not be the full story

Schechter+Valle: Any L violating operator radiative mass generation Majorana nature of ‘sHowever: This might be a tiny correction to a much larger Dirac mass

LR, RPV-SUSY, … other operators which violate L NSI‘s

M. Lindner 12NEUTEL @ Venice, Mar. 11, 2009

Page 13: Interpretations of Precision  Neutrino Measurements

Lepton Flavour Violation• Majorana neutrino mass terms

• R-parity violating supersymmetry

• …

LFV and leptonic CP violation can even exist for m0

e.g. modifications of correlationsbetween - e- decay andnuclear - e- conversionMEG: 10-13

PRISM: 10-18

interplay disentangeling: ’s – LFV – LHC

Deppisch+Kosmas+Valle

M=1TeV, best fit oscillation paramaters

M. Lindner 13NEUTEL @ Venice, Mar. 11, 2009

e-capture decays, excited states, multiple 0 isotopes,angular distributions, ..., exciting options!

Page 14: Interpretations of Precision  Neutrino Measurements

Effects on Precision Oscillation Physics

=

S13 3 flavour effects CP phase

x Majorana-

CP-phases

Aims: improved precision of the leading 2x2 oscillations detection of generic 3-neutrino effects: 13, CP violation

Complication: Matter effects effective parameters in matter expansion in small quantities 13 and a = m2

sol / m2atm

Precise measurements 3f oscillation formulae

M. Lindner 14NEUTEL @ Venice, Mar. 11, 2009

Page 15: Interpretations of Precision  Neutrino Measurements

Oscillations in QFT• is ordinary QM sufficient to describe oscillations?• ’s are relativistic, 2nd quantized, …

Feynman diagram of neutrino oscillation:

- energy momentum properties, quantum numbers QM limit, coherence, kinematics, … - e.g. observation of solar neutrinos in e channel

x

solar fusion process e projection on e

mass eigenstates

+MSW

M. Lindner 15NEUTEL @ Venice, Mar. 11, 2009

Page 16: Interpretations of Precision  Neutrino Measurements

M. Lindner NEUTEL @ Venice, Mar. 11, 2009 16

x

Page 17: Interpretations of Precision  Neutrino Measurements

M. Lindner NEUTEL @ Venice, Mar. 11, 2009 17

x

Page 18: Interpretations of Precision  Neutrino Measurements

Future Precision with Reactor Experiments

identical detectors many errors cancel

E=4MeV 2km 4km 40km 80km

Double Chooz Daya Bay Reno

clean & precise 13 measurments

-

3 flavour effectno degeneraciesno correlationsno matter effects

--

M. Lindner 18NEUTEL @ Venice, Mar. 11, 2009

Page 19: Interpretations of Precision  Neutrino Measurements

NSIs & Neutrino Oscillations

precision experiments migh see new effects beyond oscillations! modifications of 3f oscillation formulae, different L/E small event rates: offset in oscillation parameters Non Standard Interactions = NSI’s

Future precision oscillation experiments:

M. Lindner 19NEUTEL @ Venice, Mar. 11, 2009

Page 20: Interpretations of Precision  Neutrino Measurements

NSIs interfere with Oscillations

the “golden” oscillation channel NSI contributions to the “golden” channel

note: interference in oscillations ~FCNC effects ~2

M. Lindner 20NEUTEL @ Venice, Mar. 11, 2009

Page 21: Interpretations of Precision  Neutrino Measurements

NSI: Offset and Mismatch in 13

redundant measurement of 13

Double Chooz + T2K*=assumed ‘true’ values of 13

scatter-plot: - values random- below existing bounds- random phases

NSIs can lead to:- offset- mismatch

Kopp, ML, Ota, Sato

redundancy interesting potential optimization???

M. Lindner 21NEUTEL @ Venice, Mar. 11, 2009

Page 22: Interpretations of Precision  Neutrino Measurements

Unexpected Effects: The GSI Anomaly

Periodically modualted exponential -decay law of highly charged, stored ions at GSI by the FRS/ESR Collaboration

exponential decay

periodic modulation ?

