49
0 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) Interval Methods and Taylor Model Methods for ODEs Markus Neher, Dept. of Mathematics KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

Interval Methods and Taylor Model Methods for ODEs

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Interval Methods and Taylor Model Methods for ODEs

0 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT)

Interval Methods and Taylor Model Methods for ODEs

Markus Neher, Dept. of Mathematics

KIT – University of the State of Baden-Wuerttemberg andNational Research Center of the Helmholtz Association www.kit.edu

Page 2: Interval Methods and Taylor Model Methods for ODEs

Validated Methods

1 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Also called: Verified Methods, Rigorous Methods, GuaranteedMethods, Enclosure Methods, . . .

Aim: Compute guaranteed bounds for the solution of a problem,including

Discretization errors (ODEs, PDEs, optimization)

Truncation errors (Newton’s method, summation)

Roundoff errors

Used forModelling of uncertain data

Bounding of roundoff errors

Page 3: Interval Methods and Taylor Model Methods for ODEs

Outline

2 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

1 Interval arithmetic

2 Interval methods for ODEs

3 Taylor model methods for ODEs

Page 4: Interval Methods and Taylor Model Methods for ODEs

3 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval Arithmetic

Page 5: Interval Methods and Taylor Model Methods for ODEs

Interval Arithmetic

4 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Compact real intervals:

IR = {x = [x, x ] | x ≤ x} (x, x ∈ R).

Basic arithmetic operations:

x ◦ y := {x ◦ y | x ∈ x , y ∈ y}, ◦ ∈ {+,−, ∗, /} (0 6∈ y for /)

x + y = [x + y , x + y ]

x − y = [x − y , x − y ]

x ∗ y = [min{xy , xy , xy , xy , }, max{xy , xy , xy , xy , }],

x / y = x ∗ [1 / y , 1 / y ]

Page 6: Interval Methods and Taylor Model Methods for ODEs

Interval Arithmetic

4 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Compact real intervals:

IR = {x = [x, x ] | x ≤ x} (x, x ∈ R).

Basic arithmetic operations:

x ◦ y := {x ◦ y | x ∈ x , y ∈ y}, ◦ ∈ {+,−, ∗, /} (0 6∈ y for /)

x + y = [x + y , x + y ]

x − y = [x − y , x − y ] ⇒ [0, 1]− [0, 1] = [−1, 1]

x ∗ y = [min{xy , xy , xy , xy , }, max{xy , xy , xy , xy , }],

x / y = x ∗ [1 / y , 1 / y ]

Page 7: Interval Methods and Taylor Model Methods for ODEs

Interval Arithmetic

4 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Compact real intervals:

IR = {x = [x, x ] | x ≤ x} (x, x ∈ R).

Basic arithmetic operations:

x ◦ y := {x ◦ y | x ∈ x , y ∈ y}, ◦ ∈ {+,−, ∗, /} (0 6∈ y for /)

x + y = [x + y , x + y ] FPIA : [ x5+ y , x 4+ y ]

x − y = [x − y , x − y ] ⇒ [0, 1]− [0, 1] = [−1, 1]

x ∗ y = [min{xy , xy , xy , xy , }, max{xy , xy , xy , xy , }],

x / y = x ∗ [1 / y , 1 / y ]

Page 8: Interval Methods and Taylor Model Methods for ODEs

Ranges and Inclusion Functions

5 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Range of f : D → E: Rg (f , D) := {f (x) | x ∈ D}

Inclusion function F : IR → IR of f : D ⊆ R → R:

F (x) ⊇ Rg (f , x) for all x ⊆ D

Examples:

x1 + x

, 1− 11 + x

, are inclusion functions for

f (x) =x

1 + x= 1− 1

1 + x

ex := [ex , ex ] is an inclusion function for ex

Page 9: Interval Methods and Taylor Model Methods for ODEs

IA: Dependency

6 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

f (x) =x

1 + x= 1− 1

1 + x, x = [1, 2]:

x1 + x

=[1, 2][2, 3]

= [13

, 1]

1− 11 + x

= 1− 1[2, 3]

= 1− [13

,12] = [

12

,23] = Rg (f , x)

Reduced overestimation: centered forms, etc.

