86
Introduction to Biotechnology – A Georgia Teachers Guide 1 Introduction to Biotechnology: A Georgia Teachers Resource Manual Bioscience Curriculum for CTAE and Science Credit Jonathon Wetherington, Ph.D.

Introduction to Biotechnology: A Georgia Teachers Resource ... · PDF fileIntroduction to Biotechnology – A Georgia Teachers Guide 1 ... Introduction to Biotechnology – A Georgia

Embed Size (px)

Citation preview

Introduction to Biotechnology – A Georgia Teachers Guide

1

IntroductiontoBiotechnology:

AGeorgiaTeachersResourceManual

BioscienceCurriculumforCTAEandScienceCredit

JonathonWetherington,Ph.D.

Introduction to Biotechnology – A Georgia Teachers Guide

2

TableofContents

Section Contents Pages

1 WhatisBiotechnology? 3

2 IntroductiontoBiotechnology:GeorgiaStandards 6

3 BuildingaBiotechnologyProgram

a. Assessingyourneeds

b. Recruitingsupport&students

c. Know‐howissecondarytocan‐do

13

4 Materials,Equipment,andSupplies 16

5 TheBiotechnologyClassroom

a. ClassroomSet‐up

b. LabSafety

c. ClassroomManagement

21

6 InstructionalCalendar 25

7 Unit1:DevelopmentofBiotechnologyProducts 28

8 Unit2:CareersinBiotechnology 38

9 Unit3:Bioethics 43

10 Unit4:LaboratoryProceduresandSafety 48

11 Unit5:BiotechniquesandApplications 56

12 Unit6:GeneticEngineering 61

13 Unit7:OrganismsinBiotechnology 74

AppendixA Recipesforvariouslabs 80

AppendixB OnlineResources 82

Introduction to Biotechnology – A Georgia Teachers Guide

3

1WhatisBiotechnology?

WelcometothestimulatingandquicklyevolvingfieldofBiotechnology!Thismanual

isintendedtoassistyouinteachingthebiotechnologystandardsrecentlydraftedandadoptedbytheGeorgiaDepartmentofEducationfortheIntroductiontoBiotechnologycourse.Thismanualisintendedtoservetwopurposes:1)toconnecttheGeorgiaDOEstandardswiththecontentcoveredinahighschoollevelBiotechnologytextbookand2)tohelpteachersbecomefamiliarwithinstructionalstrategiesandlessonsinordertodeliverthecoursecontent.Biotechnologyisauniqueandrewardingopportunityforboththestudentsandtheteachersthat“transforms”scientificknowledgeintopractice.RecommendedText:Biotechnology:SciencefortheNewMillenniumbyEllynDaughertyavailablefromEMC‐ParadigmPublishingCurriculumMaterialsAvailable:http://www.emcp.com/product_catalog/index.php?GroupID=170/

TextandEncoreMultimediaCD,ExperiencingBiotechnology,offering Flashanimationsofkeybiotechnologyconcepts Videosdemonstratinglabproceduresusingthescientificmethod Quizzesintwomodes:practiceandscores‐reported Fullglossarywithpronunciations

LabManualwithactivitiesandexperimentsforeverychapter Text/EncoreCDandLabManualPackage LabNotebook Text/EncoreCD,LabManual,andLabNotebookPackage Instructor’sGuide(printed)andCD‐ROMPackage

Includesmodelanswers,evaluationguides,teachinghints,courseplanningtools,PowerPointpresentations

TestGeneratorandItemBank Createyourowntestsorusepredefined,ready‐to‐activatetests Useanycombinationofhundredsofmultiple‐choice,true/false,matching,and

short‐answeritems Delivertestsonprint,LAN,orWANplatforms CreateaWebsiteforyourclasstomanagetheirtesting

CoursePlanner:ComprehensiveLessonPlanso Guidelinesforstructuringanintroductorybiotechnologycourseo Pedagogicalresourcesneededtoteachasuccessfulcourseo Acompletelessonplanforeverysectionofeverychapterinthetextbookand

labmanualo Lessonplanmodelspresentedincaseyouwanttodesignyourownlesson

structure InternetResourceCenter:

o Studentresourcesincludeself‐quizzeswithreportableresultsforteachers,studyaids,Weblinks,PowerPointpresentations

Introduction to Biotechnology – A Georgia Teachers Guide

4

o Instructorresourcesincludesyllabussuggestions,testsandassessments,answerkeys,PowerPointpresentations,courseobjectives,andWeblinks

ClassConnections(WebCTandBlackboard)o Includescoursesyllabi,assignments,quizzes,tests,Weblinks,andprojects

WHATISBIOTECHNOLOGY?

Biotechnologyistheuseormanipulationofanorganismorthecomponentsofanorganism.Bythisdefinition,theoriginsofbiotechnologydatebacktowhenpeoplefirstbegantodomesticateanimalsandcultivatefoodcrops.Whilethoseearlyapplicationsarecertainlystillemployedtoday,modernbiotechnologyisprimarilyassociatedwithmolecularbiology,cloning,andgeneticengineering.Withinthelast50years,thebiologicalscienceswererevolutionizedbyseveralkeydiscoveriesthatenabledtherapidevolutionofthebiosciences.Thesediscoveriesenabledscientiststoisolateandmanipulategenes,whichhasfacilitatedthegrowthofthebiotechnologyindustry.INTRODUCTIONTOBIOTECHNOLOGYCOURSE

Thiscourseintroducesstudentstothefundamentalscientificprincipalsofbiotechnology,bioethics,thevarietyofcareersinbiosciences,aswellasthecommercialandregulatorycharacteristicsofthebiosciences.TheIntroductiontoBiotechnologycourseemphasizeshowkeyconceptsfrombiology,chemistry,andphysicsapplytomodernapplicationswithinthebiologicalsciences.Theknowledgeandskillsgainedinthiscourseprovidestudentswithabroadunderstandingofbiotechnologyandtheimpactitmakesonsociety.Asstudentsworktomasterthecontent,theymirrorwhatscientistsandtechniciansaredoinginscientificlaboratories.Asignificantpartofthecourseinvolvesactualandsimulatedresearchbeingdoneinactuallaboratoriesworld‐wide,whichgivesstudentstheuniqueopportunitytocarryouttheworldchangingexperimentsaboutwhichtheyarelearning.Toaccomplishthisgoal,thecourseisespeciallylaboratoryintensive,andstudentsspend50‐75%ofclasstimecarryingoutactualexperiments.Thisfocusonworkingknowledgeallowsstudentstolearnandpracticetheskillsthattheywouldactuallyuseinthefieldofbiotechnologyandbuildupthepracticalskillsetofeachstudent.Ultimately,thecontentandskillscoveredoffersallstudentstheopportunitytoacquirebasiccompetenciesrequiredforanentry‐levelpositioninanybiotechnologycompany.Thetargetaudienceincludesallstudentsinterestedinattendinganycollegeortechnicalschoolsbyprovidingfoundationalconceptsandestablishedlaboratoryproceduresinabroadspectrumofdisciplinessuchasbiology,chemistry,biochemistry,molecularbiology,microbiology,genetics,andimmunology.

Workersinbiotechnologycreate,design,develop,andevaluatesystemsandproductssuchasartificialorgans,artificiallimbs,medicationinformationsystems,medicalequipmentandinstrumentation.Tasksassociatedwithcareersinbiotechnologyincluderesearchingnewmaterialsforbiomedicalequipment,evaluatingthesafetyofsuchequipment,utilizingcomputersimulationofthebody’sorgansandsystems,designinganddevelopingnewproceduresandequipmentfordetectingdisease,andadvisinghospitalsandothermedicalfacilitiesontheuseofnewandexistingmedicalequipment.Majoremployersincluderesearchanddevelopmentcompanies,medicinemanufacturers,medicalequipmentandsupplymanufacturers,andprivatehospitals.

Introduction to Biotechnology – A Georgia Teachers Guide

5

BIOTECHNOLOOGYINDUSTRYFACTS Thebiotechnologyindustryemergedinthe1970s,basedlargelyonanew

recombinantDNAtechnology. Biotechnologyhascreatedmorethan200newtherapiesandvaccines,including

productstotreatcancer,diabetes,HIV/AIDSandautoimmunedisorders. Therearehundredsofbiotechdrugproductsandvaccinescurrentlyinclinicaltrials

targetingmorethan200diseases,includingvariouscancers,Alzheimer’sdisease,heartdisease,diabetes,multiplesclerosis,AIDSandarthritis.

BiotechnologyisresponsibleforhundredsofmedicaldiagnosticteststhatkeepthebloodsupplysafefromHIVanddetectotherconditionsearlyenoughtobesuccessfullytreated.Homepregnancytestsarealsobiotechnologydiagnosticproducts.

Agriculturalbiotechnologybenefitsfarmers,consumersandtheenvironment—byincreasingyieldsandfarmincome,decreasingpesticideapplicationsandimprovingsoilandwaterquality,andprovidinghealthfulfoodsforconsumers.

Environmentalbiotechproductsmakeitpossibletocleanuphazardouswastemoreefficientlybyharnessingpollutioneatingmicrobes.

Industrialbiotechapplicationshaveledtocleanerprocessesthatproducelesswasteanduselessenergyandwater.

DNAfingerprinting,abiotechprocess,hasdramaticallyimprovedcriminalinvestigationandforensicmedicine.Ithasalsoledtosignificantadvancesinanthropologyandwildlifemanagement.

ThebiotechindustryisregulatedbytheU.S.FoodandDrugAdministration(FDA),theEnvironmentalProtectionAgency(EPA)andtheDepartmentofAgriculture(USDA).

In1982,recombinanthumaninsulinbecamethefirstbiotechtherapytoearnFDAapproval.TheproductwasdevelopedbyGenentechandEliLillyandCo.

FromTheGuidetoBiotechnologybytheBiotechnologyIndustryOrganization(BIO)EditorsRoxannaGuilford‐Blake&DebbieStrickland www.bio.org

Introduction to Biotechnology – A Georgia Teachers Guide

6

2IntroductiontoBiotechnology:GeorgiaStandards

CourseTitle:IntroductiontoBiotechnologyCourseDescription:IntroductiontoBiotechnologyintegratesthefundamentalconceptsoflifeandphysicalsciencestogetherwiththebasiclaboratoryskillsnecessaryinthebiologicalsciences.ThiscoursemayserveaseitherthesecondcourseintheBiotechnologyResearchandDevelopmentpathwayorasanindependentscienceelective.IntroductiontoBiotechnologyintroducesstudentstothefundamentalsofbiotechnology,currenttrendsandcareersinbiotechnology,andthebusiness,regulatory,andethicalaspectsofbiotechnology.Theknowledgeandskillsgainedinthiscoursewillprovidestudentswithabroadunderstandingofbiotechnologyanditsimpactonsociety.

IntroductiontoBiotechnologyisintendedtomeettheneedsofadiversebodyoflearners.Thetargetaudienceincludesallstudentswhochoosepostsecondaryeducation,providingthemwithfoundationalconceptsandestablishedlaboratoryprotocolsinabroadspectrumofdisciplinessuchasbiology,chemistry,biochemistry,biotechnology,microbiology,molecularandcellbiology,genetics,andimmunology.Inaddition,thecoursehasthepotentialtofosterscientificliteracyandimprovestudentsuccessontheGeorgiaHighSchoolGraduationTestandtoprovideentryintothebiotechnologycareerfield.Co‐Requisite–ContentHS‐IBT‐1.Studentswilldemonstrateunderstandingofrequiredsafetypracticesandproceduresintheclassroomandlaboratoryenvironment.

a.Definehealthandsafetyregulations,includingOccupationalSafetyandHealthAdministration(OSHA),EnvironmentalProtectionAgency(EPA),andRighttoKnowanddemonstrateproceduresfordocumentingandreportinghazardsandcompliancee.g.,CFR1910.1450.

b.Demonstratehealthandsafetypractices,includinguseofMaterialSafetyDataSheets(MSDS),appropriatepersonalprotectiveequipment(PPE)forthesituation,emergencyequipment,storageofchemicals,reagentsandcompounds,andmaintenanceofequipment.

c.Demonstratedisasterpreparednessproceduresforeachemergencysituation–firepreventionandtheemergencyevacuationplan,inclementweather,schoolandworkplaceviolence,bombthreat,andbiotechnologyrelatedemergencies.

d.Demonstrateknowledgeofstandardprecautionsincludingproperstorage,handlinganddisposalofbiohazardsmaterials.

e.DemonstratetheabilitytofollowStandardOperatingProcedures(SOP).AcademicStandards:HS‐IBT‐2.Studentswillunderstandthebasisforbiotechnologyproductsandhowsuchproductsaffectthequalityoflife.

Introduction to Biotechnology – A Georgia Teachers Guide

7

a.DescribethemajorscientificdiscoveriesthatleadtodevelopmentofrecombinantDNAtechnology,includingthoseinthefieldsofbiology,chemistry,genetics,andmicrobiology,andexplainhowtheseadvancesinDNAtechnologyareusedtoday

b.Identifypastandcurrentdiscoveriesanddevelopmentsinfieldssuchas,agriculture,diagnostics,medicaldevices,pharmaceuticals,andresearchanddevelopment.

c.JustifythestepsinproductionanddeliveryofaproductmadeusingrecombinantDNAtechnology.

d.Discusstheimplicationsofthegenomicsandproteomicsonbiotechnologyandcurrenthealthcare.

HS‐IBT‐3.Studentswillanalyzecareersinresearchanddevelopment,humanhealthanddiagnostics,biomanufacturing,environmentalapplications,andagriculturethatutilizebiotechnology.

a.Describetheeducationalrequirementsandresponsibilitiesforvariouspositionswithinthebiotechnologyindustry.

b.Compareandcontrastcareerswithinacademic,government,andprivatesectors.c.Developaportfoliodocumentingeducation,experiences,andacquiredskillsfora

specificcareers.d.Demonstrateunderstandingofthecareerdevelopmentplanningprocessandthe

processoflife‐longlearning.e.DescribetheroleofStudentOrganizations(e.g.,HOSA,FBLA,KeyClub,andBETA)

andtheirimportanceinleadershipdevelopment.f.Demonstrateanunderstandingofthenatureofemployer‐employeerelationships.

HS‐IBT‐4.Studentswilldemonstratehowconceptsofphysicalscienceconnecttobiochemicalapplicationsandtechniques.

a.Calculateandpreparebuffers,stocksolutions,andreagents.b.Analyzeandapplytheconceptsofhomeostasisandmolarrelationshipsto

biochemicalreactions.c.DrawconclusionsregardingproteinfunctionandstructureasitrelatestothepHof

asolution.d.Analyzeenzymeactivityusingassaysforreactantsandproducts.e.Utilizeelectrophoresis,chromatography,microscopyandspectrophotometryto

identify,separateandtodrawconclusionsaboutbiologicalmolecules.f.Useantibodyspecificityforantigenstotestforthepresenceofprotein(e.g.,ELISA,

WesternBlot,antibodystaining).HS‐IBT‐5.Studentswillcompareandcontrastcommonorganismsusedinbiotechnologyandrelatethemanipulationoflivingorganismstoproductandproceduredevelopment.

a.Distinguishbetweenprokaryoticcells,eukaryoticcells,andnon‐livingentitiessuchasviruses.

b.Describethecharacteristicsandlifecyclesofmodelorganismsusedinbiotechnology,includingbacteria(e.g.,E.coli),fungi(e.g.,yeastsandAspergillus),andanimals(e.g.,C.elegans,fruitflies,androdents).

Introduction to Biotechnology – A Georgia Teachers Guide

8

c.Monitorhowenvironmentalfactorsaffectthegrowthofcellsandmodelorganismsinthelaboratory.

d.Applythebasicconceptsofcellgrowthtomanipulateculturesunderasepticconditionsinthelaboratory.

e.Performtransformations,includingcompetency,selection,antibioticresistance,andanalysisoftransformationefficiency.

HS‐IBT‐6.Studentswilldemonstratehowmanipulationofnucleicacidsthroughgeneticengineering(recombinantDNAandRNAtechnologies)altersthefunctionofproteinsandsubsequentcellularprocesses.

a.DescribethefunctionofDNA,RNA,andproteininlivingcellsandtheCentralDogma.

b.DemonstratehowthestructureofDNAinfluencesitsfunction,analysis,andmanipulation.

IsolategenomicandrecombinantDNAfromcellsandsolutionsandanalyzeitspurityandconcentration.

ExplainanddemonstratetheprinciplesinvolvedinDNAanalysisviaagarosegelelectrophoresis.

DescribepreviousandcurrentDNAsequencingtechnologies.c.Explaintheroleofenzymes(e.g.,restrictionenzymes,DNApolymerases,and

nucleases)intheproductionandmanipulationofDNAmolecules.d.Determineandanalyzetheeffectofqualitativeandquantitativechangesofspecific

proteinsoncellfunction.HS‐IBT‐7.Studentswillanalyzeeconomic,social,ethical,andlegalissuesrelatedtotheuseofbiotechnology.

a.Differentiatebetweenmoral,ethical,andlegalbiotechnologyissues.b.Researchethicalissuespresentedbyevolvingscience,includinggenetically

modifiedfoods,cloning,bioterrorism,genetherapy,andstemcells.c.Compareandcontrastattitudesabouttheuseofbiotechnologyregionally,

nationally,andinternationally.d.Evaluatetheregulatorypoliciesimpactingbiotechnologyresearch‐e.g.,useof

animalsinresearchandapplicationsofrecombinantDNA.Co‐Requisite–CharacteristicsofScienceHabitsofMindSCSh1.Studentswillevaluatetheimportanceofcuriosity,honesty,openness,andskepticisminscience.

a.Exhibittheabovetraitsintheirownscientificactivities.b.Recognizethatdifferentexplanationsoftencanbegivenforthesameevidence.c.Explainthatfurtherunderstandingofscientificproblemsreliesonthedesignandexecutionofnewexperimentswhichmayreinforceorweakenopposingexplanations.

Introduction to Biotechnology – A Georgia Teachers Guide

9

SCSh2.Studentswillusestandardsafetypracticesforallclassroomlaboratoryandfieldinvestigations.

a.Followcorrectproceduresforuseofscientificapparatus.b.Demonstrateappropriatetechniqueinalllaboratorysituations.c.Followcorrectprotocolforidentifyingandreportingsafetyproblemsandviolations.

SCSh3.Studentswillidentifyandinvestigateproblemsscientifically.

a.Suggestreasonablehypothesesforidentifiedproblems.b.Developproceduresforsolvingscientificproblems.c.Collect,organizeandrecordappropriatedata.d.Graphicallycompareandanalyzedatapointsand/orsummarystatistics.e.Developreasonableconclusionsbasedondatacollected.f.Evaluatewhetherconclusionsarereasonablebyreviewingtheprocessandcheckingagainstotheravailableinformation.

SCSh4.Studentsusetoolsandinstrumentsforobserving,measuring,andmanipulatingscientificequipmentandmaterials.

a.Developandusesystematicproceduresforrecordingandorganizinginformation.b.Usetechnologytoproducetablesandgraphs.c.Usetechnologytodevelop,test,andreviseexperimentalormathematicalmodels.

CSh5.Studentswilldemonstratethecomputationandestimationskillsnecessaryforanalyzingdataanddevelopingreasonablescientificexplanations.

a.Tracethesourceonanylargedisparitybetweenestimatedandcalculatedanswerstoproblems.

b.Considerpossibleeffectsofmeasurementerrorsoncalculations.c.Recognizetherelationshipbetweenaccuracyandprecision.d.Expressappropriatenumbersofsignificantfiguresforcalculateddata,usingscientificnotationwhereappropriate.

e.Solvescientificproblemsbysubstitutingquantitativevalues,usingdimensionalanalysisand/orsimplealgebraicformulasasappropriate.

SCSh6.Studentswillcommunicatescientificinvestigationsandinformationclearly.

a.Writeclear,coherentlaboratoryreportsrelatedtoscientificinvestigations.b.Writeclear,coherentaccountsofcurrentscientificissues,includingpossiblealternativeinterpretationsofthedata.

c.Usedataasevidencetosupportscientificargumentsandclaimsinwrittenororalpresentations.

d.Participateingroupdiscussionsofscientificinvestigationandcurrentscientificissues.