M. Lindner 22NEUTEL @ Venice, Mar. 11, 2009

3.5

9.5

Page 23: Interpretations of Precision  Neutrino Measurements

Fit to ‘Oscillations’1) exponential

dNEC (t)/dt = N0 exp {- λt} λEC λ= λβ+ + λEC + λloss

2) exponential plus periodic oscillationdNEC (t)/dt = N0 exp {- λt} λEC(t) λEC(t)= λEC [1+a cos(ωt+φ)]

T = 7.06 (8) s φ = - 0.3 (3)

T = 7.10 (22) s φ = - 1.3 (4)

M. Lindner 23Schleching, Feb. 28, 2009

Page 24: Interpretations of Precision  Neutrino Measurements

Checks / Questions / ProblemsCarefully checks:

• artefacts such as periodic coupling of the Schottky-noise to all sort of backgrounds excluded

• all EC decays are recorded; continuous information on the status of mother- and daughter ion during the whole observation time

Questions / problems?

• 3.5 could be a statistical fluctuation … but what if … 9.5

• a number of experimental issues…

• if this were due to neutrino mixing

disagrees with KamLANDM. Lindner 24Schleching, Feb. 28, 2009

Page 25: Interpretations of Precision  Neutrino Measurements

Kinematics: a) precise measurement of mother and daughter energies and momenta emitted mass eigenstate known one contribution no oscillation, but rate ~ |Uei|2 not realized here (& no oscillation)b)finite kinematical resolution much less than neutrino masses all three mass eigenstates contribute incoherently

independent of flavour mixing

no periodic modulation of decays due to neutrino mixing

The EC Process

xEC capture process e

undetected neutrino mass eigenstates different Hilbert spaces(like e,)

mass eigenstates

Uei (i=1..n)

mother ion

daughter ion

M. Lindner 25NEUTEL @ Venice, Mar. 11, 2009

Page 26: Interpretations of Precision  Neutrino Measurements

The larger Picture: GUTs

(5) (1)SU U (3) (3) (3)C L RSU SU SU

(4) (2) (2)PS L RSU SU SU

(3) (2) (2) (1)C L R B LSU SU SU U

(3) (2) (1)C L YSU SU U

(5)SU

(10)SO

E 6

Gauge unification suggests that some GUT exists

Requirements: gauge unification particle multiplets R

proton decay … L

epto

ns

Q

uar

ks

1. 2. 3. generation

M. Lindner 26NEUTEL @ Venice, Mar. 11, 2009

many models…

Page 27: Interpretations of Precision  Neutrino Measurements

GUT Expectations and Requirements

Quarks and leptons sit in the same multiplets one set of Yukawa couplings for given GUT multiplet ~ tension: small quark mixings large leptonic mixings this was in fact the reason for the `prediction’ of small mixing angles (SMA) – ruled out by data

Mechanisms to post-dict large mixings: sequential dominance type II see-saw Dirac screening …

M. Lindner 27NEUTEL @ Venice, Mar. 11, 2009

Page 28: Interpretations of Precision  Neutrino Measurements

Learning about Flavour

Was favoured by almost all theorists GUTs

preferred by nature

what if 13 is very tiny? or if 23 is very close to maximal?

numerical coincidence unlikely special reasons (symmetry, …)

answered by coming precision

History: Elimination of SMA

• models for masses & mixings• input: known masses & mixings distribution of 13 predictions 13 expected close to ex. bound well motivated experiments

Next: Smallness of 13, 23 maximal

M. Lindner 28NEUTEL @ Venice, Mar. 11, 2009

Page 29: Interpretations of Precision  Neutrino Measurements

Flavour Unification

Examples:

• so far no understanding of flavour, 3 generations• apparant regularities in quark and lepton parameters flavour symmetries (finite number for limited rank) symmetries not texture zeros

U(1)

SU(2)

SU(3) SO(3)

S(3)