Mean value form: Rg (f , x) ⊆ f (c) + F ′(x)(x − c), c = m(x).

Page 10: Interval Methods and Taylor Model Methods for ODEs

IA: Wrapping Effect

7 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Overestimation: Enclose non-interval shaped sets by intervals

Example: f : (x, y) →√

22

(x + y , y − x) (Rotation)

Interval evaluation of f on x = ([−1, 1], [−1, 1]):

−2 −1 1 2

−2

−1

1

2

x

y

Page 11: Interval Methods and Taylor Model Methods for ODEs

IA: Wrapping Effect

7 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Overestimation: Enclose non-interval shaped sets by intervals

Example: f : (x, y) →√

22

(x + y , y − x) (Rotation)

Interval evaluation of f on x = ([−1, 1], [−1, 1]):

−2 −1 1 2

−2

−1

1

2

x

y

−2 −1 1 2

−2

−1

1

2

x

y

Page 12: Interval Methods and Taylor Model Methods for ODEs

8 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval Methods for ODEs

Page 13: Interval Methods and Taylor Model Methods for ODEs

Validated Integration of ODEs

9 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval IVP:

u′ = f (t , u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend]

f : R×Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.

Page 14: Interval Methods and Taylor Model Methods for ODEs

Validated Integration of ODEs

9 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval IVP:

u′ = f (t , u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend]

f : R×Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.

Page 15: Interval Methods and Taylor Model Methods for ODEs

Validated Integration of ODEs

9 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval IVP:

u′ = f (t , u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend]

f : R×Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.

Page 16: Interval Methods and Taylor Model Methods for ODEs

Validated Integration of ODEs

9 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval IVP:

u′ = f (t , u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend]

f : R×Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.

Page 17: Interval Methods and Taylor Model Methods for ODEs

Validated Integration of ODEs

9 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval IVP:

u′ = f (t , u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend]

f : R×Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.

Page 18: Interval Methods and Taylor Model Methods for ODEs

Validated Integration of ODEs

9 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval IVP:

u′ = f (t , u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend]

f : R×Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.

Page 19: Interval Methods and Taylor Model Methods for ODEs

Validated Integration of ODEs

9 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval IVP:

u′ = f (t , u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend]

f : R×Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.

Page 20: Interval Methods and Taylor Model Methods for ODEs

Validated Integration of ODEs

9 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval IVP:

u′ = f (t , u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend]

f : R×Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.

Page 21: Interval Methods and Taylor Model Methods for ODEs

Validated Integration of ODEs

9 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval IVP:

u′ = f (t , u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend]

f : R×Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.

Page 22: Interval Methods and Taylor Model Methods for ODEs

Validated Integration of ODEs

9 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval IVP:

u′ = f (t , u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend]

f : R×Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.

Page 23: Interval Methods and Taylor Model Methods for ODEs

Validated Integration of ODEs

9 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval IVP:

u′ = f (t , u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend]

f : R×Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.

Page 24: Interval Methods and Taylor Model Methods for ODEs

Validated Integration of ODEs

9 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval IVP:

u′ = f (t , u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend]

f : R×Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.

Page 25: Interval Methods and Taylor Model Methods for ODEs

Validated Integration of ODEs

9 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval IVP:

u′ = f (t , u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend]

f : R×Rm → Rm sufficiently smooth, u0 ∈ IRm, tend > t0.

Page 26: Interval Methods and Taylor Model Methods for ODEs

Autonomous Interval IVP

10 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

u′ = f (u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend],

where D ⊂ Rm, f ∈ Cn(D), f : D → Rm, u0 ∈ IRm.