TheNatureofScienceSCSh7.Studentsanalyzehowscientificknowledgeisdeveloped.Studentsrecognizethat:

Introduction to Biotechnology – A Georgia Teachers Guide

10

a.Theuniverseisavastsinglesysteminwhichthebasicprinciplesarethesameeverywhere.

b.Universalprinciplesarediscoveredthroughobservationandexperimentalverification.

c.Fromtimetotime,majorshiftsoccurinthescientificviewofhowtheworldworks.Moreoften,however,thechangesthattakeplaceinthebodyofscientificknowledgearesmallmodificationsofpriorknowledge.Majorshiftsinscientificviewstypicallyoccuraftertheobservationofanewphenomenonoraninsightfulinterpretationofexistingdatabyanindividualorresearchgroup.

d.Hypothesesoftencausescientiststodevelopnewexperimentsthatproduceadditionaldata.

e.Testing,revising,andoccasionallyrejectingnewandoldtheoriesneverends.SCSh8.Studentswillunderstandimportantfeaturesoftheprocessofscientificinquiry.Studentswillapplythefollowingtoinquirylearningpractices:

a.Scientificinvestigatorscontroltheconditionsoftheirexperimentsinordertoproducevaluabledata.

b.Scientificresearchersareexpectedtocriticallyassessthequalityofdataincludingpossiblesourcesofbiasintheirinvestigations’hypotheses,observations,dataanalyses,andinterpretations.

c.Scientistsusepracticessuchaspeerreviewandpublicationtoreinforcetheintegrityofscientificactivityandreporting.

d.Themeritofanewtheoryisjudgedbyhowwellscientificdataareexplainedbythenewtheory.

e.Theultimategoalofscienceistodevelopanunderstandingofthenaturaluniversewhichisfreeofbiases.

f.Sciencedisciplinesandtraditionsdifferfromoneanotherinwhatisstudied,techniquesused,andoutcomessought.

ReadingStandardCommentAftertheelementaryyears,studentsareseriouslyengagedinreadingforlearning.Thisprocesssweepsacrossalldisciplinarydomains,extendingeventotheareaofpersonallearning.Studentsencounteravarietyofinformationalaswellasfictionaltexts,andtheyexperiencetextinallgenresandmodesofdiscourse.Inthestudyofvariousdisciplinesoflearning(languagearts,mathematics,science,socialstudies),studentsmustlearnthroughreadingthecommunitiesofdiscourseofeachofthosedisciplines.Eachsubjecthasitsownspecificvocabulary,andforstudentstoexcelinallsubjects,theymustlearnthespecificvocabularyofthosesubjectareasincontext.Beginningwiththemiddlegradesyears,studentsbegintoself‐selectreadingmaterialsbasedonpersonalinterestsestablishedthroughclassroomlearning.Studentsbecomecuriousaboutscience,mathematics,history,andliteratureastheyformcontextsforthosesubjectsrelatedtotheirpersonalandclassroomexperiences.Asstudentsexploreacademicareasthroughreading,theydevelopfavoritesubjectsandbecomeconfidentintheirverbaldiscourseaboutthosesubjects.

Introduction to Biotechnology – A Georgia Teachers Guide

11

Readingacrosscurriculumcontentdevelopsbothacademicandpersonalinterestsinstudents.Asstudentsread,theydevelopbothcontentandcontextualvocabulary.Theyalsobuildgoodhabitsforreading,researching,andlearning.TheReadingAcrosstheCurriculumstandardfocusesontheacademicandpersonalskillsstudentsacquireastheyreadinallareasoflearning.SCSh9.Studentswillenhancereadinginallcurriculumareasby:

a.Readinginallcurriculumareas Readaminimumof25grade‐levelappropriatebooksperyearfromavariety

ofsubjectdisciplinesandparticipateindiscussionsrelatedtocurricularlearninginallareas.

Readbothinformationalandfictionaltextsinavarietyofgenresandmodesofdiscourse.

Readtechnicaltextsrelatedtovarioussubjectareas.b.Discussingbooks

Discussmessagesandthemesfrombooksinallsubjectareas. Respondtoavarietyoftextsinmultiplemodesofdiscourse. Relatemessagesandthemesfromonesubjectareatomessagesandthemesin

anotherarea. Evaluatethemeritoftextsineverysubjectdiscipline. Examineauthor’spurposeinwriting. Recognizethefeaturesofdisciplinarytexts.

c.Buildingvocabularyknowledge Demonstrateanunderstandingofcontextualvocabularyinvarioussubjects. Usecontentvocabularyinwritingandspeaking. Exploreunderstandingofnewwordsfoundinsubjectareatexts.

d.Establishingcontext Explorelifeexperiencesrelatedtosubjectareacontent. Discussinbothwritingandspeakinghowcertainwordsaresubjectarea

related. Determinestrategiesforfindingcontentandcontextualmeaningforunknown

words.

Introduction to Biotechnology – A Georgia Teachers Guide

12

CTAEFoundationSkillsTheFoundationSkillsforCareer,TechnicalandAgriculturalEducation(CTAE)arecriticalcompetenciesthatstudentspursuinganycareerpathwayshouldexhibittobesuccessful.Ascorestandardsforallcareerpathwaysinallprogramconcentrations,theseskillslinkcareer,technicalandagriculturaleducationtothestate’sacademicperformancestandards.

TheCTAEFoundationSkillsarealignedtothefoundationoftheU.S.DepartmentofEducation’s16CareerClusters.EndorsedbytheNationalCareerTechnicalEducationFoundation(NCTEF)andtheNationalAssociationofStateDirectorsofCareerTechnicalEducationConsortium(NASDCTEc),thefoundationskillsweredevelopedfromananalysisofallpathwaysinthesixteenoccupationalareas.Thesestandardswereidentifiedandvalidatedbyanationaladvisorygroupofemployers,secondaryandpostsecondaryeducators,laborassociations,andotherstakeholders.TheKnowledgeandSkillsprovidelearnersabroadfoundationformanaginglifelonglearningandcareertransitionsinarapidlychangingeconomy.CTAE‐FS‐1TechnicalSkills:Learnersachievetechnicalcontentskillsnecessarytopursuethe

fullrangeofcareersforallpathwaysintheprogramconcentration.CTAE‐FS‐2AcademicFoundations:Learnersachievestateacademicstandardsatorabove

gradelevel.CTAE‐FS‐3Communications:Learnersusevariouscommunicationskillsinexpressingand

interpretinginformation.CTAE‐FS‐4ProblemSolvingandCriticalThinking:Learnersdefineandsolveproblems,and

useproblem‐solvingandimprovementmethodsandtools.CTAE‐FS‐5InformationTechnologyApplications:Learnersusemultipleinformation

technologydevicestoaccess,organize,process,transmit,andcommunicateinformation.

CTAE‐FS‐6Systems:Learnersunderstandavarietyoforganizationalstructuresandfunctions.

CTAE‐FS‐7Safety,HealthandEnvironment:Learnersemploysafety,healthandenvironmentalmanagementsystemsincorporationsandcomprehendtheirimportancetoorganizationalperformanceandregulatorycompliance.

CTAE‐FS‐8LeadershipandTeamwork:Learnersapplyleadershipandteamworkskillsincollaboratingwithotherstoaccomplishorganizationalgoalsandobjectives.

CTAE‐FS‐9EthicsandLegalResponsibilities:Learnerscommittoworkethics,behavior,andlegalresponsibilitiesintheworkplace.

CTAE‐FS‐10CareerDevelopment:Learnersplanandmanageacademic‐careerplansandemploymentrelations.

CTAE‐FS‐11Entrepreneurship:Learnersdemonstrateunderstandingofconcepts,processes,andbehaviorsassociatedwithsuccessfulentrepreneurialperformance

Introduction to Biotechnology – A Georgia Teachers Guide

13

3BuildingaBiotechnologyProgram

A. AssessingyourneedsIntroductiontoBiotechnologyisauniquecourseconsistingofboththetraditionalScienceinstructionalelementscombinedwithestablishedCareer,Technical,andAgricultureEducation(CTAE)standards.Theresultisacoursethatisidealformeetingtheneedsofadiversebodyoflearnerswhilecultivating21stcenturyworkplaceskills.Thenatureofthecurriculumandstandardsplacesapriorityontheapplicationofcontentknowledgeandlaboratoryskills.TheidealBiotechnologystudent,liketheidealemployee,possessesawillingnesstolearn,agoodworkethic,andworkswellwithothers.SinceBiotechnologycoverssomanyareasofscience,moststudentsfindaspecificareathatpeakstheirinterestandpassion,whichmayverywellleadtoafuturecareer.AsyouconsiderdevelopingaBiotechnologycourseinyourschool,youwillneedtocarefullyconsideryourschool’suniqueneeds.Forexample,areyouaCTAEprogramlookingtoaddtheBiotechnologyPathway,orareyouatraditionalhighschoollookingtoaddsciencecoursestohelpyourstudentsmeetthefourthyearsciencerequirement?Whilethecontentcoveredinthesetwosituationswouldbeexactlythesame,thecoursedeliveryandrecruitmentmaylookquitedifferent.TheformerwillplacethiscourseasacrucialpartintheCTAEBiotechnologyPathwaythatpreparesstudentsforanadvancedBiotechnologycourseandpossibleinternships,yetthelatteroptionwillbefillingaspecificneedasastandalonecourse.Thesesituationspresentdifferentchallengeswithregardstostudentrecruitment,funding,andoverallpurpose.Thefollowingtwochartsareintendedtohelpweightheneedsandconsiderationswiththesupportavailableinyourarea.UsethequestionsincludedtohelpguideyouthroughtheprocessofdevelopingaBiotechnologyprogramandcommunicatingwithyourleadershipandcommunitypartners.ItisbesttoaddresstheNeedsandConsiderationsbeforethinkingaboutthesupport.IfyourschoolhasspecificneedsthattheBiotechnologycurriculumaddresses,thesupportwillmostlikelybeavailableviayourcommunityordistrict.Afteryouareabletodiscussthe“Needs”and“Support”issueswithyourleadership,youwillhavegreatperspectiveontheBiotechnologyenvironmentinyourarea.GiventherapidgrowthoftheBiotechnologyindustryoverthelast20yearsandthestrongpresenceofbiosciencecompaniesinGeorgia,almostanyschoolisafertilefieldforaBiotechnologycourse.Asyouweighthemattersandparticularissuesidentified,thetwomostimportantpiecesofavibrantBiotechnologyprogramwillbedescribedinthefollowingsections.

Introduction to Biotechnology – A Georgia Teachers Guide

14

NEEDS&CONSIDERATIONS

Student SchoolDistrict CommunityWillthisbeapartofaCTAEProgram?

Whatarethegoalsofthiscourse/program?

HowmanyBiotechfirmsarelocatedinyourarea?

Isthiscourseintendedspecificallytofulfillthe4thSciencerequirement?

Whatcurriculummaterialswillbeusedtosupportinstruction?

AretherelocalpostsecondaryBiotechprogramsinthearea?

Whatarethepostsecondarydestinationsofyourstudents?

WhatistheannualbudgetavailableforBiotechnology?

Whatsupportisavailablefromcommunitypartners?

Whatarethestudents’careerandjobaspirations?

HowwillBiotechhelpourstudentsontheGeorgiaHighSchoolGraduationExam?

Whataretheneedsofthebiotechemployersinyourarea?

Whatwasthestudent’sfavoritescienceclass?

Whatisthetargetstudentpopulation?

Whowillbeteachingthecourse?

Whowillfacilitatethecommunityanddistrictcollaborations?

Whataretheinitialexpenses?

SUPPORT:Financial Administrative CommunityHowmuchdoyouhavetospendonbooksandcurriculumresources(labmanuals)?

AretherereasonableandclearexpectationsfortheBiotechnologycourse?

Whatworkplaceexperiencesareavailable?

Howmuchmoneydoyouhavefordurableequipment?

WhataretheStaffDevelopmentandTrainingopportunitiesavailable?

Whatopportunitiesforfieldtripsareavailable?

Whatisyouryearlybudgetforconsumablesupplies?

Willtherebeadesignatedlabclassroom?

Aretherewillingguestspeakersinyourarea?

Doyouhaveanymoneyforfieldtrips?

WhatwilltheclasssizebeinyourBiotechnologyclassconsideringstudentswillbedoinglabs50‐75%ofthetime?

WouldBiotechorganizationsbewillingtoprovideinputintolessons?

Whatwillbeyourprimarysourcesoffunding?

Whatcounselingandadministrativesupportwillbeavailableforstudentrecruitment?

WhatgrantopportunitiesexisttosupportaBiotechnologyprogram?

Introduction to Biotechnology – A Georgia Teachers Guide

15

B. Recruitingsupport&studentsManystudentsandadultslackanappreciationforbiotechnologyandmanyofterms

associatedwithbiotechnologyaremisunderstood,whichpresentsauniquechallengewhentryingtorecruitstudentsornonscientificcommunitysupport.Ifyouaskagroupofhighschoolstudentswhatbiotechnologyis,youwillgetavarietyofanswersrangingfromafairlyaccuratedefinitiontoideasof“playinggod”andhumancloning.Therefore,asyourecruitstudentsandsupportyouwillneedtobepreparedtoaccuratelydescribeadiverseandevolvingfield.Youwillalsoneedtohelpstudentsmakeconnectionswithaspectsofbiotechnologythattheyarefamiliarwith.Geneticallymodifiedfoods,forensicscienceapplications(anyofthemoderncrimedramasonTV),medicaladvancesandtherapies,insulin,selectivebreeding,dairyproductslikecheeseandyogurt,andantibioticsareamongthediverseapplicationsofbiotechnologyinourlives.Usingtheseconnectionstoeverydayaspectsofourliveshelpsstudentsbetterunderstandbiotechnologyandcreatesinterestinthecourse.

Dependingonyourschoolsunique“Needs,”youwillwanttotakeoneofseveralapproachestostudentrecruitment.RecruitingstudentscouldbebroadlyfocusedonstudentsinprerequisitecourseswhichfeedstudentsintoaBiotechnologycourse.Thisallowstherecruitmenttobecateredspecificallytostudentsatspecificlevelsi.e.,honorsvs.regularlevelstudents.Asimplebrochureincombinationwithabriefpresentationinfrontofprospectivestudentsseemstoworkwell.Alternatively,studentscouldbeidentifiedbasedupontheirpriorsuccessinpreviouscourses,suchasBiology,orpredictedsuccessontheHighSchoolGraduationExamandencouragedbyfacultymemberstoregisterforBiotechnologytoincreasetheirlikelihoodforsuccessduringtheir11thand12thgradeyears.SincetheBiotechnologycoursecoverssomeofthephysicalscienceandagreatdealofbiologyontheGeorgiaHighSchoolGraduationTest,itmaysignificantlyimprovestudentperformanceonthatcriticalassessment.Itisexpectedthatthiscoursewillincreasestudentengagementandeducationalexperienceduetothepracticalnatureofbiotechnologyandthefocusonskilldevelopment.C. “Know‐how”issecondaryto“Can‐do”MostofthediscussionpriortothispointwasfocusedontheresourcesrequiredtoestablishaBiotechnologycourse.Yet,themostcriticalcomponentofasuccessfulBiotechnologyProgramatthehighschoollevelhasnotbeenaddressed.WhowillteachBiotechnologyatyourschool?Asisthecaseinanysuccessfulclassroom,themostimportantingredientinasuccessfullaboratorylearningenvironmentistheBiotechnologyteacher.TheBiotechnologyteacherdoesnotneedtohaveaPhDinMolecularBiologyor10yearsofexperienceintheBioscienceindustry.Itistrulya“nopreviousexperiencerequired”positionbecausethemostimportantfeaturesofaBiotechnologyteacherareawillingnesstolearnandenthusiasm.Therearenumerousopportunitiesforprofessionaldevelopmentandtrainingofferedthroughoutthestateduringboththesummerandtheschoolyear.Additionally,theteacherwillbeabletolearnmanyofthetechniquesandskillsalongsidetheirstudents,anditsoldbenotedthatthestudentstrulyenjoylearningalongsidetheteacher.Therefore,itisnotnecessaryfortheteachertohaveexperiencewithallofthetechniques,merelyadesireandwillingnesstolearnalongsidethestudents.

Introduction to Biotechnology – A Georgia Teachers Guide

16

4MaterialsandSupplies

Oneofthemoreuniqueaspectsofthiscourseofstudyisthatstudentsarelearningboththeapplicationsandhowtousemodernscientificlaboratoryequipment.Therefore,anintegralcomponentofanyBiotechnologycourseisthetechnologyrequiredtoprovideanauthenticlearningexperience.Likeanytechnologycourse,theequipmentcostandrequirementsareafundamentalconsideration,butthebenefitstothestudentsaresignificant.SchoolswithAPBiologycourseswillalreadyhavesomeoftheseessentialcomponents,andwhiletheywillbeusedmoreextensivelyintheBiotechnologyclass,itiscertainlypossibletosharethembetweenthecourses.TheequipmentandsupplieslistedbelowarebaseduponthelabsfromtheBiotechnologyLabManualbyEllynDaugherty,whichalignwiththeGPSforIntroductiontoBiotechnology.Theequipmentissortedbaseduponthesupplierwhoseproductprovidesthebestqualityforthecost.Thetotalestimatedequipmentcostisaround$30,000perschool,butthatcanbereducedtounder$20,000baseduponcrucialconsiderationsandpossiblealternatives.Twoitemscombinetoaccountforalmost$10,000,aUVspectrophotometer,andautoclave.Yet,lowercostoptionsareavailableforboth,butitisonlyrecommendedinthecaseoftheautoclave(SargentWelchhasaPortableElectricSterilizer,WLS58617‐Aforaround$715.09).TheUVspectrophotometerisnecessarytomeasurenucleicacidconcentrationsandpurity,andwithoutthistool,studentscannotuseaspectrophotometertomeasureDNAquantityandpurity(HS‐IBT‐6b),whichmeansthatthisstandardwouldhavetobeaccomplishedbyanothermeans,suchasgelelectrophoresisandthatismoredifficultandlessaccurateandnotacurrentstandardlaboratoryprocedure.Inaddition,afewotherspecificitemsarehighlightedthatmightbeeliminatedwithoutdramaticallydiminishingtheinstructionalquality.

BiotechnologyEquipmentList

Equipment Catalog# Amt Cost Total NotesCompanyBioRad Mini‐SubCellGT7x7 166‐4270EDU 8 $179.00 $1,432.00 Power‐PacBasic 166‐5050EDU 2 $325.00 $650.00 Mini‐TransBlotprotein 170‐3930EDU 4 $298.00 $1,192.00 optionalMicropipette2‐20 166‐0506EDU 8 $159.00 $1,272.00 Micropipette20‐200 166‐0507EDU 8 $159.00 $1,272.00

Micropipette100‐1000 166‐0508EDU 8 $159.00 $1,272.00

Possibletoreduceto4asanextremecost

savingsmeasure.

