19
ground-based microwave spectrometer for measuring middle atmospheric water vapour at polar latitudes 27 April 2012 EGU General Assembly 2012 Pietro Paolo Bertagnolio, Giovanni Muscari, Irene Fiorucci and Massimo Mari Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy Department of Earth Sciences, University of Siena Distributed under Creative Commons Attribution 3.0

Introducing VESPA-22: a ground- based microwave spectrometer for measuring middle atmospheric water vapour at polar latitudes 27 April 2012 EGU General

Embed Size (px)

Citation preview

Introducing VESPA-22: a ground-based microwave spectrometer for

measuring middle atmospheric water vapour at polar latitudes

27 April 2012EGU General Assembly 2012

Pietro Paolo Bertagnolio, Giovanni Muscari, Irene Fiorucci and Massimo Mari

Istituto Nazionale di Geofisica e Vulcanologia, Rome, ItalyDepartment of Earth Sciences, University of Siena

Distributed under Creative Commons Attribution 3.0

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Our goal

To observe changes in the water vapour concentration profile in the stratosphere and mesosphere in the polar regions

Long-term (decadal trends)

Short-term (diurnal cycle)

With a new ground-based microwave spectrometer to measure the 22.235 GHz transition of water vapour as part of the NDACC network

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Main ideas• Balancing technique (signal-reference)• Front-end:

– Parabolic reflector– Uncooled heterodyne receiver– chopper with dielectric sheet– Wobbler for λ/4 shift

• Back-end:– Acqiris FFT spectrometer

• Calibration:– Noise diodes for on-line calibration– LN2 for absolute calibration

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Observation goals Instrument specifications

Observation angle

10°-15° Spectral resolution (B)

61 kHz

Signal-to-noise ratio (SNR)

115 Spectrometer bandwidth

1 GHz

Total integration time (ttot)

12 hrs (1 h if binned)

Antenna beamwidth (HPBW)

3.5°

Altitude range of profiles

20 - 80 km Effective observation time (t / ttot)

40%

Profile accuracy 15% System temperature (Tsys)

≈ 165 K

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Functional scheme

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

VESPA-22 (water Vapor Emission Spectrometer for Polar Atmospheres at 22 GHz)

Parabolic mirror

Choppermirror

Quarter-wavelength shift

Receiver

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Parabolic antenna

• Feedhorn from University of Navarra– Same design as IMK Karlsruhe– Length: 20 cm– HPBW: 12.5°

• Parabolic reflector from Thomas Keating Ltd.– Our design– Long axis: 60 cm– Total HPBW: 3.5°

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Radiation pattern

Half-Power Beam Width (HPBW) = 3.5°Sidelobes < -40 dB below main lobeCross-polarization < -24 dB below main polarization

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Diagrammi di radiazione e fase fra 21.2 e 23.2 GHzCampo lontano (4 m)

Antenna + specchio parabolicoCampo vicino (0.43 m)

Antenna

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Chopper mirror

With small absorber bar With dielectric (DELRIN) sheet

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Chopper performance

Dielectric material Balancing angle Added power wrt zenith

Plexiglas 43°

Small absorber bar

Delrin (2 mm) 28.8° 10.2%

Delrin (5 mm) 8.5%

Delrin (2+2 mm) 43° 5.2%

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Wobbler performance

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Setup di test

14

LNA

Amplifier 2IF Mixer To Back-end

Antenna

Amplifier

LO 1IF

LO 2IF

1IF Mixer

Sidebandfilter

IF filters

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Noise diode calibration

Cold body (LN2) Calibration sources

Hot body𝑇 𝑠−𝑇 𝑅=𝐺 (𝑉 𝑠−𝑉 𝑅 )=𝑇𝑁𝐷

𝑉 𝑁𝐷+𝑅−𝑉 𝑅(𝑉 𝑠−𝑉 𝑅)

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Noise diode calibration

0 5000 10000 15000

0.5

1

1.5

2

x 108

FFT Channels

FF

T C

oun

ts"Raw" Calibration Spectra

Cold Target (77 K)

Hot Target (295 K)Noise Diode 1 (84 K)

Noise Diode 2 (131 K)

Trec = 312 K

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

22.15 22.2 22.25 22.3-2000

-1000

0

1000

2000

3000

Frequency [GHz]

Bri

ghtn

ess

Te

mpe

ratu

re [m

K]

Calibrated Spectrum18-04-2012 13:20-17:20

Effective Integration Time 80'

No baseline subtracted

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

22.225 22.23 22.235 22.24 22.245-100

0

100

200

300

Frequency [GHz]

Brig

htne

ss T

empe

ratu

re [m

K]

Water Vapour Emission Line @ 22.235 GHz18-19/04/2012

Effective Integration Time 3h40'

2 sine waves subtracted

EGU GENERAL ASSEMBLY 2012 – 27/04/2012PIETRO PAOLO BERTAGNOLIO – [email protected]/14

Future work (now the fun starts…)• Improve baseline flatness:

– λ/4 wobbler instead of fixed shift– Delrin compensating sheet– Front-end optimization

• Improve sensitivity and Trec– Test single-sideband mixer

• Test with longer integration times from an high-altitude observatory (Gran Sasso)

• Set up inversion algorithm

Conclusions• Long-term monitoring of polar stratospheric water vapour is

needed• We designed and built a new 22-GHz spectrometer for polar

observations• We measured the first atmospheric spectra (“first light”)