Moore’s enclosure method:

Automatic computation of Taylor coefficients

Interval iteration: For j = 1, 2, . . . :

A priori enclosure: v j ⊇ u(t) for all t ∈ [tj−1, tj ] ("Alg. I").

Truncation error: z j :=hn+1

j

(n + 1)!f (n)(v j ).

u(tj ) ∈ uj := uj−1 +n

∑k=1

hkj

k !f (k−1)(uj−1) + z j ("Algorithm II").

Page 27: Interval Methods and Taylor Model Methods for ODEs

Piecewise Constant A Priori Enclosure

11 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

t0 t1 t2

u0u1

u2v1

v2

t

u

Page 28: Interval Methods and Taylor Model Methods for ODEs

A Priori Enclosures

12 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Picard iteration: find hj , v j such that

uj−1 + [0, hj ]f (v j ) ⊆ v j

Step size restrictions: Explicit Euler steps

Improvements: Lohner 1988, Corliss & Rihm 1996, Makino 1998,Nedialkov & Jackson 2001

Alternatives: Neumaier 1994, N. 1999, N. 2007, Delanoue & Jaulin2010, Kin, Kim & Nakao 2011

Page 29: Interval Methods and Taylor Model Methods for ODEs

Modifications of Algorithm II

13 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Reduction of wrapping effect: Moore, Eijgenraam, Lohner, Rihm,Kuehn, Nedialkov & Jackson, . . .

Nedialkov & Jackson: Hermite-Obreshkov-Method

Rihm: Implicit methods

Petras & Hartmann, Bouissou: Runge-Kutta-Methods

Berz & Makino: Taylor models

Taylor expansion of solution w.r.t. time and initial values

Page 30: Interval Methods and Taylor Model Methods for ODEs

Direct Interval Method

14 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Direct method (Moore 1965): Apply mean value form to f (k):

f [0](u) = u, f [k ](u) =1k

(∂f [k−1]

∂uf

)(u) for k ≥ 1.

Let

S j−1 = I +n

∑k=1

hk0J(f [k ](uj−1)

), z j = hn+1

0 f [n](v j ),

(I: identity matrix, J(f [k ]): Jacobian of f [i ]), then for some uj−1 ∈ uj−1

u(tj ; u0) ∈ uj = uj−1 +n−1

∑k=1

hkj f [k ](uj−1) + z j + S j−1(uj−1 − uj−1).

Page 31: Interval Methods and Taylor Model Methods for ODEs

Global Error Propagation

15 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Wrapping effect: S j−1(uj−1 − uj−1) may overestimate

S = {Sj−1(uj−1 − uj−1) | Sj−1 ∈ S j−1, uj−1 ∈ uj−1}

→ propagate S as a parallelepiped.

u0 := m(u0), r0 = u0 − u0, B0 = I; for some nonsingular Bj−1:

uj = uj−1 +n−1

∑k=1

hkj−1f [k ](uj−1) + m(z j ),

uj = uj−1 +n−1

∑k=1

hkj−1f [k ](uj−1) + z j + (S j−1Bj−1)r j−1,

uj : approximate point solution for the central IVP

z j : local error; r j : global error

Page 32: Interval Methods and Taylor Model Methods for ODEs

Global Error Propagation

16 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Global error propagation:

r j =(

B−1j (S j−1Bj−1)

)r j−1 + B−1

j (z j −m(z j ))

Moore’s direct method: Bj = I

Pep method (Eijgenraam, Lohner): Bj = m(S j−1Bj−1)

QR method (Lohner): m(S j−1Bj−1) = QR, Bj := Q

Blunting method (Berz, Makino): modify Bj in the pep method suchthat condition numbers remain small

Page 33: Interval Methods and Taylor Model Methods for ODEs

Autonomous Linear ODE

17 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Autonomous linear system (A ∈ Rm×m):

u′ = A u, u(0) ∈ u0.