Microcentrifuge 166‐0603EDU 2 $260.00 $520.00 IncubationOven 166‐0501EDU 2 $295.00 $590.00 WaterBath 166‐0504EDU 1 $505.00 $505.00 Transilluminator 170‐7950EDU 1 $428.00 $428.00 optionalRockingPlatform 166‐0709EDU 1 $575.00 $575.00 optionalPipetTips0.5‐10TBR14 223‐9354EDU 1 $36.00 $36.00

Introduction to Biotechnology – A Georgia Teachers Guide

17

PipetTipsTBR35 223‐9347EDU 1 $36.00 $36.00 PipetTipsTBR40 223‐9350EDU 1 $39.00 $39.00 ProteinTips 223‐9917EDU 1 $43.00 $43.00 XculdaTips(PCR) 211‐2001EDU 1 $98.00 $98.00 1.5mltubes 223‐9480EDU 2 $19.00 $38.00 PCRTubes 223‐9473EDU 1 $25.00 $25.00 DisposableCuvettes 223‐9950EDU 5 $10.00 $50.00 DisposableCuvettes 223‐9955EDU 5 $10.00 $50.00 LongwaveUVLamps 166‐0500EDU 4 $35.00 $140.00 CompanyFisher

Autoclave S63100 1 $7,112.00 $7,112.00

Optional,asterilizercostabout$800oramicrowavecanbeusedtosterilizemostsolutions.

pHMeter S66888 2 $192.00 $384.00 Balance S67064 2 $307.00 $614.00 HotPlate/Stirrer 14‐259‐230 2 $385.00 $770.00 Stirplate 11‐510‐53 4 $159.00 $636.00 ErlenmeyerFlask125ml 07‐250‐089 1 $37.67 $37.67 12pkErlenmeyerFlask250ml 07‐250‐090 1 $38.99 $38.99 12pkErlenmeyerFlask500ml 07‐250‐091 2 $24.56 $49.12 6pkErlenmeyerFlask1L 07‐250‐092 2 $39.93 $79.86 6pkBottlesGraduatedautoclavable500ml 03‐405‐33 1 $53.00 $53.00 12pkBottlesGraduatedautoclavable1L 03‐405‐34 2 $31.00 $62.00 6pkStirBarsA 14‐512‐149 12 $5.94 $71.28 StirBarsB 14‐512‐148 12 $5.15 $61.80 PCRRacks 05‐541‐55 2 $56.28 $112.56 10pkParafilm 13‐374‐10 1 $26.40 $26.40

4wayracks 03‐448‐17 3 $34.86 $104.58 5pkGraduatedcylinder100ml 08‐572D 12 $181.43 $2,177.16 Graduatedcylinder500ml 08‐572F 8 $212.95 $1,703.60 50mlCentrifugeTubes 05‐539‐7 1 $209.31 $209.31 cs15mlCentrifugeTubes 05‐538‐53F 1 $173.92 $173.92 csSupplier:Sargent‐Welch InoculatingLoopWithNickel‐ChromiumWire&AluminumHandle WLS62730‐10 8 $4.05 $32.40 PipetPumpBlue,for1‐2mLpipets WLB53502‐222 8 $21.25 $170.00 PipetPumpGreen,for5‐10mLpipets WLB53502‐233 8 $23.25 $186.00

Edvocycler(25wellThermalcycler) WLS541 1 $1,895.00 $1,895.00

Canbesharedbetweenschools

GenwayUV/VisSpectrophotometerIfeliminated,anotherspecmustbeavailablefortheGPSrequirements. WLB1763‐22 1 $3,909.75 $3,909.75

UVspecisanecessaryoptionalitem.Thelastoptionalitemtoeliminate.

1.7mLReactionTubeRack,fiveassortedcolors,5/PK WLB10011‐272 4 $45.00 $180.00

Introduction to Biotechnology – A Georgia Teachers Guide

18

Floatingrack(1.7mLtubes),4/PK WLS31170‐A 2 $27.00 $54.00

HotHand,HandProtector WLS1774‐22 5 $18.75 $93.75

GrandTotal $31,261.15GrandTotalofEssentialEquipment $18,844.40

BiotechnologySupplyListThislistrepresentstheessentialchemicalsandsuppliesforthesuggestedlabstoaccomplishdeliveryofdraftedGeorgiaPerformanceStandardsforIntroductiontoBiotechnology.Pleasecarefullyexamtheselabsandyourcurrentresourcesbeforeordering!Pleaseseethefollowingwebsitewww.sargentwelch.com/biotechforcompletematerialslistsforBiotechnology.Sargent‐WelchItemDescription CatalogNo. Qty UnitPrice TotalPrice

Lab# NOTES

95%Ethanol,4L,2/CS WLC95064‐07 1 $85.00 $85.00

Agarose,100g WLBIC800668 1 $132.09 $132.09 alpha‐Amylase,fromB.subtilis,100g WLC94446‐02 1 $20.00 $20.00

Ampicillin,25g WLBEM‐2200 1 $156.60 $156.60 store@

4°C

Aspergillussp,plateculture WLBVW85V8100 1 $10.25 $10.25 livingBamHIenzyme,2500U,with10Xreactionbuffer WLBPAR6021 1 $44.29 $44.29

store@‐20°C

BradfordReagent,AMRESCO WLB100514‐184 1 $105.99 $105.99 store@

4°CBSABovineSerumAlbumin,100g WLBEM‐2930 1 $176.00 $176.00

store@4°C

CalciumNitrate,4‐Hydrate,500g WLC98025‐06 1 $13.14 $13.14

Cellulase,25g WLC94484‐02 1 $29.51 $29.51

Cellulose,100g WLC94485‐04 1 $15.75 $15.75

Cheesecloth,3ftX15ft WLS19795 1 $5.75 $5.75 Chymosin,RecombinantRennin,100mL WLB1030 1 $19.25 $19.25

COOMASSIE*BrilliantBlueR‐250 WLBEM‐3340 1 $75.00 $75.00

CrystalVioletStainingSolution,2%(Methanol),100mL,Flammable WLC95055‐04 1 $5.71 $5.71

CupricSulfate5‐Hydrate,500g,ReagentFineCrystals WLC94767‐06 1 $21.00 $21.00

DeoxyribonucleicAcid,SalmonTestes,1.0g WLB1626 1 $112.50 $112.50

store@4°C

DialysisTubing,1"width,100ft/PK WLS25275‐AF 1 $48.90 $48.90

DisposableTissues/Wipes WLS19813‐A 10 $2.90 $29.00 DNAMarker100bpladder(DNASizingStandards),250µL WLBPAG2101 1 $105.75 $105.75

store

@‐20°C

DNAPolymerase(buffer PAM3001 1 $28.00 $28.00 store

Introduction to Biotechnology – A Georgia Teachers Guide

19

included) @‐20°C

EcoRIenzyme,5000U WLBPAR6011 1 $31.89 $31.89 store

@‐20°C

EDTA,Disodiumsalt,100g WLC94538‐04 1 $18.40 $18.40 ElectrophoresisBufferConcentrate,40XTAE WLBPAV4281 1 $74.59 $74.59

EthidiumBromide,10mL WLBIB40075 1 $35.99 $35.99

Fructose,500g WLC94512‐06 1 $21.10 $21.10

Galactose,100g WLC94505‐04 1 $48.00 $48.00

GelLoadingDye10X,20ml 101319‐854 1 $29.97 $29.97

Gelatin,500g WLC94551‐06 1 $21.00 $21.00 Glucose(Dextrose),500g,anhydrous WLB90000‐908 1 $31.50 $31.50

Glucoseteststrips,50/PK WLC4862Y 1 $17.95 $17.95 GramsIodine,BiologicalStain(Aqueous)(1.85%Iodine/3.05%Iodide),1L WLC94144‐07 1 $20.57 $20.57

HinDIIIenzyme,5000U WLBPAR6041 1 $27.09 $27.09 store

@‐20°CHydrochloricAcidSolution,6N,1L WLC97040‐07 1 $12.55 $12.55

Kinetin,99%1GWLBAAA13720‐

03 1 $25.29 $25.29

Lactose,500g WLC94588‐06 1 $18.14 $18.14 Lambda,cutw/HinDIII,1X100µg,0.5µg/µL WLBPAZG1711 1 $60.09 $60.09

Store@‐20°C

Lambda,uncut,5X200µg WLBPAZD1501 1 $75.09 $75.09 Lysol®Disinfectant,conc.1gallon WLB14227‐215 1 $58.00 $58.00

Lysozyme,5g WLBEM‐5950 1 $97.25 $97.25

Maltose,500g WLC94602‐06 1 $19.30 $19.30 MethyleneBlueStain,1%,100mL WLC94619‐04 1 $5.30 $5.30

Parafilm®,125ft,4" WLS65710‐A 1 $19.65 $19.65

PasteurPipetBulb,72/CS 82024‐554 1 $62.80 $62.80

PasteurPipets,9",250/PK WLS69647‐H 1 $14.20 $14.20

Pectinase,25gWLBTCP0026‐

25G 1 $41.79 $41.79

PetriDishes,100X15mm,sterile,20/PK WLS26028 10 $6.95 $69.50

PetriDishes,60X15mm,sterile,20/PK WLS26028‐60 10 $9.70 $97.00

PetroleumEther,1L WLC95112‐07 1 $49.00 $49.00 Pipets,10mL,multi‐pack,500/CS WLB53283‐722 2 $180.00 $360.00

Pipets,5mL,multi‐pack,500/CS WLB53283‐720 2 $164.00 $328.00

Pipets,Transfer,3mL,Graduated0.25mL,500/PK WLS69684‐40B 1 $25.70 $25.70

Introduction to Biotechnology – A Georgia Teachers Guide

20

PlantTissueCultureAgar,8g WLB602891 1 $11.85 $11.85 PotassiumAcetate,Crystals,500g WLC94204‐06 1 $21.83 $21.83

Protease,Pronase,50units WLB80601‐406 1 $114.59 $114.59 ProteinMolecularWeightMarkers,Prestained WLB172‐84 1 $52.00 $52.00

store@‐20°C

Rennin,Bovine,25g WLC94666‐02 1 $28.60 $28.60 store@

4°CRNase,10mg/mLsolution,1mL WLB80509‐764 1 $64.89 $64.89

store@‐20°C

SodiumCarbonate,anhydrous,500g WLC94291‐06 1 $6.20 $6.20

SodiumDodecylSulfate(SDS),100g WLC94320‐04 1 $11.98 $11.98

SodiumMonophosphate,Dibasic,Anhydrous WLC94330‐06 1 $18.00 $18.00

SodiumPhosphate,Monobasic,MonohydrateNaH2PO4XH20,500g WLBEM‐8290 1 $71.25 $71.25

SyringeFilter,25mm,Cellulose,Luer‐lock,0.2µm,50/PK WLB22002‐110 1 $99.95 $99.95

Syringe,Plastic,10mL,100/PK WLBBD309604 1 $17.25 $17.25

TestTube,VWR,25X200cm,48/PK WLS1737‐08 1 $66.25 $66.25

TRIS WLBIB70142 1 $57.29 $57.29

TRIS‐HCl WLBIC816124 1 $84.29 $84.29

TRITONX‐10010%,100mL WLBVW8609‐0 1 $18.50 $18.50 WizardGenomicDNAPurificationKit WLB82017‐730 1 $145.00 $145.00

Yeast,100g WLC94734‐04 1 $12.30 $12.30 TOTALConsumablesCost(withoutanydiscount) $3,958.20

Othercommonlaboratorymaterialsinclude:

Calculators Pens,permanentinkmarkers,black Waxedpaper,1box Collander,1ea Cheesecloth,1pkg Cups,styrofoam Rubbermallet(forcrushingice)1ea Alcohol(1Liter,packedinabsorbent

material)1bottle Sodiumchloride Soap,LiquidDetergent1bottle Phenolred Water,sterile Aluminumfoil1roll

Tape(extra),labelingseveral Thermometers,2ea Toothpicks, Baggies,Ziploc,small2boxes Baggies,Ziploc,large1box Gloves(Small)2boxes Gloves(Medium)2boxes Gloves(Large)2boxes Goggles,1pair/perstudent4pr Spatulas4ea Refrigerator&freezer Foodcoloring1box

Introduction to Biotechnology – A Georgia Teachers Guide

21

5

TheBiotechnologyClassroomA. ClassroomSet‐up

PracticallyalmostanyclassroomcanbeconvertedintoaBiotechteachinglab,buttherearecertainessentialfeaturesthattheroommustpossess.Theprimaryroomconsiderationsareadequateareasforsafe,appropriateinstructionandthenecessarystoragespace.Theidealclassroomwillhaveatraditionalinstructionalareawithdesksandwhiteboardandaseparatelaboratoryareawithadequateworkspaceforallstudents.Theseuniqueareasallowstudentstocompletepaperworkindesksandlabworkattheirdesignatedlabstation,whichallowsstudentstoworksafelyandcomfortablyandtheteachertomanagethestudentsefficiently.However,notallschoolshavesuchanidealenvironmentavailable,andthisshouldnotbeanobstacletoofferingtheBiotechnologycourse.TheessentialbiotechclassroomcomponentsarealreadyavailableatmostschoolsandwillonlyrequireminormodificationtosetupasuccessfulteachingenvironmentforBiotechnology.

Theminimalrequirementsforasafeandfunctionallearningenvironmentarestraightforward.Thereneedstobeanadequateamountoftabletop/countertopspace.Aminimumofthreelinearfeetofcountertop/tabletopedgespaceperstudentisoptimal.Theworksurfacesmustberesintopswherefireandcausticchemicalsareused,andtheresintopworksurfacesarerecommendedonallworkareas.Onewallneedswater,gaslinejets,andsinks(1sinkper10students).Thelabalsoneedstohaveappropriatestorageforallequipmentandsupplies,includingglassware,incubators,consumablematerials,chemicals,balances,etc.Thismightconsistofbuilt‐incabinetsorportablestorageunits.Duetothetemperaturesensitivenatureofmanyofthereagents,thelabwillrequire1‐2largerrefrigeratorsandfreezersorseveralsmallerrefrigeratorswith‐20°Cfreezers.

Animportantpartofworkinginanylaboratoryistheproperandconsistentuseofinstrumentsandequipment.Whensettinguptheworkingareasinthelab,itisbestiftherecanbededicated,permanentworkareasforinstrumentsandequipmentusedinsuchregularactivitiesasweighingoutchemicals,runninggels,incubatorsandwaterbaths.Whiledifficultiftheroomisusedformultipledifferentcourses,thisset‐upallowsstudentstoworkindependently,minimizesteacherpreparation,andallowsstudentstoworkwithouthavingtoasktheinstructorformaterialsandsupplies.Thededicatedspaceisbothfamiliarandmakesalltheresourcesmorereadilyavailable.Whetheryoucandedicatespaceinsuchamannerornot,itisadvisedtohavestudentsexplorethelaboratoryearlyinthesemesterandhavethemdocumentthelocationofallkeysafetyandexperimentalresourcesbymakingadetaileddrawingofthelab(seeexampleontheright).Thisfamiliarizesthestudentswiththeworkingenvironmentand

Figure 5.1 Sample drawing of lab environment made by a student with the location of Safety Materials indicated.

Introduction to Biotechnology – A Georgia Teachers Guide

22

empowersthemtotakeownershipoftheclassroomexperience.Thisdrawingcanbeaddedtoasthecourseprogressestodemonstratethelocationofalmostalllabresources.B.LabSafetyThereareappropriatemethodsandprecautionsthatmustbetakeninanybiologicallaboratory.Thisincludesproceduresforsafehandlingandstorageofhazardouschemicalsandbiologicalmaterials.Alllaboratoryworkers,includingstudents,areexpectedtolearn,understandandcomplywithallenvironmental,healthandsafetyproceduresandagreetofollowthelocalsciencesafetypolicy.Eachworkershouldknowthelocationandproperuseofeachofthefollowing:gloves,goggles,safetyshower,eyewashstation,biohazardcontainer,brokenglassdisposalbox,fireextinguisher,firstaidkit,andhazardousmaterialspillcleanupkit.Studentsneedtounderstandtheimportanceofsafeandappropriatebehaviorandconsequencesneedtobeclearlycommunicatedandappliedwhenstudentsviolatelabrules.

BelowisanexampleofgenerallaboratorysafetyrulesusedinanactualBiotechnologyclassroom.Bothstudentsandparentsmustsignalaboratorycontractthatstatestheyunderstandandagreetothefollowingsafetyrules.

Generallaboratorysafetyrules1. Nevereatordrinkinthelab.Nogumchewing.Donotbringfoodordrinksintothelab.2. WearUV‐ratedsafetyglassesorgogglesatalltimeswhileworkinginthelab.3. Knowthelocationandappropriateuseofsafetyequipment.4. Disposeofallmaterialsandchemicalscorrectly.5. Beawareofpotentialhazards.Readalllabelsanddirectionsbeforeusingchemicalsorequipment.6. Labelallsolutionsandchemicalsclearly.7. Youmustwearalabcoatorapronforprotectionasnecessary.8. Avoidwearingcontactlensesinthelaboratory.Chemicalvaporscanpermeatelensesorbecometrapped

behindthem,potentiallydamagingyourlensesoreyes.9. Removeyourglovesandwashyourhandsimmediatelyafterhandlingchemicalsorfluids.Whilewearing

gloves,donottouchdoorhandles,watertaps,computers,telephonesorotherobjectsthatmaybetouchedbypeoplenotwearinggloves.

10. Keepbookbagsandotherpersonalitemsoffthetablesandfloorduringlab.Youcanstoreyourpersonalitemsonemptychairssothattheyareoutoftheway.

11. Donotwearlooseorflowingclothingordanglingjewelryinthelaboratory.Pinuplonghairorconfineitunderahat.

12. Donotwearsandalsoropen‐toedshoes.Flat‐heeled,full‐coverageshoesofleatherorotherimpermeablematerialarebest.

13. Reportspillsandbrokenglassimmediatelytoyourinstructor,andalwaysdisposeofbrokenglassinitsdesignatedcontainer.Donotplacenon‐glassitemsinthesecontainers.

14. Cleanupyourworkstations,wipeyourlabbenchandwashyourhandsbeforeleavingthelabroom.C.ClassroomManagement

TheBiotechnologyclassroomissimilartomanylaboratoryscienceandtechnology‐basedclassrooms,yetitisdifferentfrommanytraditionalclassrooms.Thepresenceofanextensiveamountofadvancedlaboratoryequipmentandinexperiencedstudentsrequiresclear,consistentexpectationsandclassroomprocedures.Spendingafewdaystoweeksfocusedoncommunicatingthestandardclassroomproceduresandexpectationswillhelpstudentstolearnconductthemselvesinanappropriate,professionalmanner.Inaddition,manyteachersofBiotechnologyrefertotheirstudentsasemployees,whichmayhelpstudentsunderstandtheuniquenatureoftheclass.Tohelpwithdevelopingtheworkplace‐likephilosophy,thefollowingstrategiesarerecommendedforestablishingaprofessionalbiotechenvironment.Thoseareanemployeecontract/syllabus(Page23)andstockticker(Page24).

Introduction to Biotechnology – A Georgia Teachers Guide

23

EmployeeContract/SyllabusBROOKWOODBIOENGINEERING Fall2009EmployeeContract&SyllabusInstructor/Supervisor:Dr.JonathonWetherington Lab/Office:E‐14 E‐mail:[email protected] Mainoffice:(770)972‐7642OfficeHours:Tues,Thurs,&Fri2:15‐3:15inE‐14

“EmployeeContract”CongratulationsonyourappointmenttoBrookwoodBioengineering.Thiscourseisdesignedtogetyoureadyfortraining,positions,andcareersinthebioscienceindustry.Thegoalsandexpectationsaredifferentthaninmostcourses.ThegoalsforFallSemesteraretwo‐fold:masterthecontentandskillsexpectedandcompleteaResearchProject.

EXPECTATIONS:1. Youareexpectedtobeinclass(atwork),seated,withmaterials,readytoworkwhenthebellrings. Everyday,youareexpectedtohavethefollowingmaterials:

o yourlegal,scientificnotebooko abluepeno ametricruler

o acalculatoro agluestick

2. Youareexpectedtodeveloplabandindustryskillswithatleast80%competency.3. Youareexpectedtoworkinasafeandprofessionalmannerinthelabasdirectedbythelab

instructor/supervisor.4. Youareexpectedtorespecttherightsofotherstolearnandwork.5. Youareexpectedtoparticipateinalllabsanddiscussions,andtakenotesasnecessary.6. Ifyoumissaclass,itisyourresponsibilitytomakeupthework/timeintherequiredtimeperiod.

EVALUATION:Sincethiscourseisdesignedtoprepareyoufortheworkforce,youwillbeevaluatedinafashionsimilartotheevaluationtechniquesusedinindustry.Yourevaluation(grade)andcontinuedparticipationarebasedonthefollowing5categories:

CATEGORY EXPLANATIONRecordKeeping Alldataandinformationwillbekeptinalegal,scientificnotebook.ContentBasedTests&Quizzes

Objectiveevaluationofcontentknowledge,throughquizzesandmidtermexam,andskilldevelopmentthroughskillquizzesandlabpracticalexams.