(3) (3)L RO O

(3) (3)L RS S

A4;Z3 â Z2

Nothing

Lep

tons

Qu

arks

1. 2. 3. generation

M. Lindner 29NEUTEL @ Venice, Mar. 11, 2009

many models…

Page 30: Interpretations of Precision  Neutrino Measurements

GUT ⊗ Flavour Unification

GUT group ⊗ flavour group

example: SO(10) ⊗ SU(3)F

- SSB of SU(3)F between GUT and Planck

- all flavour Goldstone Bosons eaten - discrete sub-groups survive SSB e.g. Z2, S3, D5, A4 structures in flavour space compare with data

GUT ⊗ flavour is rather restricted small quark mixings *AND* large leptonic mixings ; quantum numbers

so far only a few viable models rather limited number of possibilities; phenomenological success non-trivial

aim: distinguish models further by future precision

Lep

tons

Qu

arks

1. 2. 3. generation

SO(3)F

SO(1

0)

M. Lindner 30NEUTEL @ Venice, Mar. 11, 2009

Page 31: Interpretations of Precision  Neutrino Measurements

Concluding Remarks

• Neutrino physics will enter a precision phase

• Various possibilities and potential for surprises

• Unification path- GUTs … many options- flavour symmetries … many options - GUT ⊗ flavour unification … rather restricted will this allow a glimpse on the origin of flavour?

• Bottom-up approach- d>4 operators modifications of the standard picture 0nbb decay L-violation oscillations and other flavour transitions

• Use QFT to get correct QM limits experiments test correctness of QFT

M. Lindner NEUTEL @ Venice, Mar. 11, 2009 31

Page 32: Interpretations of Precision  Neutrino Measurements

BACKUP

M. Lindner NEUTEL @ Venice, Mar. 11, 2009 32

Page 33: Interpretations of Precision  Neutrino Measurements

Production and Selection of exotic Nucleicocktail of HCIs in-flight separation mono-isotopic beams possibility to select 1,2,3,… ions

M. Lindner 33NEUTEL @ Venice, Mar. 11, 2009

Page 34: Interpretations of Precision  Neutrino Measurements

Schottky-Noise Detection

cooling (Δv/v → 0) continious digitization of FFT outputand data storage for 1,2,3, … stored ions

SchottkyP ick-ups

Stored ion beam

f ~ 2 M H z0

FFT

am plificationsum m ation

Schottky pick-ups:individual ions noise

electron coolergas target

quadrupole-triplet

Septum-magnetdipole magnet

fast kickermagnetRF-cavity

hexapole-magnets

from the FRS

Extraction

To the SIS

Quadrupole-dublet

ESR

M. Lindner 34NEUTEL @ Venice, Mar. 11, 2009

Cooling (stochastic & electron)

Page 35: Interpretations of Precision  Neutrino Measurements

Observation of Decays of stored Ions

bound-state -decayfirst observed at GSI in early 90‘s

a) normal -decay different charge different M/qb) bound state -decay by electon capture same q, slightly different M’ (binding energy, n-emission)

M. Lindner 35NEUTEL @ Venice, Mar. 11, 2009

Page 36: Interpretations of Precision  Neutrino Measurements

Examples for Decay of Single Ions

• ordinary -decay and EC clearly separable• for few ions: intensity allows to see individual decays

M. Lindner 36NEUTEL @ Venice, Mar. 11, 2009

Page 37: Interpretations of Precision  Neutrino Measurements

Spectroscopy of individual Particles

Pr140 58+

Ce140 58+

5 partic les

4 partic les

3 partic les

2 partic les

1 partic le

6 partic les

Q = 3388 keVEC

13

11765

169

Tim e [s]

Frequency [kHz] - 61000.0187.4 187.6187.2 187.8

• sensitive to single ions• well-defined - creation time t0

- charge states• two-body -decay monochromatic e

• observation of changesin peak intensities of mother and daughter ions

• investigation of a selected decay branch, e.g. pure EC decay• time-dependence of the detection efficiency is excludedM. Lindner 37NEUTEL @ Venice, Mar. 11, 2009