Propagation of the Global Error

r j = (B−1j TBj−1)r j−1 + B−1

j

(z j −m(z j )

), T =

n−1

∑ν=0

(hA)ν

ν!.

+ = ⊂

Page 34: Interval Methods and Taylor Model Methods for ODEs

Interval Methods for Linear ODEs

18 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Direct method: r j = T r j−1 + z j −m(z j ).

Optimal for local error, bad for global error (rotation)

Parallelepiped method: r j = r j−1 + (T−j )(z j − (m(z j )).

Optimal for global error; suitable for local error, if cond(T j ) is small

Bad for local error in presence of shear

QR method: r j = Rjr j−1 + QTj

(z j −m(z j )

), j = 1, 2, . . . .

Handles rotation, contraction, shear

Page 35: Interval Methods and Taylor Model Methods for ODEs

Wrapping Effect: Direct Interval Method

19 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

(Plots by Ned Nedialkov)

Huge overestimations in general

Page 36: Interval Methods and Taylor Model Methods for ODEs

Wrapping Effect: Parallelepiped Method

20 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Bj = TBj−1

−4 −3 −2 −1 0 1 2 3 4

x 10−12

−3

−2

−1

0

1

2

3

x 10−12

{ Cjr +e r ∈ r

j−1, e ∈ e

j}

{ Cjr r ∈ r

j−1 }

{ Cjr r ∈ r

j }

−6 −4 −2 0 2 4 6

x 10−12

−6

−4

−2

0

2

4

6x 10

−12

{ Cjr +e r ∈ r

j−1, e ∈ e

j}

{ Cjr r ∈ r

j−1 }

{ Cjr r ∈ r

j }

Bj often ill-conditioned, large overestimations

Page 37: Interval Methods and Taylor Model Methods for ODEs

Wrapping Effect: QR Method

21 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Bj = Qj , QjRj = TBj−1

−5 0 5

x 10−12

−4

−3

−2

−1

0

1

2

3

4

x 10−12

{ Cjr +e r ∈ r

j−1, e ∈ e

j }

{ Cjr r ∈ r

j−1 }

QR, Version 1QR, Version 2

−3 −2 −1 0 1 2 3

x 10−12

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10−12

{ Cjr +e r ∈ r

j−1, e ∈ e

j }

{ Cjr r ∈ r

j−1 }

QR, Version 1QR, Version 2

Overestimation depends on column permutations of Bj−1

Page 38: Interval Methods and Taylor Model Methods for ODEs

22 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Taylor Model Methods for ODEs

Page 39: Interval Methods and Taylor Model Methods for ODEs

Taylor Models (I)

23 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

x ⊂ Rm, f : x → R, f ∈ Cn+1, x0 ∈ x ;

f (x) = pn,f (x − x0) + Rn,f (x − x0), x ∈ x

(pn,f Taylor polynomial, Rn,f remainder term)

Interval remainder bound of order n of f on x :

∀x ∈ x : Rn,f (x − x0) ∈ in,f

Taylor model Tn,f = (pn,f , in,f ) of order n of f :

∀x ∈ x : f (x) ∈ pn,f (x − x0) + in,f

Page 40: Interval Methods and Taylor Model Methods for ODEs

Taylor Models (II)

24 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Taylor model: U := pn(x) + i, x ∈ x , x ∈ IRm, i ∈ IRm

(pn: vector of m-variate polynomials of order n)

Function set: U = {f ∈ C0(x) : f (x) ∈ pn(x) + i for all x ∈ x }

Range of a TM: Rg (U ) = {z = p(x) + ξ | x ∈ x , ξ ∈ i} ⊂ Rm

Ex.: U :=(

x12 + x2

1 + x2

), x1, x2 ∈ [−1, 1]

Rg (U ):