In‐classParticipationandHomework

Self‐directedlabswillconstitute40‐50%ofclasstime.Studentsareexpectedtoexhibitcooperative,mature,andsafebehaviorinthelabatalltimes.Anystudentwhoviolateslabsafetyrulesmayberemovedfromthelab,mayreceiveazero,ormayloselabprivilegesforthesemester.Ifyoumissaworkday,youmustmakeituppromptly.(See*below)

ResearchProject DuringFallSemester,youareexpectedtodesign,develop,andconductaScienceFairExperiment.Furtherdetailsareavailableonline.

FinalExam Thesemesterendswithacumulativeobjectiveexam(15%)andaperformancefinal(5%).

*Makeupsarebyappointmentonly,onTuesdaysandThursdays,withinoneweekofabsence.Eachabsenceaffectsyourgrade.Youmay“makeup”upto5missedclasshours/semesterwithoutpenalty.Makeupworkthatisnotcompletedwithintheallottedtimewillbeassignedazero.Thestudentisresponsibleforschedulingatimeformakeupworkwiththeteacher.Biotechnologystudentswillhaveopportunitiesnotavailabletoothers,includingsophisticatedlaboratoryresearch,guestspeakers,“meaningful”readings/activities/discussions/presentations,fieldtrips,andworkplaceexperiences.Itrequiresacommitmentfromthestudentsandtheadultsinhisorherlife.Becauseitisoftenhardtocontrolthetimingofexperiments,occasionallystudentswillbeexpectedtobeinthelabatunscheduledtimes.Iunderstandthecommitmentrequiredforthiscourse.

Student’sSignature________________________________ E‐mail___________________________

Parent’sSignature_________________________________ PhoneNo./___________________________

Introduction to Biotechnology – A Georgia Teachers Guide

24

Lab Station

1st period 2nd period

1

Corn 23 ↓ 2

Goldfish 23 ↓ 2

2

Soybeans 31 ↑ 6

260/280 23 ↓ 2

3

DNA 31 ↑ 6

Photometer 31 ↑ 6

4

RNA 31 ↑ 6

Hazards 31 ↑ 6

5

Antisense 23 ↓ 2

Safe-T 31 ↑ 6

6

Organism 31 ↑ 6

Transformers23 ↓ 2

7

Ethics 31 ↑ 6

Aqua 23 ↓ 2

Figure 5.2 Biotech Stock Ticker Chart.

BiotechStockTickerAclassroommanagementtechniquethatallowsinstructorstoclearlycommunicate

positiveandcorrectivefeedbacktostudentsisaclassroom“stockticker.”Traditionally,astocktickerisadeviceordisplayshowingthecurrentpriceand/orvolumesofstocktradesasthedatabecomesavailable.Thisinformationhelpsinvestorsandexecutivestounderstandthevalueofspecificcorporations.Asacorporationachievesgoalsandmeetsorexceedsexpectations,thevalueofacorporation’sstockgenerallyincreases.Ifthecorporationanditsemployeesdonotmeetexpectationsorbehaveinappropriately,thestockvalueusuallydecreases,thus,thereisaconstantcorrelationbetweencorporatebehaviorandstockvalue. Thebiotechnologyclassroomcanbeanunconventional,asynchronouslearningenvironmentwithstudentsworkingincooperativegroups.Toprovidefeedbackregardingtheirbehaviorandperformance,theBiotechStockTickerwasdevelopedtoallowtheteachertocommunicatefeedbackregardingperformanceandbehaviorofthestudentlabgroupsinanefficientmanner.Studentsaretoldtodevelopacorporatenamefortheirlabgroup,whichwillnowbereferredasacorporation.Corporationsaretypicallylabgroupsconsistingof2‐4studentsworkingataspecificlabstation.Asectionoftheclassroomwhiteboard/chalkboardisthensetasideasthe“BiotechStockTicker,”andthereisdatatablesetupwithcolumnstorepresentclassperiodsandrowsforlabgroupsonthissectionoftheboard(Figure5.2,right).Eachboxinthetablecontainsthecorporationsname,stockprice,andmostrecentfluctuationindicatedbyanarroweitherupordownandthevalueitchangedby.

The“corporations”stockpricegoesupanddownbaseduponperformanceonkeyworkplacebehaviors,suchasbeingontask,followinglaboratoryrulesandprocedures,workinginacooperative,professionalmanner,cleaningandmaintainingthelabstation,finishingexperimentsinthetimeallotted,anddocumentingexperimentalprogressappropriatelyinthelabnotebooks.Baseduponstudents’performancealongthesekeyproficiencies,thecorporation’sstockpricegoesupanddowntoreflecttheteacher’sinformalevaluationofthestudent’sperformanceaspartofateam.Thesestockpointscanthenbecomearesourcethattheteachercanusetoestablisharewardsystem,wherethestudentscanusetheirstockpointsforteacherestablishedrewards.Thissystemhasbeenusedtoeffectivelychangeinappropriatebehaviors,encouragecorrectworkhabits,andidentifyineffectivelabgroupsquantitatively.

Introduction to Biotechnology – A Georgia Teachers Guide

25

6IntroductiontoBiotechnology

PossiblePacingGuide

Topic/ Concept

Time Biotechnology Instructional Calendar Resources

Characteristics of Science

On-Going

Nature of Science, Habits of the Mind, and CTAE Foundational Skills

Careers in Biotechnology

On-Going

HS-IBT-3. Students will analyze careers in research and development, human health and diagnostics, biomanufacturing, environmental applications, and agriculture that utilize biotechnology.

a. Describe the educational requirements and responsibilities for various positions within the biotechnology industry.

b. Compare and contrast careers within academic, government, and private sectors. c. Develop a portfolio documenting education, experiences, and acquired skills for a specific

careers. d. Demonstrate understanding of the career development planning process and the process

of life-long learning. e. Describe the role of Student Organizations (e.g., HOSA, FBLA, Key Club, and BETA) and

their importance in leadership development. f. Demonstrate an understanding of the nature of employer-employee relationships.

1st Semester Development

of Biotechnology

Products

Weeks 1-3

HS-IBT-2. Students will understand the basis for biotechnology products and how such products affect the quality of life.

a. Describe the major scientific discoveries that lead to development of recombinant DNA technology, including those in the fields of biology, chemistry, genetics, and microbiology, and explain how these advances in DNA technology are used today

b. Identify past and current discoveries and developments in fields such as, agriculture, diagnostics, medical devices, pharmaceuticals, and research and development.

c. Justify the steps in production and delivery of a product made using recombinant DNA technology.

d. Discuss the implications of the genomics and proteomics on biotechnology and current healthcare.

Ch. 1

Introduction to Biotechnology – A Georgia Teachers Guide

26

Topic/ Concept

Time Biotechnology Instructional Calendar

Resources

Bioethics Week 4 and on-going

HS-IBT-7. Students will analyze economic, social, ethical, and legal issues related to the use of biotechnology.

a. Differentiate between moral, ethical, and legal biotechnology issues. b. Research ethical issues presented by evolving science, including genetically modified

foods, cloning, bioterrorism, gene therapy, and stem cells. c. Compare and contrast attitudes about the use of biotechnology regionally, nationally, and

internationally. d. Evaluate the regulatory policies impacting biotechnology research - e.g., use of animals in

research and applications of recombinant DNA.

Ch. 1

Laboratory Procedures & Safety Biotechniques and Applications

Week 5-12

HS-IBT-1. Students will demonstrate understanding of required safety practices and procedures in the classroom and laboratory environment.

a. Define health and safety regulations, including Occupational Health and Safety Administration (OSHA), Environmental Protection Agency (EPA), and Right to Know and demonstrate procedures for documenting and reporting hazards and compliance e.g., CFR1910.1450.

b. Demonstrate health and safety practices, including use of Material Safety Data Sheets (MSDS), appropriate personal protective equipment (PPE) for the situation, emergency equipment, storage of chemicals, reagents and compounds, and maintenance of equipment.

c. Demonstrate disaster preparedness procedures for each emergency situation –fire prevention and the emergency evacuation plan, inclement weather, school and workplace violence, bomb threat, and biotechnology related emergencies.

d. Demonstrate knowledge of standard precautions including proper storage, handling and disposal of biohazardous materials.

e. Demonstrate the ability to follow Standard Operating Procedures (SOP). HS-IBT-4. Students will demonstrate how concepts of physical science connect to biochemical applications and techniques.

a. Calculate and prepare buffers, stock solutions, and reagents. b. Analyze and apply the concepts of homeostasis and molar relationships to biochemical

reactions. c. Draw conclusions regarding protein function and structure as it relates to the pH of a

solution. d. Analyze enzyme activity using assays for reactants and products. e. Utilize electrophoresis, chromatography, microscopy and spectrophotometry to identify,

separate and to draw conclusions about biological molecules.

Ch 3

Introduction to Biotechnology – A Georgia Teachers Guide

27

Topic/ Concept

Suggested Time

Biotechnology Instructional Calendar

Resources

Genetic Engineering

Weeks 13-18

HS-IBT-6. Students will demonstrate how manipulation of nucleic acids through genetic engineering (recombinant DNA and RNA technologies) alters the function of proteins and subsequent cellular processes.

a. Describe the function of DNA, RNA, and protein in living cells and the Central Dogma. b. Demonstrate how the structure of DNA influences its function, analysis, and manipulation.

Ch 2,4,5

2nd Semester

Genetic Engineering -- DNA Manipulation

Weeks 19-23

HS-IBT-6. Students will demonstrate how manipulation of nucleic acids through genetic engineering (recombinant DNA and RNA technologies) alters the function of proteins and subsequent cellular processes.

c. Explain the role of enzymes (e.g., restriction enzymes, DNA polymerases, and nucleases) in the production and manipulation of DNA molecules.

d. Determine and analyze the effect of qualitative and quantitative changes of specific proteins on cell function.

Ch 2,4,5, 14

Organisms in Biotechnology

Weeks 24-36

HS-IBT-5. Students will compare and contrast common organisms used in biotechnology and relate the manipulation of living organisms to product and procedure development.

a. Distinguish between prokaryotic cells, eukaryotic cells, and non-living entities such as viruses.

b. Describe the characteristics and life cycles of model organisms used in biotechnology, including bacteria (e.g., E. coli), fungi (e.g., yeasts and Aspergillus), and animals (e.g., C. elegans, fruit flies, and rodents).

c. Monitor how environmental factors affect the growth of cells and model organisms in the laboratory.

d. Apply the basic concepts of cell growth to manipulate cultures under aseptic conditions in the laboratory.

e. Perform transformations, including competency, selection, antibiotic resistance, and analysis of transformation efficiency.

HS-IBT-4. Students will demonstrate how concepts of physical science connect to biochemical applications and techniques.

e. Utilize electrophoresis, chromatography, microscopy and spectrophotometry to identify, separate and to draw conclusions about biological molecules.

f. Use antibody specificity for antigens to test for the presence of protein (e.g., ELISA, Western Blot, antibody staining).

Ch 7,8,9

Introduction to Biotechnology – A Georgia Teachers Guide

28

7DevelopmentofBiotechnologyProducts

A. GPSStandardsforHS‐IBT‐2B. EssentialQuestionsandAnswersC. EssentialVocabularyD. TextbookCorrelationsE. SuggestedLabsandLessonsF. GeneraltipsandMisconceptions

A.HS‐IBT‐2.Studentswillunderstandthebasisforbiotechnologyproductsandhowsuchproductsaffectthequalityoflife.a.DescribethemajorscientificdiscoveriesthatleadtodevelopmentofrecombinantDNAtechnology,includingthoseinthefieldsofbiology,chemistry,genetics,andmicrobiology,andexplainhowtheseadvancesinDNAtechnologyareusedtoday

b.Identifypastandcurrentdiscoveriesanddevelopmentsinfieldssuchasagriculture,diagnostics,medicaldevices,pharmaceuticals,andresearchanddevelopment.

c.JustifythestepsinproductionanddeliveryofaproductmadeusingrecombinantDNAtechnology.

d.Discusstheimplicationsofthegenomicsandproteomicsonbiotechnologyandcurrenthealthcare.

B.EssentialQuestionsandAnswers:

1. WhatisBiotechnology?Biotechnologyistheuseoforganisms,cells,andbiologicalmoleculestosolveproblemsormakeusefulproducts.

2. Whatarethemajordiscoveriesthatledtothedevelopmentofrecombinant

DNAtechnology? In1865,GregorMendelstudiesgardenpeasanddiscoversthatgenetictraitsare

passedfromparentstooffspringinapredictableway—thelawsofheredity. In1953,JamesWatsonandFrancisCrickdeducedDNA’sstructurefrom

experimentalcluesandmodelbuilding.

Introduction to Biotechnology – A Georgia Teachers Guide

29

DiscoveryofenzymesthataffectDNA,suchasrestrictionenzymes,DNApolymerase,andDNAligase.

In1972,PaulBergandcolleaguescreatedthefirstrecombinantDNAmolecules,usingrestrictionenzymesandDNAligase.

In1982,thefirstrecombinantDNA‐baseddrug(recombinanthumaninsulin)wasbeingmarketedandproduced.

In1983,KaryMullisinventsthepolymerasechainreaction(PCR)technique.PCR,whichusesheatandenzymestomakeunlimitedcopiesofgenes.

3. HowisDNAtechnologybeingusedinmodernapplications?

Today,weuserecombinantDNAtechniquesto:

Createnewmedicinesandvaccines Increaseagriculturalyields Decreasetheenvironmentalimpactandproductioncostsofagriculture Improvethenutritionalvalueoffood Removeenvironmentalpollutantsandcontaminants Reduceallergensinfoodproducts Developbiologicalbasedproducts Producebiofuels

4. Tracethestepsintheproductionanddeliveryofaproductmadeusing

recombinantDNAtechnology?StagesinProductDevelopmentProductIdentificationResearch&DevelopmentSmall‐scaleManufacturingTestingforSafetyandEfficacyManufacturingSalesandMarketing

5. Whataretheimplicationsofgenomicsonbiotechnologyandcurrenthealthcare?

Genomicsisthescientificstudyofthegenomeandtherolegenesplayindeterminingcellstructure,directinggrowth,andcontrollingbiologicalfunctions.KnowingthecompleteorpartialDNAsequencesofindividualgenesormarkersprovidesusefulinformation,eveniftheprecisedetailsofgenefunctionremainunknown.Forexample,genomicsdatacan:

Usegeneticinformationtodevelopindividualdrugsandtherapies(Pharmacogenomics)

Understandhowgeneticdifferencesaffecttheeffectivenessofmedicines Understandinghowgenesaffectoneanotherindifferentspecies Isolatespecificrecombinantmolecules Identifyinfectiousmicrobes Identifythegenesinvolvedindiseaseprocesses Improvecropyieldandpestresistance

Introduction to Biotechnology – A Georgia Teachers Guide

30

6. Whataretheimplicationsofproteomicsonbiotechnologyandcurrenthealthcare?

Genesexerttheireffectsthroughproteins,sogeneexpressionresultsinproteinproduction.Thecollectionofproteinsinacellisknownasitsproteome,andproteomicsisthestudyofthestructure,function,locationandinteractionofproteinswithinandbetweencells.Thecollectionofproteinsinanentireorganismisalsoreferredasitsproteome(e.g.,thehumanproteome).Thesequenceofaminoacidsandmodificationaftertranslationaffectstheshapeand,therefore,thefunctionofaprotein.Anychangestoaproteinaffectaprotein’sformandfunction,whichmightexplainhowthe25,000humangenesinthegenomecanmakethehundredsofthousandsofproteinsthatcomprisethehumanproteome.Proteomicsisdevelopingtoolstoaddressthemanyapplicationsofproteomicssuchas:

whichproteinsareproducedbycertaincells determininghowage,environmentalconditionsanddiseaseaffectstheprotein

production howcanbiotechnologyalterproteinproductioninorganisms discoveringthefunctionsofallproteins. understandinghowproteinschangesoccurindiseasedevelopment discerninghowaproteininteractswithotherproteins

7. Whatarethesignificantpastandcurrentdevelopmentsinthemajorfieldsofbiotechnology?

Timeline(AdaptedfromtheGuidetoBiotechnologybyBiotechnologyIndustryOrganization)8000B.C.

Humansdomesticatecropsandlivestock.4000–2000B.C.

Biotechnologyisfirstusedtoleavenbreadandfermentbeerwithyeast(Egypt). Productionofcheeseandfermentationofwinebegin(Sumeria,ChinaandEgypt). Babylonianscontroldatepalmbreedingbyselectivelypollinatingfemaletrees

withpollenfromcertainmaletrees.500B.C.

Thefirstantibioticisputtouse:moldysoybeancurdsusedtotreatboils(China).A.D.100

Powderedchrysanthemumsarethefirstinsecticide(China).1322

AnArabchieftainfirstusesartificialinseminationtoproducesuperiorhorses.1590–1608

ThecompoundmicroscopeisinventedintheNetherlands. EnglishphysicistRobertHookediscoversexistenceofthecell.

1675 DutchscientistAntoinevanLeeuwenhoekdiscoversbacteria.

1761

Introduction to Biotechnology – A Georgia Teachers Guide

31

GermanbotanistJosephKoelreuterreportssuccessfulcrossbreedingofcropplantsindifferentspecies.

1797 EnglishsurgeonEdwardJennerpioneersvaccinationbyinoculatingachildwitha

viralvaccinetoprotecthimfromsmallpox.1835–1855

GermanscientistsMathiasSchleidenandTheodorSchwannproposethatallorganismsarecomposedofcells,andGermanpathologistRudolfVirchowdeclares,“Everycellarisesfromacell.”

1857 FrenchchemistandmicrobiologistLouisPasteurproposesmicrobescause

fermentation.1859

EnglishnaturalistCharlesDarwinpublishesthetheoryofevolutionbynaturalselection.

1865

Thescienceofgeneticsbegins:AustrianmonkGregorMendelstudiesgardenpeasanddiscoversthatgenetictraitsarepassedfromparentstooffspringinapredictableway—thelawsofheredity.Mendel’sdiscoverieswerelargelyignoreduntiltheearly20thcentury.

1900 Fruitflies(Drosophilamelanogaster)areusedinearlystudiesofgenes.Thefruit

flyremainsanimportantmodelorganismtoday. AmericanagronomistandinventorGeorgeWashingtonCarverseeksnew

industrialusesforagriculturalfeedstocks.1914

BacteriaareusedtotreatsewageforthefirsttimeinManchester,England.1915

Phages,orbacterialviruses,arediscovered.1919

Thewordbiotechnologyisfirstusedinprint.1928

ScottishscientistAlexanderFlemingdiscoverspenicillin. GermanbotanistFriedrichLaibachfirstusesembryorescuetoobtainhybrids

fromwidecrossesincropplants—knowntodayashybridization.1930

U.S.CongresspassesthePlantPatentAct,enablingtheproductsofplantbreedingtobepatented.

1933 Hybridcorn,developedbyHenryWallaceinthe1920s,iscommercialized.

Growinghybridcorneliminatestheoptionofsavingseeds.Theremarkableyieldsoutweightheincreasedcostsofannualseedpurchases,andby1945,hybridcornaccountsfor78percentofU.S.‐growncorn.

Introduction to Biotechnology – A Georgia Teachers Guide

32

1942 Theelectronmicroscopeisusedtoidentifyandcharacterizeabacteriophage—a

virusthatinfectsbacteria. Penicillinismass‐producedinmicrobes.

1943 GermanbotanistFriedrichLaibachproposesArabidopsisthalianaasamodel

organismforplantgeneticresearch.1944

Canadian‐bornAmericanbacteriologistOswaldAveryandcolleaguesdiscoverthatDNAcarriesgeneticinformation.

1949 AmericanchemistLinusPaulingshowsthatsicklecellanemiaisa“molecular

disease”resultingfromamutationintheproteinmoleculehemoglobin.1951

Artificialinseminationoflivestockusingfrozensemenisaccomplished.1953

ThescientificjournalNaturepublishesJamesWatsonandFrancisCrick’smanuscriptdescribingthedoublehelicalstructureofDNA,whichmarksthebeginningofthemoderneraofgenetics.

1956 AmericanbiochemistandphysicianArthurKornbergdiscoverstheenzymeDNA

polymeraseI,leadingtoanunderstandingofhowDNAisreplicated.1958

Sicklecellanemiaisshowntooccurduetoachangeofasingleaminoacid. DNAismadeinatesttubeforthefirsttime.

1960 MessengerRNAisdiscovered.

1961 USDAregistersthefirstbiopesticide:Bacillusthuringiensis,orBt.

1963 NewwheatvarietiesdevelopedbyAmericanagriculturalscientist,Norman

Borlaug,increaseyieldsby70percent.1966

Thegeneticcodeiscracked,demonstratingthatasequenceofthreenucleotidebases(acodon)determineseachof20aminoacids.(Twomoreaminoacidshavesincebeendiscovered.)

1970 NormanBorlaugreceivestheNobelPeacePrize. Scientistsdiscoverrestrictionenzymesthatcutandsplicegeneticmaterial,

openingthewayforgenecloning.1971

Thefirstcompletesynthesisofageneiscompleted.

Introduction to Biotechnology – A Georgia Teachers Guide

33

1973 AmericanbiochemistsStanleyCohenandHerbertBoyerperfecttechniquestocut

andpasteDNA(usingrestrictionenzymesandligases)andreproducethenewDNAinbacteria.

1975 Thefirstmonoclonalantibodiesareproduced.

1976 RecombinantDNApioneerHerbertBoyerco‐foundsGenentech,thefirstcompany

basedonthetechnology.1977

Ahumangeneisexpressedinbacteriaforthefirsttime. ProceduresaredevelopedforrapidlysequencinglongsectionsofDNAusing

electrophoresis.1980

TheU.S.SupremeCourt,inthelandmarkcaseDiamondv.Chakrabarty,approvestheprincipleofpatentingorganisms,whichallowstheExxonoilcompanytopatentanoil‐eatingmicroorganism.

1981 ScientistsatOhioUniversityproducethefirsttransgenicanimalsbytransferring

genesfromotheranimalsintomice. AChinesescientistbecomesthefirsttocloneafish—agoldencarp.

1982 ThefirstbiotechdrugisapprovedbyFDA:humaninsulinproducedingenetically

modifiedbacteria.GenentechandEliLillydevelopedtheproduct.1983

AmericanbiochemistKaryMullisinventsthepolymerasechainreaction(PCR)technique.PCR,whichusesheatandenzymestomakeunlimitedcopiesofgenesandgenefragments,laterbecomesamajortoolinbiotechresearchandproductdevelopmentworldwide.

1984 TheDNAfingerprintingtechnique(usingPCR)isdeveloped. Theentiregenomeofthehumanimmunodeficiencyvirus(HIV)isclonedand

sequenced.1985

Geneticfingerprintingisenteredasevidenceinacourtroom. TheNIHapprovesguidelinesforperforminggene‐therapyexperimentsin

humans.1986

Thefirstrecombinantvaccineforhumansisapproved,avaccineforhepatitisB. Microbesarefirstusedtocleanupanoilspill.(Thefirstindustrialbiotechpatent

everissuedwasforamicrobetocleanupoilspills;see1980.)1990

Chy‐Max™,anartificiallyproducedformofthechymosinenzymeforcheese‐making,isintroduced.ItisthefirstproductofrecombinantDNAtechnologyintheU.S.foodsupply.

Introduction to Biotechnology – A Georgia Teachers Guide

34

TheHumanGenomeProject—aninternationalefforttomapallthegenesinthehumanbody—islaunched.

1992 AmericanandBritishscientistsunveilatechniquefortestingembryosinvitrofor

geneticabnormalitiessuchascysticfibrosisandhemophilia. TheFDAdeclaresthattransgenicfoodsare“notinherentlydangerous”anddonot

requirespecialregulation.1994

FDAapprovesthefirstwholefoodproducedthroughbiotechnology:FLAVRSAVR™tomato.

Thefirstbreast‐cancergeneisdiscovered. Pulmozyme®(dornasealfa),arecombinantversionofhumanDNase,isapproved.

Thedrugbreaksdownproteinaccumulationinthelungsofcysticfibrosispatients.

1997 DollythesheepisunveiledinScotlandasthefirstanimalclonedfromanadult

cell. Biotechcropsaregrowncommerciallyonnearly5millionacresworldwide.The

cropsaregrowninArgentina,Australia,Canada,China,MexicoandtheUnitedStates.

1998 Humanembryonicstemcelllinesareestablished. Thefirstcompleteanimalgenome,fortheC.elegansroundworm,issequenced. Anearlyroughdraftofthehumangenomemapisproduced,showingthe

locationsofthousandsofgenes.2000

Aroughdraftofthehumangenomesequenceisannounced. Thefirstcompletemapofaplantgenomeisdeveloped:Arabidopsisthaliana.

2002 Adraftsequenceofthericegenomeiscompleted,markingthefirstgenome

sequenceofamajorfoodcrop. Thedraftversionofthecompletemapofthehumangenomeispublished.

2004 GloFish®,thefirstbiotechpet,hitstheNorthAmericanmarket. Thelaboratory‐ratgenomeissequenced. Researcherscompletethesequenceofthechimpanzee—humanity’sclosest

primaterelative.2005

ResearchersattheUniversityofGeorgiasuccessfullyproduceacowclonedfromthecellsofacarcass.

ScientistsatHarvardUniversityreportsuccessinconvertingskincellsintoembryonicstemcellsthroughfusionwithexistingembryonicstemcells.

OnMay7,theonebillionthacreofbiotechseedisplanted.2007

Introduction to Biotechnology – A Georgia Teachers Guide

35

Taiwaneseresearchersdevelopabiotecheucalyptustreethatingestsuptothreetimesmorecarbondioxidethanconventionalvarieties.Thebiotecheucalyptusalsoproduceslessligninandmorecellulose.

U.S.researchersannouncetheproductionofbiotechcattlethatcannotdevelopprionproteins.Prionshavebeenimplicatedinthedegenerativeneurologicaldiseasebovinespongiformencephalopathy.(MadCowDisease)

2008 Thedraftcorngenomesequenceiscompleted.Itisonlythethirdplantgenometo

becompleted,afterArabidopsisandrice.C.EssentialVocabularyThefollowingtermsareessentialvocabularyformasteryoftherelatedstandard.

Antibiotics Antibioticresistance Biochemistry Biotechnology chromosomes Clinicaltrials Cloning DNAfingerprinting DNAligase DNApolymerase Food&DrugAdministration(FDA) Gelelectrophoresis Gene Genetherapy Geneticallymodifiedorganisms(GMOs)

Genetics Genomics HumanGenomeProject Massproduction Molecularbiology Pharmaceutical Plasmid Polymerasechainreaction(PCR) Proteomics RecombinantDNA Research&Development(R&D) RestrictionEnzyme JamesWatson FrancisCrick RosalindFranklin

Introduction to Biotechnology – A Georgia Teachers Guide

36

D.TextbookCorrelationsforBiotechnology:SciencefortheNewMillenniumChapter1 WhatisBiotechnology?1.1 WhatisBiotechnology? 11.2 DoingBiotechnology:ScientificMethodologyinaResearchFacility 91.3 TheVarietyofBiotechnologyProducts 141.4 HowCompaniesPickPotentialProducts 19

Chapter8 ModelingtheProductionofaBiotechnologyProduct8.1 ProducingaGeneticallyEngineeredProduct 262

E.SuggestedLabsandLessons1.Biotechnology:SciencefortheNewMillenniumtextbookActivity14.4:TheEvolutionoftheScienceandIndustryofBiotechnology(pages393‐

396)2.BiotechnologyLaboratoryManualLab1c CheeseProduction:TheEvolutionofCheeseMakingTechnologyThisactivityisagreatintroductoryactivitytointroducestudentstoatraditionalbiotechproductandprocessthathasevolvedwiththescience.Italsoisagoodlabexperiencetointroducelabsafety,appropriatebehavior,andthescientificmethod.3.Websites:Thetextbookauthor(EllynDaugherty)hasseveralgoodactivitiesonherwebsite,whichareexcellenthomeworkorclassroomactivities.Theycanfoundatthefollowingwebsite:www.bioteched.com.Herearetwothatareparticularlygood:

What is Biotech? Activity http://www.bioteched.com/coolthings/newactivities/Ch1_WhatIsBiotechActiv.pdf

Gettingtoknowyourtextbookhttp://www.bioteched.com/coolthings/newactivities/Ch1_GettingToKnowYourText.pdf

Introduction to Biotechnology – A Georgia Teachers Guide

37

F.GeneralTipsandMisconceptionsManyteachersofBiotechnologybeginwiththismaterial,sinceitlaysthefoundationfor

futurelessonsandteaching.Basicquestions,suchaswhatisbiotechnologyandwhatdiscoverieslaidthegroundworkforcurrentdiscoveriesandresearch,providestudentswiththeproperperspectiveonthecontenttobeaddressed.Agreatintroductoryactivitytobeusedduringthefirstweekistoaskstudentsorteamsofstudentstodefinebiotechnologyandawardaprizetostudentsthatcanbestdefineallfieldsofbiotechnology.Thisallowsstudentstoexpresstheirpriorknowledgeandhelpsteachersbuilduponwhateverfoundationalknowledgethestudentshave.

Manystudentshaveseveralmisconceptionsregardingbiotechnology.Primarily,manystudentsareconfusedaboutwhatbiotechnologyis.Manystudentsdonotthinkofitonlyinthemodern,laboratorysense.Explainingthehistoryandcriticaldiscoveriesprovidestudentswithanewappreciationforanindustrythatisinvolvedinsomanyoftheirlives.Inaddition,studentstendtoonlythinkofbiotechnologywithregardstohumanapplications,likecloningandgenetherapy.Mosthavenotconsideredtheapplicationsofbiotechnologyintheagricultural,industrial,orenvironmentalapplications.Understandingthesemisconceptionsallowteacherstostartstudentsdownthepathwitharenewedperspectiveregardingbiotechnologyandafreshappreciationofthetechnologythataffectsourliveseveryday,whichincreasesunderstandingandappreciation.

Introduction to Biotechnology – A Georgia Teachers Guide

38

8CareersinBiotechnology

A. GPSStandardsforHS‐IBT‐3B. EssentialQuestionsandAnswersC. EssentialVocabularyD. TextbookCorrelationsE. SuggestedLabsandLessonsF. GeneraltipsandMisconceptions

A.HS‐IBT‐3.Studentswillanalyzecareersinresearchanddevelopment,humanhealthanddiagnostics,biomanufacturing,environmentalapplications,andagriculturethatutilizebiotechnology.

a.Describetheeducationalrequirementsandresponsibilitiesforvariouspositionswithinthebiotechnologyindustry.

b.Compareandcontrastcareerswithinacademic,government,andprivatesectors.c.Developaportfoliodocumentingeducation,experiences,andacquiredskillsfora

specificcareers.d.Demonstrateunderstandingofthecareerdevelopmentplanningprocessandthe

processoflife‐longlearning.e.DescribetheroleofStudentOrganizations(e.g.,HOSA,FBLA,KeyClub,andBETA)and

theirimportanceinleadershipdevelopment.f.Demonstrateanunderstandingofthenatureofemployer‐employeerelationships.

Introduction to Biotechnology – A Georgia Teachers Guide

39

B.EssentialQuestionsandAnswers:

1. Whatarethemajorcategoriesofemploymentpositionswithinthebiotechnologyindustry?

SciencePositions:Scientist,ResearchAssociate,Biotechnician,andLabAssistantNonscientificPositions:Almostanynosciencepositioncanbefoundwithinbiotechcompaniesinthefieldsofinformationsystems,marketingandsales,humanresources,regulatoryaffairs,administrative,legal,clerical,andmostfieldsofengineering2. Whataretheeducationalrequirementsfortheprimarypositionswithinthe

biotechnologyindustry?SeetheTableafterQuestion3.

3. Whatskillswouldbenecessaryforthevariouspositions?

Categories Educational

requirementsSkillsandResponsibilities Salary

Scientists Doctorate

Managesaresearchteamorgroup.Developsnewproceduresandprojectswhilemanagingandreviewingtheworkofothers.

$65,000‐$175,000

ResearchAssociate

Bachelor’sDegree‐‐MastersDegree

SimilarresponsibilitiestoaBiotechnician.Alsodevelopsandrunsnewexperimentsasdirected.Maymanageasmallteamoftechnicians.

$31,000‐$80,000

Biotechnician AssociatesDegree

Performbasiclabactivitiesandmoreadvancedprocedures.MaydevelopnewassaysormodifyexistingSOPs.Mayperformbasicqualitycontrolassuranceprocedures.

$27,000‐$40,000

LabAssistant HighSchoolDiploma+experience

Performbasiclabactivitiessuchassolutionandmediapreparation,cellculture,basicassayapplications,andlabmaintenance.

$15,000‐$25,000

4. Howcanstudentorganizationshelppreparestudentsleadershipskillsand

growth?Studentorganizationshelpstudentsunderstandthepoweroftheirvoiceandthestrengthofagroupwithcommoninterestsandgoals.Studentorganizationsfosterleadershipskillsthroughserviceopportunitiesandrespondingtotheneedsofthelocalschoolcommunity.Asstudentsmatureinorganizations,theyrecognizetheirleadershipskillsandaregivenleadershipdevelopmentopportunitiesthroughlocalactivitiesandregionalconventions.

Introduction to Biotechnology – A Georgia Teachers Guide

40

5. Howarecareersintheacademic,government,andprivatesectorssimilar?

Mostcareersinthefieldofbiotechnologyhaveafewbasicsimilaritiesregardlessofthesector.Mostofthepositions,especiallythesciencepositions,aregoingtobethesameinallthreesectors.Acareerinanyofthethreesectorsisgoingtorequireabasicunderstandingofthescience,anappreciationforbioethics,andawillingnesstolearn.Thescienceandtheuseofethicsareuniversaltoallareasofscience,especiallybiotechnology.Particularlyatthetechnicianlevel,therewillbeveryfew,ifany,differencesacrossallthreesectors.Theprimarygoalonthelabtechnicianwouldbetocompletedesiredassaysandexperiments.Additionally,thefieldandprofessionalgrowthisexpected,soalmostallemployeeswillwanttoaddtotheirskillsandabilitiestocreatetoopportunitiesforthemselves.Lastly,eachofthesesectors,despitetheirvastdifferences,issimilarinthattheyallaffecteachotherdirectlyandindirectlyviaregulations,discoveries,andcollaborations.

6. Howarecareersintheacademic,government,andprivatesectorsdifferent?Theprimarydifferencesincareersbetweenthethreesectorsaregoingtoberelatedtothespecificpurposesofeachsector,whichinfluencesthefunctionsofeachemployee.Sincepositionswithinthegovernmentsectorareprimarilyconcernedwiththeprotectandserviceofthecitizensandtheenvironment,careersinthissectortendtofocusmoreonthecritiqueandevaluationofresearchandthemanagementofregionalornationalresources.Thus,thecareersheretendtofocusontestingorreviewingtheresearchofothers.Theacademicsectortraditionallyisfocusedonexploringunknownaspectsofafieldregardlessoftheprofitability.Thefocusismoredirectedtowardsknowledgeacquisitionbythestudentsandacademiccommunity.Thetwogoalsofacademicsciencearetotrainstudentsandscientistsandtocontributeviajournalpublicationtotheacademiccommunityandobtaingrantfundingtobeabletocontinuetopublish.Theenvironmentfosterscreativityandallworkersaregivenmorefreedomsfordiscoveryinthissector.Theprivatesectorexiststogenerateaprofitandisnotcontrolledbythegovernment,andcareersinthisfieldcanbethemostrewardingfinancially.Additionally,theresponsibilitiesofindividualsintheprivatesectorarefocusedonservingthecompanyinsteadofthepeopleorafieldofknowledge.

Introduction to Biotechnology – A Georgia Teachers Guide

41

C.EssentialVocabularyThefollowingtermsareessentialvocabularyformasteryoftherelatedstandard.

Academicsector Associatesdegree Bachelorsdegree Biomanufacturing Biotechnician Diagnostics ForensicScientist Government Journal Labassistant

PhD PrivateSector Professionalbehavior Qualitycontrol Regulatoryaffairs ResearchAssociate ResearchandDevelopment Scientist Technician

D.TextbookCorrelationsforBiotechnology:SciencefortheNewMillennium

Chapter1 WhatisBiotechnology?1.5 WhodoesBiotechnology?CareersintheBiotechnologyIndustry 26

“BiotechCareer”sidebaratthebeginningofeveryChapter.

Introduction to Biotechnology – A Georgia Teachers Guide

42

E.SuggestedLabsandLessons1.Biotechnology:SciencefortheNewMillenniumtextbookBiotechOnline:FindingHotJobs Page262.BiotechnologyLaboratoryManualTherearenocareerlessonsoractivitiesintheLaboratoryManualthataccompaniesthetextbook.3.Other:Therearenumerouswebsiteswithcontentdirectedtowardseducatingstudentsaboutthecareersandopportunitiesinbiotechnology.ThebiotechnologyInstitutehasawebsitewithasectiononcareerspotlights(http://www.biotechinstitute.org/careers/index.html).Asimpleactivitycouldreadthecareershighlighted,andstudentscouldanswerquestionsregardingspecificscientistsorcreatetheirown“newspaper”articleorwantadhighlightingthecareerorqualificationsofoneoftheseindividuals.

F.GeneralTipsandMisconceptionsManystudentshavenotthoughtseriouslyaboutthecareersorpotentialcareersinbiotechnology,andwhiletherearecertainlymanyoptionsinthescientificandnonscientificfieldsofbiotechnology,manystudentsarenotcomfortablewithconsideringacareerinthatindustry.Whetherthepossibilitiesaretoonovelorabstractnatureofmanycareersmakesittoodifficultforstudentstotrulyappreciatetheoptionsthatareavailabletothemishardtosay.Regardlessthereason,studentsstrugglewiththeabstractconceptofcareer,soitisimportanttoprovideopportunitiestostudentsthatremovetheabstractnatureofvariouscareers.Guestspeakersandfieldtripsallowstudentstointeractwithprofessionalsandbetterrelatewiththepersoninagivencareer.Additionally,explicitteachinganddiscussionofcareerfields,inscienceandinnon‐sciencepositions,helpsstudentsunderstandthenatureofthevariouscareers.Oncestudentscanbetterrelateandhavemorefamiliaritywiththeassociatedcareers,theirappreciationandcomprehensionofthevariousskillsandpositionsimprovesdramatically.

Introduction to Biotechnology – A Georgia Teachers Guide

43

9BioethicsandBiotechnology

A. GPSStandardsforHS‐IBT‐7B. EssentialQuestionsandAnswersC. EssentialVocabularyD. TextbookCorrelationsE. SuggestedLabsandLessonsF. GeneraltipsandMisconceptions

A.HS‐IBT‐7.Studentswillanalyzeeconomic,social,ethical,andlegalissuesrelatedtotheuseofbiotechnology.

a.Differentiatebetweenmoral,ethical,andlegalbiotechnologyissues.b.Researchethicalissuespresentedbyevolvingscience,includinggeneticallymodified

foods,cloning,bioterrorism,genetherapy,andstemcells.c.Compareandcontrastattitudesabouttheuseofbiotechnologyregionally,nationally,

andinternationally.d.Evaluatetheregulatorypoliciesimpactingbiotechnologyresearch‐e.g.,useofanimals

inresearchandapplicationsofrecombinantDNA.

B.EssentialQuestionsandAnswers:

1. Whatarethedifferencesbetweenmoralsandethics?

Moralsareanindividualsjustifiabledecisionsregardingwhetherspecificactionsarerightorwrong,butethicsisthestudyoractivityofdecidingwhatapersonshoulddobaseduponrationalethatsupportsthedecision.Themostsignificantdifferenceisthatmoralseffectethicaldecisionsandbehaviorbecauseethicsaretheapplicationofmoraldecisionsthroughactionandbehavior.