−1 1

2

x1

x2

Page 41: Interval Methods and Taylor Model Methods for ODEs

TM Arithmetic

25 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Paradigm for TMA:

pn,f is processed symbolically to order n

Higher order terms are enclosed into the remainder interval of theresult

Taylor Model Methods for ODEs

Taylor expansion of solution w.r.t. time and initial values

Computation of Taylor coefficients by Picard iteration:Parameters describing initial set treated symbolically

Interval remainder bounds by fixed point iteration (Makino, 1998)

Page 42: Interval Methods and Taylor Model Methods for ODEs

Example: Quadratic Problem

26 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

u′ = v , u(0) ∈ [0.95, 1.05],

v ′ = u2, v(0) ∈ [−1.05,−0.95].

Taylor model method: initial set described by parameters a and b:

u0(a, b) := 1 + a, a ∈ a := [−0.05, 0.05],

v0(a, b) := −1 + b, b ∈ b := [−0.05, 0.05].

Page 43: Interval Methods and Taylor Model Methods for ODEs

3rd order TM Method: Enclosure of the Flow

27 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

h = 0.1, flow for τ ∈ [0, 0.1]:

U1(τ, a, b) := 1 + a− τ + bτ + 12 τ2 + aτ2 − 1

3 τ3 + i0,

V1(τ, a, b) := −1 + b + τ + 2aτ − τ2 + a2τ − aτ2 + bτ2 + 23 τ3 + j0.

Flow at t1 = 0.1:

U1(a, b) := U1(0.1, a, b) = 0.905 + 1.01a + 0.1b + i0,

V1(a, b) := V1(0.1, a, b) = −0.909 + 0.19a + 1.01b + 0.1a2 + j0

(nonlinear boundary).

Page 44: Interval Methods and Taylor Model Methods for ODEs

Naive TM Method

28 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval remainder terms accumulate

Linear ODEs:

Naive TM method performs similarly to the direct interval method

→ Shrink wrapping, preconditioned TM methods

Page 45: Interval Methods and Taylor Model Methods for ODEs

Shrink Wrapping

29 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Absorb interval term into polynomial part (Makino and Berz 2002):

(UV

)(white) vs.

(UswVsw

).

Linear ODEs: Shrink wrapping performs similarly to the pep method.

Page 46: Interval Methods and Taylor Model Methods for ODEs

Integration with Preconditioned Taylor Models

30 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Preconditioned integration: flow at tj :

Uj = Ul,j ◦ Ur ,j = (pl,j + i l,j ) ◦ (pr ,j + i r ,j ).

Purpose: stabilize integration as in the QR interval method

Theorem (Makino and Berz 2004)If the initial set of an IVP is given by a preconditioned Taylor model, thenintegrating the flow of the ODE only acts on the left Taylor model.

Page 47: Interval Methods and Taylor Model Methods for ODEs

Preconditioned TMM for linear ODE

31 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Global error:

i r ,j+1 := C−1l,j+1TCl,j i r ,j + C−1

l,j+1i l,j+1, j = 0, 1, . . . .

Cl,j+1 = TCl,j : parallelepiped preconditioning

Cl,j+1 = Qj : QR preconditioning

Other choices: curvilinear coordinates, blunting(Makino and Berz 2004)

Page 48: Interval Methods and Taylor Model Methods for ODEs

Integration of Quadratic Problem

32 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

u′ = v , u(0) ∈ [0.95, 1.05],

v ′ = u2, v(0) ∈ [−1.05,−0.95].

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2-2

-1.5

-1

-0.5

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5

COSY Infinity AWA

Page 49: Interval Methods and Taylor Model Methods for ODEs

Summary

33 TM VII, Key West Interval Methods and Taylor Model Methods for ODEs Markus Neher, KIT

KIT

Interval arithmetic

Interval methods for ODEs

Taylor model methods for ODEs

Open problems

Treatment of high-dimensional problems

Validated implicit methods