Introduction to Biotechnology – A Georgia Teachers Guide

44

2. Whatisbioethics?

Bioethicsisasubfieldthatexploresethicalquestionsrelatedtothelifesciences.Bioethicshelpspeoplemakedecisionsabouthowtotheappropriateapplicationsofbiotechnologyandbiologicalscience.

3. Whatarethecharacteristicsofanethicalquestioninbiotechnology?Bioethicalquestionsusuallyoccurwhenorganismsmaybeharmedoradverselyaffected.Ethicalquestionsaredifferentfromlegalquestionsandfromquestionsofpersonalpreference,sincetheeffectsofthedecisionhavetobefullyconsideredincludingthelegalandpersonalimpacts.Therefore,abioethicalquestionischaracterizedbyitsconcernforlivingthingsandtheirapplications,butitisjustificationsarenotlimitedbyonlylegalityorpersonalpreference.C.EssentialVocabularyThefollowingtermsareessentialvocabularyformasteryoftherelatedstandard.

Animaltesting Bias Bioethics Bioterrorism Considerations Cloning Ethics FDA Genetherapy

GeneticallyModifiedOrganisms GeneticTesting/Screening Morals Policy RegulatoryAffairs RecombinantDNA Stemcells Steroids Vaccines

Introduction to Biotechnology – A Georgia Teachers Guide

45

D.TextbookCorrelationsforBiotechnology:SciencefortheNewMillenniumChapter11.6BiotechnologywithaConscience–Bioethics 27‐35Throughoutthetextbook,therearenumerousopportunitiestodiscussbioethicsasstudentsprogressthroughthecurriculum.Belowisalistofthesetopics:Topic Page(s)

AlienDNAinmyFood? 323 Animaluse 34‐35 Designerbabies 366 DNAFingerprinting 396 Geneticdisordersandpregnancy 264‐265 HippocraticOath 205 Limitedmedications 186‐187 Monarchbutterflies 297 Moralstandards 27‐28 NSFFundingCommittee 238‐239 Patentownershipforhumangenes 159 Promiseofgenetherapy 128 Scientificdishonesty 96‐97 Stemcells 65

E.SuggestedLabsandLessons1. Biotechnology:SciencefortheNewMillenniumtextbook

Thetextbookfeaturesseveralresourcesthatareexcellenttoolsforbringingupethicalconsiderationsanddisplayingthevarietyofopinionsinyourclasses.Thesematerialscouldbeusedinavarietyofways.Forexample,thestudentscouldcompletethetextbookactivitiesasaBell‐ringeractivityorahomeworkassignment;studentscouldthensharetheiranswersandmostimportantlytheirreasoningbehindtheirdecision.SomeoftheseactivitiesareintheInstructorResourceCenter,andeitherthepublisherorauthorcanbecontactedtoacquirealoginandpasscode.Thetextbookresourcescanbefoundat:http://www.bioteched.com/coolthings.htmandhttp://www.emcp.com/college_resource_centers/index.php?GroupID=7376.

2. BiotechnologyLaboratoryManual

TherearenoethicslessonsoractivitiesintheLaboratoryManualthataccompaniesthetextbook.However,therearesomequestionspertainingtoethicsassociatedwithsomeofthelabs.

Introduction to Biotechnology – A Georgia Teachers Guide

46

3. OtherResourcesforTeachingBioethicsExploringBioethicsThis6modulesupplementwasdevelopedbytheNIHDepartmentofBioethicsandthe

EducationDevelopmentCentertoprovideinstructionalmaterialsonethicstohighschoolteachersandisanexcellentsupplementalresourceforthisstandard.ThesupplementcontainshelpfulpointsandlessonplanstoguideteachersinteachingBioethics.Thematerialscanbepresentedassingleinstructionalunitorblendedintotheinstructionalcalendar.Thematerialsandmodulescaptureandengagestudentsintointerestingandrelevantissues.Thesupplementisavailableonlineat:http://science.education.nih.gov/supplements/nih9/bioethics/default.htm.Thismaterialprovidesexcellentcontentandsupportmaterialstohelpteachersapproachthisdifficulttopicintheirclassrooms.Eachmoduletakesatleast3daystogothrough,soitprovidesalmost4weeksoflessonsandcontentonBioethics.OtherBioethicsOnlineResources

KennedyInstituteofEthicsHighSchoolBioethicsCurriculumProject,GeorgetownUniversity.http://highschoolbioethics.georgetown.edu/

HighSchoolBioethicsProject,CenterforBioethics,UniversityofPennsylvania

athttp://www.highschoolbioethics.org/ KennedyInstituteofEthics—LibraryandInformationServices,Georgetown

University.NationalReferenceCenterforBioethicsLiterature.http://bioethics.georgetown.edu/nrc/(Includesfreedatabaseresources,referencehelp,and“QuickBibs”‐‐http://bioethics.georgetown.edu/nrc/quickbibsbio.htm.)

Introduction to Biotechnology – A Georgia Teachers Guide

47

F.GeneralTipsandMisconceptionsPeople,especiallystudents,oftenhaveaparticularlyhardtimediscerningethicalquestionsfromquestionsofothertypesbutitiscrucialtounderstandthedifferenceswhenconsideringethicalmatters.Ethicalconsiderationsaredifferentfromlegalandpersonalconsiderations.Whileethicaldecisionsshouldtaketherelevantlawsintoconsideration,somethingcanbeillegalandethicalorunethicalandlegal.Frequently,thelawsetsanacceptablestandard,butethicalstandardsfocusonideals,notminimallyacceptablebehavior.Despitethefactthatethicsandthelawarerelatedtoandimpacteachother,theyareindeedseparate.

Helpingstudentstounderstandthedifferencesbetweenissuesofeitheralegal,personal,orethicalnaturewillbecrucialtohavestudentsunderstandhowtoaddressethicalissues.Asitrelatestobioethics,thekeydefiningfeatureofethicsiswhetherapersonorthingwillbeharmedorunfairlytreated.Thiskeycharacteristichelpsstudentstodetermineifsomethingisabioethicalmatter.Ifthereisapotentialforharm,itisabioethicalquestion.Theevaluationofethicalquestionsofthiskindiseasiestifonefollowsalinearprocessandexplainstheirjustificationclearly.Thejustificationisoftenmoreimportantthantheethicaldecisionthatitsupports.Duringdiscussionsandassignments,itisimportanttoexplaintostudentstheimportanceofwellevaluatedandthoughtoutdecisions.Thishelpsstudentstomovepastsimplepersonalpreferenceandintoethicalconsiderations.

Introduction to Biotechnology – A Georgia Teachers Guide

48

10LaboratoryProceduresandSafety

A. GPSStandardsforHS‐IBT‐1B. EssentialQuestionsandAnswersC. EssentialVocabularyD. TextbookCorrelationsE. SuggestedLabsandLessonsF. GeneraltipsandMisconceptions

A.HS‐IBT‐1:Studentswilldemonstrateunderstandingofrequiredsafetypracticesandproceduresintheclassroomandlaboratoryenvironment.

a.Definehealthandsafetyregulations,includingOccupationalHealthandSafetyAdministration(OSHA),EnvironmentalProtectionAgency(EPA),andRighttoKnowanddemonstrateproceduresfordocumentingandreportinghazardsandcompliancee.g.,CFR1910.1450.

b.Demonstratehealthandsafetypractices,includinguseofMaterialSafetyDataSheets(MSDS),appropriatepersonalprotectiveequipment(PPE)forthesituation,emergencyequipment,storageofchemicals,reagentsandcompounds,andmaintenanceofequipment.

c.Demonstratedisasterpreparednessproceduresforeachemergencysituation–firepreventionandtheemergencyevacuationplan,inclementweather,schoolandworkplaceviolence,bombthreat,andbiotechnologyrelatedemergencies.

d.Demonstrateknowledgeofstandardprecautionsincludingproperstorage,handlinganddisposalofbiohazardsmaterials.

e.DemonstratetheabilitytofollowStandardOperatingProcedures(SOP).B.EssentialQuestionsandAnswers:

1. Whatarethegeneralhealthandsafetyregulationseverylaboratoryworkershouldbeawareof?

Biotechnologylaboratoriesareequippedwithsuppliesandequipmentthatmayposeahazardifusedcarelesslyorincorrectly.Unfortunately,thereisnosinglesimpleformulaforworkingsafelyinthelaboratorybecauseeachlabpresentsitsownuniquechallenges.TheregulationsthatalllaboratoryworkershouldbeawareofareOHSAregulation

Introduction to Biotechnology – A Georgia Teachers Guide

49

CFR1910.1450,theNationalFireProtectionAssociationRatingsforchemicals,andlocalfacilityregulations.NFPARatings(NationalFireProtectionAssociation)Anotherquickassessmentofachemical’shealthhazardsthatisusuallyavailableonitscontainerisaratingbytheNationalFireProtectionAssociation(NFPA).Acolor‐codeddiamondshapelistsnumbersratingahazardas:Blueforhealthhazard Redforflammability Yellowforreactivity0–normalmaterial 0–willnotburn 0–stable1–slightlyhazardous 1–flashpoint>200oF 1–unstableifheated2–hazardous 2–flashpoint>100oF 2–violentchemicalchange3–extremedanger 3–flashpoint<100oF 3–shockandheatmaydetonate4–deadly 4–flashpoint<73oF 4–maydetonate

TheuncoloredstationoftheNFPAdiamondisforspecifichazards:

OX –oxidizercompoundACID –acidiccompoundALK –basiccompoundCORR –corrosivecompoundW –useNOWATER

2. WhataretheresponsibilitiesoftheOccupationalHealthandSafety

Administration(OSHA)asrelatedtothebiosciencelaboratory?CongresscreatedtheOccupationalSafetyandHealthAdministration(OSHA)toensuresafeandhealthfulworkingconditionsforemployeesbysettingandenforcingstandardsandbyprovidingtraining,outreach,educationandassistance.AccordingtoCPR1910.1450,OHSAsetsfortheregulationsforallthoseengagedinthelaboratoryuseofhazardouschemicals.

3. WhatprocessesormaterialsareregulatedbytheEnvironmentalProtectionAgency(EPA)?

ThemissionoftheEPAisto“protecthumanhealthandtosafeguardthenaturalenvironment‐‐air,waterandland‐‐uponwhichlifedepends”(www.epa.gov/aboutepa/index.html).Therefore,theEPAregulatesthedisposalofpotentialhazardousmaterialsandtheuseofbiotechnologyproductsintheenvironment.

4. Whatistheproperwaytostoreandhandlechemicalsandhazardousmaterialsinthelaboratoryenvironment?

Chemicalsshouldbelabeledappropriatelywithcontents,includingconcentrationsanddatethechemicalorsolutionwasgenerated.ChemicalsshouldbestoredaccordingtothedirectionsintheirMSDSandaccordingtotheNFPARating.Eachchemicalmustbelabeledthoroughlyenough,sothatevenapersonwhodoesnotworkinthelabcanidentifyanychemical.

Introduction to Biotechnology – A Georgia Teachers Guide

50

Howtohandlechemicalsandbiohazards Treatallchemicalsasiftheywerehazardousuntilyoulearnotherwise. Labelallcontainerswithcontents,includingconcentrationsanddate Wearglovesandgoggleswhenhandlingpotentiallyhazardousmaterials Readthelabelcompletelybeforeopeningachemicalbottle(payspecialattentionto

warninglabels). Openvolatileorganicsolventsonlyinalaboratoryfumehood. Closeallcontainersimmediatelyafterusing. Alwayshandlechemicalswithcaretoavoidspills. Reportanyspillsofapotentiallyhazardouschemicalimmediatelytoyoursupervisor Alwaysusecleanglasswaretopreventcontamination. Don’tpourunusedchemicalsbackintostoragecontainerswhereitmaycontaminate

therestofthereagent. Disposeofunusedchemicalsinproperwastecontainers.Donotflushchemicalsor

cleanupmaterialsdownthedrainwithoutinstructor’sconsent. Cleanupworkareasthoroughlywhenyouarefinished.Alwayscleanupshared

areassuchasbalancesandstirplates.Neverleavespilledchemicalssittingonabalance,evenifyoudidnotspillit.Theycancorrodetheinstrument.

Washhandspriortoleavingthelaboratory.

5. Whatistheproperwaytodisposeofchemicalsandhazardousmaterialsinthelaboratoryenvironment?

Thedisposalofhazardouschemicalsissubjecttostateandfederalregulations,andisultimatelyoverseenbytheEnvironmentalProtectionAgency(EPA).Treatallbiologicalandchemicalmaterialsasifitwerehazardouswaste,unlessnotifiedotherwise.Theappropriatedisposalmethoddependsonthetypeofwastematerials.Solutionsshouldnotbewasheddownthedrainunlesstheycontainnochemicalorbiologicalhazards.Allwastesshouldbedisposedofintheproperlabeledwastecontainers.Hazardouschemicalsshouldbepouredbyfunnelintoalabeledchemicalwastebottle.Biohazardsshouldbeplacedintoanautoclavablebiohazardbagmadeofahighmeltingpointplastic,sealedwithautoclavetape,andautoclavedathightemperaturesandpressurestocompletelykillanyliveorganisms.Glassshouldgointoalabeledglassdisposalbox.

6. WhatisthepurposeofaStandardOperatingProcedure(SOP)?

AStandardOperatingProcedure(SOP)isadocumentthatdescribesinastep‐by‐stepoutlineformhowtoperformaparticulartaskoroperation.Everyoneinanorganizationmustfollowthesameprocedurestoassurethattasksareperformedconsistentlyandcorrectly.MostcompanieshaveawidevarietyofSOPsthatdescribehowtododifferenttasks.Inmanycompanies,techniciansaretrainedinhowtofollowindividualSOPsandtheirtrainingrecordspecifieswhichSOPstheyaretrainedonandareauthorizedtouse.

7. WhatisthepurposeofaMaterialSafetyDataSheets(MSDS)?

Introduction to Biotechnology – A Georgia Teachers Guide

51

AMSDSisalegallyrequiredtechnicaldocument,providedbychemicalsuppliers,thatdescribesthespecificpropertiesofachemical.TheMSDSshouldalwaysbeonfileinthelab,andthereareseveralwebsitesthatofferMSDSdatabases.AllMSDSaredividedintothesame8sections:

1. Chemicalidentity.Themanufacturer’scontactinformationishere,alongwithcontactsforemergencysituations.

2. Hazardingredients/identity.Somechemicalshavemultiplecomponents,andmanysingle‐componentchemicalshavealternativenames.Thesearealllistedhere.Hazardouschemicalsarealsoindicated.

3. Physicalchemicalcharacteristics.Alistofphysicalpropertiesstatesthegeneralpropertiesconcerningthechemical,suchasisthesubstanceasolidorliquidandhowvolatileitis.

4. Fireandexplosionhazarddata.5. Reactivitydata.Thisinformationisessentialindeterminingtheproperhandling

andstorageofchemicals.Byknowingthereactivitypatternsofachemical,youknowwhatsubstancesorconditionsfromwhichyoumustisolatethechemical.Forexample,acidsandbasesreactwitheachother,givingofflargeamountsofheat,whichiswhytheyshouldbestoredseparatelyfromeachother.Othersreactwithwaterandshouldbestoredinsealedcontainerswithdesiccants.

6. Healthhazards.Thebestsourceofspecifictoxicologydataisgivenhere,suchassymptomsofacuteexposureandsomerecommendedemergencyprocedures.

7. Precautionsforsafehandlinganduse.Thisdescribeshowtodealwithspills.8. Controlmeasures.Specificrecommendationsforpersonalprotectiveequipment

(PPE)aregivenhere.C.EssentialVocabularyThefollowingtermsareessentialvocabularyformasteryoftherelatedstandard.

EnvironmentalProtectionAgency(EPA)

OccupationalHealthandSafetyAdministration(OSHA)

RighttoKnow Hazardousmaterial GoodlaboratoryPractices StandardOperatingProcedures MaterialSafetyDataSheets(MSDS) Personalprotectiveequipment(PPE)

CFR1910.1450

NationalFireProtectionAssociation(NFPA)Ratings

Carcinogen Combustible Emergency Explosive Flammable Laboratory Fumehood Oxidizer Physicalhazard Unstable(reactive) Water‐reactive

Introduction to Biotechnology – A Georgia Teachers Guide

52

D.TextbookCorrelationsforBiotechnology:SciencefortheNewMillenniumThetextbookdoesdevoteanextensiveamountofthetexttolaboratorysafety.However,thereareseveralreferencestostandardoperatingprocedures(SOPs)throughoutthetext,whichcanbeusedforinstruction.

E.SuggestedLabsandLessons1. Biotechnology:SciencefortheNewMillenniumtextbook

Activity3.5 WritingaStandardOperatingProcedure(SOP)Page94

2. BiotechnologyLaboratoryManualLaboratory1bLaboratorySafety:ProtestingYourselfandYourCoworkers

3. Other:Onthenextpage,thereisaworksheetthatallowsstudentstoreviewthesafetyproceduresandcontentcoveredinthelaboratory/classroomdiscussion.Itwillneedtobemodifiedtomatchyourenvironment,butitasaneffective,practicalactivitythatgetsstudentsupandmovingaroundinordertolocateallthekeylabelementsandencouragesaswellasreviewingbasicsafetyrules.

Introduction to Biotechnology – A Georgia Teachers Guide

53

BiologyLabSafetyRulesWorksheetandInformation Name:_________________________Part1MappingtheLaboratoryDrawasketchofthelaboratoryandindicatethelocationofthefollowingsafetyitems: eyewashstations sinks

labbenches fumehoods fireextinguisher windows exits fireblanket emergencyevacuationrallypoint(outside)Sinceyouwillberesponsibleforgatheringmaterialsyouneedforeachlabexerciseduringthesemester,youwillneedtoknowwheretheseitemsarestored.Ifyouarenotfamiliarwithanitemorifyoucannotfindit,usetheequipment&supplylocatorfolderontheinstructor’sdesk.Afteryoulocatethem,pleaseindicatetheirlocationonyourlaboratorysketch. glassware brokenglassdisposal gloves freezer(‐20˚C) hotplate/stirrers refrigerator(4˚C) micropipetters 37˚Cincubators micropipettertips tubes microcentrifuges microscopes testtuberacks microcentrifugetuberacks markingtape Sharpie(permanentmarkers)Part2FindingMSDSandSafetyInformationontheInternet

UsetheInternettosearchforchemicalcompanywebsites,universitydepartments,orotherdatabasescontainingMSDSinformation.Locateinformationforthefollowing3chemicals:

a. Nicotine,anaddictivesubstancefoundintobacco.b. Ethidiumbromide,astaincommonlyusedformarkingDNA.c. Sodiumchloride,tablesalt.

Foreach,findtheLD50(oral,rat,mg/kg)andwhetheritisamutagenorcarcinogen.Reviewthesafetyruleslisted,andanswerthefollowingquestionsregardingthelaboratoryroom.Part3.SafetyEquipmentandInformation:InformationaboutchemicalsusedinthislaboratorycanbefoundinMaterialSafetyDataSheets(MSDSs)located_________________________________________Theemergencygasshut‐offforthislabislocated:___________________________________________Shutoffthegasimmediatelyifgasnozzlesorvalvesaredamaged,orifthereisafire.Fireextinguishersarelocated (1)____________________________________________________ (2)____________________________________________________

Introduction to Biotechnology – A Georgia Teachers Guide

54

Fireblanketsarelocated (1)_____________________________________________________ (2)_____________________________________________________Ifyouareonfire,stop,_________________and______________.Letsomeoneelsegetthefireblanket.Aneyewashstationislocated__________________________________________________________________Ifachemicalissplashedorrubbedintoyoureyes,youmustusetheeyewashforatleast______________minutes.Putyourfaceclosetothebasinwithyoureyesheldopenandpressthelevertostartthespray.Dresscodeandpersonalprotectiveequipment(PPE) Whileinthelabyoumustwear___________________‐toedshoes. Inlabactivitiesinvolvingchemicals,youmustwear_____________pantsorskirts(below

the_________________)oralabapron/coat(provided). Youmustwear_____________________________orsafety_________________________whendirected

todosobytheinstructororlabsafetyinstructions. Wearingcontactlensesinthelabisstronglydiscouraged.Studentswearing

___________________________________________mustwearsafetygogglesinsteadofsafetyglasses. Youmusttiebackanylong________________inlabsinvolvingopen_________________,anditis

recommendedyoudosoforanylab. Glovesareprovidedandshouldbewornforanylabactivity.Yourinstructorwillinform

youwhenglovesare_________________ratherthanoptional.WastedisposalForchemicalwastes,thereare(i)flammableorganic,(ii)inorganic,and(iii)organicwastecontainerslocated____________________________________________________________________________________Forotherwastes,therearecontainersfor

biohazards–located_____________________________________________________________

glass–located__________________________________________________________________

othertrash–located_____________________________________________________________LabconductDONOT

horsearoundorperformunauthorizedexperiments eat,drink,orchew(tobaccoorgum) bringdrinksorfood(eveninclosedcontainers)intothelab pipetbymouth tastechemicals,ordirectlysmellchemicalfumes

Youmustfollowallproceduresinmanuals,inhandouts,andasgivenbytheinstructor.

Introduction to Biotechnology – A Georgia Teachers Guide

55

F.GeneralTipsandMisconceptionsStudentsgenerallytakethesafetyaspectstoolightly,anddonotappreciatetheimportanceoflaboratorysafety.Asinstructors,wehavetheresponsibilitytoteachthestudentstheappropriatemannertooperateinalaboratoryandholdthemtoasafeandprofessionalstandard.Inmostscienceclasses,safetyisnotthefocusofinstruction,sostudentsdonotappreciatethegravityofitsimportance.Itisadvisedthatyouspendasignificantamountoftimecoveringthesestandardsandpractices.StandardOperatingProceduresarealsopoorlyunderstoodbythestudents,anditrequiresseveraldraftsforstudentstowriteaneffectiveSOP.AgreatintroductoryactivityfortheSOPconceptistohavethestudentswriteaSOPforasimplelabprocess,suchasusingabalanceormeasuringwaterinagraduatedcylinder.ThentaketheirSOPsupandpassthembackouttodifferentstudents,andseeiftheSOPsareaccurateenoughforanotherstudenttofollowiftheydoonlywhattheSOPstates.Additionally,writingaSOPforthesimpleactivityofmakingasandwichisanexcellentbutchallengingassignment.TOP10ReasonstoHaveaSOP

1. Toprovidepeoplewithallthesafety,health,environmentalandoperationalinformationnecessarytoperformajobproperly.

2. Toensurethatsecurityoperationsareperformedconsistentlytomaintainqualitycontrol

3. Toensurethatbusinessprocessescontinueuninterruptedandarecompletedonschedule.

4. Toensurethatnofailuresoccurinmanufacturingandotherbusinessprocessesthatwouldharmanyoneinthesurroundingcommunity.

5. Toensurethatapprovedproceduresarefollowedincompliancewithcompanyandgovernmentregulations.

6. ToserveasatrainingdocumentforteachingusersabouttheprocessforwhichtheSOPwaswritten.

7. Toserveasachecklistforco‐workerswhoobservejobperformancetoreinforceproperperformance.

8. Toserveasachecklistforauditors.9. Toserveasanhistoricalrecordofthehow,whyandwhenofstepsinanexisting

process,sothereisafactualbasis(nothearsay)forrevisingthosestepswhenaprocessorequipmentischanged.

10. Toserveasanexplanationofstepsinaprocesssotheycanbereviewedinaccidentinvestigations.

Introduction to Biotechnology – A Georgia Teachers Guide

56

11BiotechniquesandApplications

A. GPSStandardsforHS‐IBT‐4B. EssentialQuestionsandAnswersC. EssentialVocabularyD. TextbookCorrelationsE. SuggestedLabsandLessonsF. GeneraltipsandMisconceptions

A.HS‐IBT‐4.Studentswilldemonstratehowconceptsofphysicalscienceconnecttobiochemicalapplicationsandtechniques.

a.Calculateandpreparebuffers,stocksolutions,andreagents.b.Analyzeandapplytheconceptsofhomeostasisandmolarrelationshipstobiochemical

reactions.c.DrawconclusionsregardingproteinfunctionandstructureasitrelatestothepHofa

solution.d.Analyzeenzymeactivityusingassaysforreactantsandproducts.e.Utilizeelectrophoresis,chromatography,microscopyandspectrophotometryto

identify,separateandtodrawconclusionsaboutbiologicalmolecules.f.Useantibodyspecificityforantigenstotestforthepresenceofprotein(e.g.,ELISA,

WesternBlot,antibodystaining).

B.EssentialQuestionsandAnswers:

1. Whatisabuffer?

AbufferisasolutionthatresistschangesinpHwhenthehydrogenionorhydroxideionconcentrationischanged.

Introduction to Biotechnology – A Georgia Teachers Guide

57

2. Whatarethemostcommonwaysofexpressingconcentrationinthelaboratory?Mass/volume,%mass/volume,astandardcommonamountreferredtoas“X”andmolarity

3. Howdophysicalconditionsaffectthestructureandfunctionofaprotein?Proteinsareaffectedbyavarietyofenvironmentalfactors,suchastemperature,pH,cofactors,andtheconcentrationofmoleculesthatbindtoaprotein(saltsandminerals).Asaprotein’sstructureisaffectedbytheexternalenvironmentsoisitsactivity.Aclassicexampleisthedigestiveenzymepepsin,whichrequiresthelowpHofthestomachtoremainactiveandcatalyzethebreakdownofproteinsandpolypeptides.

4. Whatisanenzyme?Howcanyoumeasureitsactivity?Anenzymeisaproteinthatfunctionsasacatalystandthusworkstospeedupchemicalreactions.Enzymeactivitycanbemeasuredbythelossofinitialreactantsand/ortheproductionoffinalreactionproducts.

5. Whattechniquesareavailableformeasuringcellsandthemajormacromolecules?Therearenumerousindicatormoleculesthatchangecolororanotherpropertywheninthepresenceofspecificorganicmolecules.

6. Whatisthedifferencebetweenanantigenandantibody?Anantigenisaproteinormoleculethatistargetedandboundbyantibodies,yetanantibodyisaproteinproducedbytheimmunesystemthatrecognizesandbindstoaspecificmoleculewithanextremelyhighaffinity.

7. Howdoesanantibodyusedtotestforproteins?Antibodiescanbeproducedforaspecificproteinbyinjectingtheproteinofinterestintoananimalandcollectingtheantibodies(locatedinthebloodplasma)producedbythatanimalagainsttheprotein.

Introduction to Biotechnology – A Georgia Teachers Guide

58

C.EssentialVocabularyThefollowingtermsareessentialvocabularyformasteryoftherelatedstandard.

Antibody Antigen Biochemistry Binding Buffer Chromatography ELISA Enzyme Homeostasis Microscopy Microliter Molar Mole Molecularweight

pH Products Protein Reagent Reactants Solution spectrophotometer staining TEbuffer TAEbuffer UV260 Westernblot

D.TextbookCorrelationsforBiotechnology:SciencefortheNewMillenniumChapter3 BasicSkillsoftheBiotechnologyWorkplace

3.1 MeasuringVolumesinaBiotechnologyFacility 843.2 MakingSolutions 933.3 SolutionsofaGivenMass/VolumeConcentration 963.4 SolutionsofaGiven%Mass/VolumeConcentration 993.5 SolutionsofDifferingMolarConcentrations 1013.6 DilutionsofConcentratedSolutions 105

Chapter7 SpectrophotometersandAssaysforBiotechnologyProducts

7.1UsingtheSpectrophotometertoDetectMolecules 2367.2IntroductiontopH 2437.3Buffers 2467.4UsingtheSpectrophotometerstoMeasureProteinConcentration 249

Chapter9 BringingaBiotechnologyProducttoMarket

9.1HarvestingaProteinProduct 3039.2UsingChromatographytoStudyandSeparateMolecules 3089.3ColumnChromatography 3149.4ProductQualityControl 3209.5MarketingandSales 323

Introduction to Biotechnology – A Georgia Teachers Guide

59

E.SuggestedLabsandActivitiesThefollowinglabsareexcellentforintroducingthecontentandallowingstudentsto

exploreit.Presentingthelabsinthefollowingorderhelpsstudentstounderstandhowthephysicalpropertiesaffectdifferentbiologicalmolecules.

ThelabsinChapter2ofthemanualhelpstudentstounderstandtherangeofbiologicalmoleculestheywillbestudyingandhowtheymaybealtered.Theselabsmaybecompletedatthebeginningoftheunittohelpstudentsunderstandthesubject.However,thecontentandlabsinChapter3introducestheessentialchemistryconceptsthatmustbemasteredbeforemovingforwardbecausethechemicalandlaboratoryconceptsarefoundationaltotheskillsrequired.Thus,theselabsareallconsideredessentialandrequiredtoallowstudentstograsptheimplicationsofchemistryinbiotechnology.

Afterthebasicchemistryconceptsandbasiclaboratoryskillsaremastered,thelabsinChapters5,6,and7arecompletedmoreeasilybecausethestudentsareabletomakesolutionsandperformassays.Theselabsclearlydemonstratehowvariousphysicalfactorsaffectmoleculesandatthesametimeallowthemtobestudiedbylaboratoryworkers.Throughtheseexperiences,studentsacquiretheknowledgeandskillsofabiotechnician,yetthisprocessrequiresasignificantamountofclassroomtimetobedevotedtothelaboratorylearningprocess.Lab Title Page2e VariationintheStructureandPropertiesof 27

Carbohydrates2f HowMolecularStructureIsAffectedbyEnvironmental 29 Change3‐ALLChapter3BasicChemistryfortheBiotechnician 31‐625b TheActionofDifferentEnzymesonAppleJuiceProduction 926b AssayingforStarchandSugar 1116c AssayingforAmylaseActivity 1136f TestingPlantandAnimalSamplesforHydrogenPeroxidase 1207a LearningtoUsetheSpectrophotometer 1267b UsingtheSpectrophotometertoStudyMolecules 1287c MeasuringthepHofSolutions 1307d MakinganAppropriateBufferforProteinStorage 132

andActivity7e DemonstrationofBufferEfficacy 1337i UsingtheUVSpectoStudyColorlessProteinSamples 1425a TheSpecificityofAntibodies:ASimulation 9014a UsinganELISAtoIdentifyMeatSamples 25814b UsingaWesternBlottoIdentifyActin 260

Introduction to Biotechnology – A Georgia Teachers Guide

60

F.GeneralTipsandMisconceptionsManystudentsstrugglewithlearninghowtodothebasicmathematicalcalculationsandusingtheformulastocalculatedilutionsandconcentrations.Explicitlyteachingthemathskillsandmodelingofhowtosolvetheseproblemshelpsstudentstoacquiretheskillsrequired.Thiswillneedtobeconstantlyassessedandreviewedthroughouttheschoolyear.Giventhepracticalnatureandskill‐basedcomponentsofthisstandard,manyaspectsofthisstandardarebestmeasuredbyinformalassessmentduringtheunitandformallyattheendoftheperiod.Studentsshouldbegivenmultipleopportunitiestomastertheseskillsduringformativeassessment.Withasimpleclipboardandassessmentsheet,theteachercanrandomlycheckthestudents’progressduringlaboratoryworkandnormalassignments.Ifthestudentmasterstheskillorstandardbeingassessed,theteachercanthendocumenttheachievement.Bydisplayingtheirskillsandknowledge,studentsaregiventheopportunitytodemonstratepracticalmasteryofthestandardandacquirereal‐lifeskills.

Withrespecttothefinalassessment,Lab5bisanexcellentactivityforbothaninstructionalactivityandsummativeassessment.Ifdoneinitiallyduringtheinstructionalperiod,thestudentscanrepeatthelabasafinalperformanceexamfortheunitorsemester.Tousethelabasasummativeassessment,studentsareinformedthattheywillbechallengedwithmodifyingthelabandevaluatedbaseduponthequantityofjuicethattheyproduce.Thestudentscanthenbeallowedtoalteranyvariablesintheexperimentinordertoproduceamaximaljuiceamount.However,studentsshouldbasetheexperimentaldesignuponsolidresearchorexperimentation.Forevaluation,theteachercangradethemodifiedexperimentalintroductionandproceduretocheckforunderstandingandappropriateexperimentaldesign.Alternatively,theteachercouldusethelaboratoryconclusionandjuicequantityforthestudent’sevaluation.

Introduction to Biotechnology – A Georgia Teachers Guide

61

12GeneticEngineering

A. GPSStandardsforHS‐IBT‐6B. EssentialQuestionsandAnswersC. EssentialVocabularyD. TextbookCorrelationsE. SuggestedLabsandLessonsF. GeneraltipsandMisconceptions

A.HS‐IBT‐6.Studentswilldemonstratehowmanipulationofnucleicacidsthroughgeneticengineering(recombinantDNAandRNAtechnologies)altersthefunctionofproteinsandsubsequentcellularprocesses.

a.DescribethefunctionofDNA,RNA,andproteininlivingcellsandtheCentralDogma.b.DemonstratehowthestructureofDNAinfluencesitsfunction,analysis,and

manipulation. IsolategenomicandrecombinantDNAfromcellsandsolutionsandanalyzeitspurityandconcentration.

ExplainanddemonstratetheprinciplesinvolvedinDNAanalysisviaagarosegelelectrophoresis.

DescribepreviousandcurrentDNAsequencingtechnologies.c.Explaintheroleofenzymes(e.g.,restrictionenzymes,DNApolymerases,and

nucleases)intheproductionandmanipulationofDNAmolecules.d.Determineandanalyzetheeffectofqualitativeandquantitativechangesofspecific

proteinsoncellfunction.

Introduction to Biotechnology – A Georgia Teachers Guide

62

B.EssentialQuestionsandAnswers:

1. Whatisthecentraldogma?

TheCentralDogmaofBiologystatesthatDNAcodesforRNAandthatRNAcodesforproteins.Theseproteinsareresponsibleforthetraitsandphenotypeofthecells.

DNA>RNA>PROTEIN>TRAIT2. WhatisDNAsequencing?

DNAsequencingisaprocessusedtofindthenucleotidebasesequenceinpiecesofDNA.AcomplementaryDNAstrandismadeusingasmallproportionoffluorescentlylabelednucleotides,whichstopsthereplicationprocess.TheDNAisthenseparatedusingelectrophoresisandtheDNAsequencecanbereadfromthegel.Itisgenerallyanautomatedprocessinlabspresently.IthasbeenusedintheHumanGenomeProjectandisusedtoidentifygenesresponsibleforgeneticdisorderssuchasAlzheimer’sdisease.

3. HowareDNAandRNAdifferent?Allnucleicacidsarecomposedofnucleotideswhichhavethreeparts:asimplesugar,aphosphategroup,andanitrogenbase.InDNA(deoxyribonucleicacid),thesimplesugarisdeoxyribose.InDNA,therearefourpossiblenitrogenbases:adenine,thymine,cytosine,andguanine.DNAiscomposedoftwostrandsofnucleotidestwistedtogetherinashapecalledadoublehelix.RNAisalsoanucleicacid.ItdiffersfromDNAstructurallyinthreeways.First,RNAissinglestrandedwhileDNAisdoublestranded.TheseconddifferenceisthatthesugarinRNAisribose.Thethirddifferenceinvolvesthenitrogenbases.RNAdoesnotcontainthymine;itcontainsuracil.Thereisalsoadifferenceintheirrolesandlocations.DNAcontainstheinstructionsforproteinsynthesisandremainsinthenucleus.RNAtakestheinstructionsfromthenucleustotheribosomesandisinvolvedinthesynthesisofproteins.

4. HowareenzymesinvolvedinDNAreplication?DNAcannotleavethenucleusofthecellwhereitisstoredbecauseitistoolargetopassthroughtheporesofthenuclearmembrane.Duringreplication,enzymes“unzip”thetwostrandsoftheDNAmoleculebybreakingthehydrogenbondsthatholdthebasepairstogether.Eachstrandservesasatemplatefortheattachmentofcomplementarybases.Then,anotherenzymezipsupthetwonewDNAmolecules.Thetwonewmoleculesareidentical,eachcontainingoneoftheparentstrandsandonenewlymadedaughterstrand.Whenthecellreplicates,thenuclearmembranedisintegratesandeachnewdaughtercellreceivesanidenticalcopyoftheparentcell’sDNA.

5. WhatisPCR?Polymerasechainreactionisaprocessusedtomakemultiplecopiesofgenes.Usingprimerstostartthereplicationprocess,DNAisheatedtoseparatethe2strands.Itisthencooledto

Introduction to Biotechnology – A Georgia Teachers Guide

63

allowthereplicationprocess.Thisprocessisrepeatedformultiplecopies.Inforensics,ithasbeenusedtoamplifytheamountofDNAfoundatacrimescene.Inmedicine,ithasbeenusedtosimplifytheDNAfromasingleembryoniccellforrapiddiagnosisofgeneticdisorders.Itisalsousedtoidentifyinfectiveagentsandgenesthatcausedisorderssuchashemophiliaandcysticfibrosis.

6. Whatisgelelectrophoresis?

GelelectrophoresisisaprocedureusedtoseparateandanalyzeDNAfragments.AmixtureofDNAfragmentsareplacedattheendofaporousgelandanelectricalvoltageisappliedtothegeltoseparatethefragments.DNAfingerprintinghasbeenusedtodeterminepaternityandtoidentifytheDNAatcrimescenes.

7. HowistheDNAcodetransferredtotheribosomeforproteinsynthesis?Proteinsaresynthesizedattheribosomes,fromtheDNAcode,butsinceDNAisstoredinthenucleus,amessagewiththeDNA’scodeistranscribedandsentinstead.Duringtranscriptionanenzymebindtoapromotersiteand“unzips”thetwostrandsoftheDNAmoleculebybreakingthehydrogenbondsthatholdthebasepairstogether.Onestrandservesatemplatefortheattachmentofcomplementarybases.However,notalltheDNAistranscribed;justtheinstructionsfortheproteinthatisbeingsynthesized.ThesinglestrandedcopyoftheDNAcalledmessengerRNA(mRNA)exitsthenucleusthroughtheporesinthenuclearmembraneandmakesitswaytotheribosome.mRNAisconstructedofnucleotidesjustasDNAisexceptthebaseuracilisusedinsteadofthebasethymine.

8. WhatistheroleofDNAingeneexpression?AnexpressedgeneisagenethathasbeentranscribedintoRNA.Onlyafractionofthegenesinacellareexpressedatanygiventime.CertainDNAsequencesserveaspromotersandbindingsitesfortheRNApolymerase(enzyme).Regulationofgeneexpressionisimportantinshapingthewayacomplexorganismorevenasimplecellcontrolsitsfunction.

9. Howareproteinssynthesized?

ThemRNAstrandservesastheinstructionsforthesequenceofaminoacidsthatmaketheprotein.EachthreebasesequenceofmRNAiscalledacodon.Eachcodonspecifiesaparticularaminoacid.AtransferRNA(tRNA)molecule“transfers”thespecifiedaminoacidfromthecytoplasmtotheribosome.BecausetRNAmoleculeshavethecomplementarybasestothecodon(calledananticodon)ononeendofit,theycanbindwiththemRNAcodons.Theotherendofthemoleculecarriestheaminoacidthatisspecifiedbythecodon.ThenextaminoacidisbroughtbyanothertRNAmoleculeandasthetRNAanti‐codonsbindwiththecodonsonthemRNAtheaminoacidsarebondedtoeachotherformingtheproteinchain.Whenastopcodonisreached,theproteinisreleasedandcoilsupinthestructurethatwillallowittoperformitsfunction.

Introduction to Biotechnology – A Georgia Teachers Guide

64

C.EssentialVocabularyThefollowingtermsareessentialvocabularyformasteryoftherelatedstandard.

Agarose Amplification Annealing Antiparellel Alcoholprecipitation Basepair BLAST Buffer Chromosome Centraldogma Codon Competency Cysticfibrosis DNA dNTP Doublehelix Ethidiumbromide Exon Genome Gelelectrophoresis Geneticengineering Genetherapy Genotype GreenFluorescentProtein Helicase Hybridization Hydrogenbond HumanGenomeProject Intron Loadingdye Lysis Lysozyme Methyleneblue Microarray Maxiprep Midiprep Miniprep Mutagenesis Nitrogenousbase Nucleicacids Nucleases Nucleotide

Phenotype Phosphategroup Phosphodiesterbond Physiology Polyacrylamide Polymerase Primer Primerannealing Primerextension Probes Protease Proteins Purine Pyrimidine RecombinantDNA Restrictionfragments RestrictionFragmentLengthpolymorphisms

RNA RNase RNApolymerase SangerMethod Selection Semi‐conservativereplication Sequencing Sicklecellanemia Spectrophotometer Stain Supernatant Template Thermalcycler Topoisomerase Transcription Transcriptionfactors Transduction Transformation Translation Vector adenine cytosine guanine thymine

Introduction to Biotechnology – A Georgia Teachers Guide

65

D.TextbookCorrelationsforBiotechnology:SciencefortheNewMillenniumChapter4 IntroductiontotheStudyofDNAMolecules

4.1 DNAStructureandFunction 1244.2 SourcesofDNA 1294.3 IsolatingandManipulatingDNA 1404.4 UsingGelElectrophoresistoStudyMolecules 145

Chapter5 IntroductiontotheStudyofProteinMolecules

5.1 TheStructureandFunctionofProteins 1645.2 TheProductionofProteins 1725.3 Enzymes:ProteinCatalysts 1785.4 StudyingProteins 1845.5 WhyStudyProteins? 188

Chapter13 MakingDNAMolecules

13.1 MakingDNAMolecules‐DNASynthesis 43713.2 DNASynthesisProducts 44413.3 PolymeraseChainReaction‐PCR 44913.4 ApplicationsofPCRTechnology 454

Chapter14 AdvancedBiotechnologyTopics

14.1 AdvancedDNATopics–DNASequencing 46814.2 AdvancedDNAStudies–Genomics 47514.3 AdvancedProteinStudies 47914.4 OtherAdvancesinBiotechnology 489

Introduction to Biotechnology – A Georgia Teachers Guide

66

E.SuggestedLabsandActivitiesBiotechnologyLaboratoryManual

TheselectedlabsdemonstratetheextractionandanalysisofDNA(labs4a‐4j)andprotein(5e‐5f)viaelectrophoresis.Generallyspeaking,theprocessofextractionandanalysisviaelectrophoresisisdividedintoseveralsteps:1)makingsolutions;2)extractingthemoleculesofinterest;3)preparingsamplesforanalysis,;4)separationviagelelectrophoresis,;and5)stainingthegel.Eachsteptakesapproximatelyone5ominuteperiod.Therefore,theprocessofextractionandanalysis,frombeginningtoend,takesaweekofclasstime.Thethreelabsproposedherewilltakethreeweekstocomplete.OneweekfortheinitialanalysisofDNAinChapter4,andoneweekseachtocompletethePAGEanalysisofproteins(Chapter5)andhumanPCRlab(Chapter13).ThesuggestedpacingcompletestheLabsinChapter4and5firstsemesterandcompletingLabs13e‐13gearlysecondsemester.

Itisalsoimportanttonotethattheselabsrequirecarefulplanningofresourcesandmaterials.TeacherswillneedtopurchasetheprimersforPCRGenotypinginordertocompletetheLabsinChapter13.Lab Title Page4a MakingSolutionsforDNAIsolation 644b PullingDNAoutofSolutions:DNASpooling 654c TestingforthePresenceofDNA,RNA,andProteinin DNAExtracts 684i MakingAgaroseGelsforSeparatingandAnalyzing DNAFragments 824j UsingGelElectrophoresistoStudyDNAMolecules 855e PreparingProteinsforAnalysisbyVerticalGel

Electrophoresis 995f CharacterizationofProteinsbyPAGE 10113e UsingPCRtoamplifyRegionsofLambdaPhageDNA 24713f ExtractingDNAfromHumanCellsforPCRandSequencing 25013g DNATypingbyPCR‐Genotype: 251

DeterminationofanAluInsertContentRichActivity:Thefollowingactivityusesa“real‐world”applicationofDNAtechnologytosolveaproblem,acropdisease.RestrictionenzymescutDNAtoproducefragmentsofdifferentlengths.Inordertosortthesefragmentsaccordingtotheirsizes,atechniqueknownasgelelectrophoresisisused.ThegelthroughwhichtheDNAmovesismadeofagarose,aseaweedderivative.Usingthistechnology,aDNAfingerprintcanbeproducedandthesizeofDNAsamplescanbecalculatedbyaddingthesizeofalltheindividualpiecestogether.Thisactivityisanexcellentrevieworintroductiontogelelectrophoresisandentirelypaperbased,soitrequiresminimalresources.

Introduction to Biotechnology – A Georgia Teachers Guide

67

Analysis of Wheat Germ “Germs” Great Gatsby of Digestion!!! The FDA (Fiber Diet Association) has just issued a recall of non‐genetically modified wheat germ. A new plant disease has infected most of the country’s wheat germ and could affect other crops. Luckily, many crops have been genetically modified to have resistance to similar diseases, but few batches of wheat germ are actually resistant. You goal is analyze samples of wheat germ DNA samples from the previous lab to determine which samples might be infected. The only question is how????  You seem to remember something about restriction enzymes from your awesome biology class. Restriction enzymes are enzymes that cut DNA at specific locations. Bacteria naturally have restriction enzymes that break down the foreign DNA of invading viruses. These enzymes are useful in “cutting” DNA into fragments. For example, examine the results below as the restriction enzyme EcoRI makes staggered cuts at specific sites along this strand of DNA: 

5΄ A T G A A T T C T T T G A A T T C C T C T 3΄ 3΄ T A C T T A A G A A A C T T A A G G A G A 5΄  5΄ A T G     A A T T C T T T G     A A T T C C T C T 3΄ 3΄ T A C T T A A       G A A A C T T A A       G G A G A 5΄ 

 PRE_LAB QUESTIONS 1. The number of fragments of DNA that result from those cuts is ______________.  2. What do we call the enzyme that cuts the DNA?  3.  We can express the DNA fragments as the number of base pairs in each fragment. How many base pairs 

(bp) are found in the smaller fragment?  4. Do you think restriction enzymes could be used to cut DNA from organisms other than humans, like wheat 

germ? Explain. Using restriction enzymes, the you and your team cut the DNA isolated from the wheat germ and then separate the cut pieces using DNA electrophoresis. The virus is about 4200 nucleotide base pairs (bp) in size, and infected samples will have three DNA fragments that sum together in the range of 4000‐4500 base pairs and resistant samples will have 2 bands or less visible on the gel.  Gel Analysis Instructions: 1. On the next page is a gel photo of a gel with 7 samples of wheat germ DNA from the previous lab cut 

with restriction enzymes (lanes 1‐7) and a DNA size standard (lane M) to help you determine the size of the fragments in lanes 1‐7. Gel electrophoresis separates DNA based upon size, such that smaller pieces move farther in the gel.  

2. Starting with lane M (far right), measure the distance from the well (the line across the top of the gel) to each DNA band in the DNA standard marker (bright spots with the box drawn over it) migrated on the gel (in mm). 

3. Each of the bands in the M column is of a known size (# of bp on the right of the page). Write in the distance traveled for each band next to the correct fragment size in the chart below. 

4. Use the semi‐log graph paper on the next page to construct a line graph that shows DNA fragment size (in bp) compared to distance traveled on the gel (in mm). 

5. Measure the bands in well columns 1‐7 and write the distance traveled (in mm) for each band marked with a box and record in the chart below.   

6. Use the standard curve created in step 4 to estimate the size of the DNA fragments for lanes 1‐7 and then use this info to determine which samples might be infected.  

HINT: The virus is about 4200 nucleotide base pairs (bp) in size, and infected samples will have three DNA fragments that sum together in the range of 4000‐4500 base pairs and resistant samples will have 2 bands or less visible on the gel. 

Introduction to Biotechnology – A Georgia Teachers Guide

68

7 6 5 4 3 2 1 M

4361

564

2322

2313094166557

7 6 5 4 3 2 1 M

4361

564

2322

2027

231309416 6557

well

Gel picture                           DATA CHART 

Lambda HindIII

digest bp size

(standard)

Dist. Migrated

in mm

Band # Lane 1 (3 DNA bands)

Lane 2 (3 DNA bands)

Lane 3 (2 DNA bands)

Lane 4 (3 DNA bands)

Lane 5 (1 DNA bands)

Lane 6 (3 DNA bands)

Lane 7 (1 DNA bands)

23,130 bps

1

9416

2

6557

3

4361

4

2322

5

2027

6

564  

   7               

Introduction to Biotechnology – A Georgia Teachers Guide

69

Distance T

raveled (m

m)

10,000-

5,000-

1,000-

500-

100-

Size of DNA Fragment (# nucleotide bp)

Distance T

raveled (m

m)

10,000-

5,000-

1,000-

500-

100-

Size of DNA Fragment (# nucleotide bp)

10,000-

5,000-

1,000-

500-

100-

Size of DNA Fragment (# nucleotide bp)

 Graph                                 QUESTIONS 

1. What is dependent variable in this experiment? Independent variable?   2. How does the size of the DNA affect the distance traveled on the gel? 

  3. Which samples are infected? Uninfected?   4. Genetic engineering made some of samples resistant the wheat germ “germ.” Name three other 

specific examples of how genetic engineering has impacted our lives.   5. How do feel about genetic engineering of plants? Medicine? Animal 

Introduction to Biotechnology – A Georgia Teachers Guide

70

TEACHER INSTRUCTIONS This activity uses a “real‐world” application of DNA technology to solve a problem, a crop disease. Restriction enzymes cut DNA to produce fragments of different lengths. In order to sort these fragments according to their sizes, a technique known as gel electrophoresis is used. The gel through which the DNA moves is made of agarose, a seaweed derivative. Using this technology, a DNA fingerprint can be produced and the size of DNA samples can be calculated by adding the size of all the individual pieces together.   First, students will measure how various samples of DNA migrate on the pictured gel and record the distance traveled of each of these DNA fragments. Using the DNA size standard marker (lane M), students will measure and graph DNA fragment size (base pairs) versus distance traveled (mm) for this sample. Students should measure from the wells to the leading edge of the band (the edge farthest from the well). The bands have been outlined with boxes to make them easier for the students to identify. The students will then be able to use the standard curve to determine the size of the unknown fragments in lanes 1‐7. Below are keys terms and definitions to be considered for this lesson. Lastly, a key for the measurements and questions are listed.  KEY TERMS TO BE CONSIDERED FOR THE LESSON 

DNA fragments — DNA segments resulting when DNA is cut with a restriction enzyme. Fragments of different sizes (lengths) are produced. 

 

DNA restriction analysis — used to help further our knowledge about the structure of DNA, for mapping and sequencing DNA, and also for DNA typing for identification purposes. Restriction analysis has three parts: DNA digesting, electrophoresis, and staining plus analysis. DNA fingerprinting utilizes DNA restriction analysis. 

 

Gel electrophoresis — the process that uses gels made of agarose or some other polymer to separate DNA fragments or proteins by size, charge, or shape using electricity to move the electrically charged molecules through the gel. As the DNA moves through the tangled pores of the agarose fibers, the smaller pieces move faster and the larger pieces more slowly. 

 

Gel lanes — the paths the molecules travel through the gel from the wells to the opposite end of the gel. 

 

Restriction digest — the process of using any of the restriction enzymes that cut nucleic acids at specific restriction sites to produce fragments which are then known as restriction fragments. 

 

Restriction enzymes — (restriction endonucleases) enzymes that act as “enzyme scissors” to cut the DNA at a specific sequence (palindromic sequence) of nucleotides. 

 

Restriction site — the specific sequence of nucleotides (palindromic sequence) that the restriction enzyme recognizes and “cuts” resulting in DNA fragments of different sizes. 

 

Wells — the small, cup‐like structures or indentations left in the agarose gel when the comb is removed. These wells will be filled with DNA or protein prior to electrophoresis. 

  

Introduction to Biotechnology – A Georgia Teachers Guide

71

7 6 5 4 3 2 1 M

4361

564

2322

2313094166557

7 6 5 4 3 2 1 M

4361

564

2322

2027

231309416 6557

well

KEY PRE_LAB QUESTIONS 1. The number of fragments of DNA that result from those cuts is 3. 2. What do we call the enzyme that cuts the DNA? Restriction Enzymes 3.  We can express the DNA fragments as the number of base pairs in each fragment. How many base 

pairs (bp) are found in the right most fragment? Four  5. Do you think restriction enzymes could be used to cut DNA from organisms other than humans, like 

wheat germ? Explain. Yes, restriction enzymes could be used to cut DNA from other organisms. In fact, restriction enzymes can be used to develop a DNA fingerprint.                         DATA CHART 

DNA standard bp length 

Dist. Migrated in mm 

Lane 1 (3 DNA bands) 

 

Lane 2 (3 DNA bands) 

Lane 3 (2 DNA bands) 

Lane 4 (3 DNA bands) 

Lane 5 (1 DNA bands) 

Lane 6 (3 DNA bands) 

Lane 7 (1 DNA bands) 

23,130 bps   21  52  56  48  41  35  42  35 

9416  25   59  63  50  84    65   

6557   29  82  69    92    68   

4361   35               

2322   48               

2027   50               

564   86               

Introduction to Biotechnology – A Georgia Teachers Guide

72

  QUESTIONS 

1. What is dependent variable in this experiment? distance traveled in the gel  Independent variable? Size of the base pair fragment 

 2. How does the size of the DNA affect the distance traveled on the gel? Fragment size is inversely related to the distance traveled on the gel. Therefore, smaller DNA fragments travel farther on the gel, while larger DNA fragments travels shorter distances on the gel.  

 3. Which samples are infected? Samples 1 & 2 

 Uninfected? Samples 3‐7   4. Genetic engineering made some of samples resistant the wheat germ “germ.” Name three other 

specific examples of how genetic engineering has impacted our lives.   5. How do feel about genetic engineering of plants? Medicine? Animals? 

     

Introduction to Biotechnology – A Georgia Teachers Guide

73

F.GeneralTipsandMisconceptionsTheanalysisofDNAviagelelectrophoresisisachallengingexperienceforstudents.The

actualexperimentisanovelmethodforthestudents,soinsteadofappreciatingthelabandlearningfromtheexperience,studentsarechallengedjusttobeabletocompletetheprocedure,whichlimitstheirlearning.Toassiststudents,theconceptofgelelectrophoresisshouldbeintroducedwellinclassandcanbesimulated/modeledviaelectrolysisandusingchargeddyesinanagarosegel.Theanalysisofdyeswithgelelectrophoresisallowsstudentstopracticeloadingasampleintoawell,workingwiththeapparatus,andtheinterpretationoftheresults.Ifstudentscanbemadecomfortableworkingwiththeelectrophoresisapparatusaswellascomfortableworkingwithsmallvolumesusingamicropipettorbeforethislab,studentlearningispositivelyimpacted.Additionally,onlineelectrophoresislabsandpaperbasedexercises,liketheoneintheprevioussection,helpstudentstounderstandthelaboratoryprocessesbetterpriortoconductingtheexperiment.Virtualelectrophoresislabscanbefoundatthefollowingaddresses:

http://www.scq.ubc.ca/files/VirtualLabDNA/vlabFrame.html http://learn.genetics.utah.edu/content/labs/gel/

Afterthestudentsunderstandtheelectrophoresisprocess,theycanbegintoapplythatknowledgetotheanalysisofDNAmolecules.TherestrictiondigestofLambdaphageDNAisastraight‐forwardandwellestablishedlabforthisgoal.Herearesomehelpfultipsforyouandyourstudentswhenworkingwithrestrictionenzymes.

WorkingwithRestrictionEnzymes Restrictionenzymesareextremelysensitivetotemperaturechangesanddifficultto

pipet. Donotallowstudentstoworkwiththeenzymestocktubesuntilyouaresatisfiedwith

theirskills. DuringlabsstoringenzymesinicefilledStyrofoamcupsareaninexpensivealternativeto

largeicebuckets Restrictionenzymesinsolutionaretoalwaysbestoreinthe‐20Cfreezerandneverheld

insidethehandbutonlybythefingertips. MasterMixes(EnzymemixturesincludingeverythingbuttheDNAsample)canbemade

bytheteacherata2xconcentration,aliquottedtoeachlabgroup,andthendilutedbystudentswiththeadditionofanequalamountofDNA.

Whenpipettingenzymesavoidbubbles!Donotpipetthesolutionupanddowntomix. Mixintheenzymebystirringthesolutionwiththemicropipetteandtipusedtoaddthe

enzyme Severalsuppliersselldehydratedrestrictionenzymesthatcanbestoredatroom

temperatureuntilrehydrated.Thisisextremelyconvenienttokeepinmindwhenorderingrestrictionenzymes.

Introduction to Biotechnology – A Georgia Teachers Guide

74

13OrganismsinBiotechnology

A. GPSStandardsforHS‐IBT‐5B. EssentialQuestionsandAnswersC. EssentialVocabularyD. TextbookCorrelationsE. SuggestedLabsandLessonsF. GeneraltipsandMisconceptions

A.HS‐IBT‐5.Studentswillcompareandcontrastcommonorganismsusedinbiotechnologyandrelatethemanipulationoflivingorganismstoproductandproceduredevelopment.

a.Distinguishbetweenprokaryoticcells,eukaryoticcells,andnon‐livingentitiessuchasviruses.

b.Describethecharacteristicsandlifecyclesofmodelorganismsusedinbiotechnology,includingbacteria(e.g.,E.coli),fungi(e.g.,yeastsandAspergillus),andanimals(e.g.,C.elegans,fruitflies,androdents).

c.Monitorhowenvironmentalfactorsaffectthegrowthofcellsandmodelorganismsinthelaboratory.

d.Applythebasicconceptsofcellgrowthtomanipulateculturesunderasepticconditionsinthelaboratory.

e.Performtransformations,includingcompetency,selection,antibioticresistance,andanalysisoftransformationefficiency.

B.EssentialQuestionsandAnswers:

1. Whataretheprimarydifferencesbetweenprokaryotesandeukaryotes?

Prokaryotes are organisms without a cell nucleus or other membrane-bound organelles. Prokaryotes are usually unicellular but in some rare cases are multicellular. Are organisms with membrane bound-nuclei and may be either unicellular or multicellular..

Introduction to Biotechnology – A Georgia Teachers Guide

75

2. Whataresomeofthecommonmodelorganismsusedinbiotechnologyresearch?

Mammalianmodels:

MouseRat

Non‐mammalianModels:Arabidopis(plant)C.elegans(roundworm)Daphnia(waterflea)D.melanogaster(fruitfly)D.rerio(zebrafish)E.coli(bacteria)S.cerevisiae(buddingyeast)S.pombe(fissionyeast)

3. Whataretheenvironmentalfactorsthataffectthegrowthofcells?

Temperature,pH,oxygen,andnutrients(sugars,lipids,andessentialaminoacids)canallinfluencecellgrowthinthelaboratoryandallcellshaveoptimalcultureconditionsthatpromotethedesiredgrowth.

4. Whatisaseptictechnique?Aseptic technique is a set of specific practices and procedures which are performed under carefully controlled environmental conditions with the goal of minimizing contamination by or the spread of undesired organisms or molecules that would alter the life processes of the experimental

5. Describetheprocessoftransformationandhowtransformantsareselectedfor?

WhencellstakeupforeignDNAandexpressthegenes,thecellsaresaidtobetransformed.Transformationisabasictechniquethatisusedfrequentlyinmostbiotechlaboratories.Usually,thegoalistointroduceaforeignsegmentofDNAintobacteriaandtousethebacteriatoamplifytheDNAinordertomakelargequantitiesofeithertheDNAoraproteinencodedbytheDNA.Bacteriaarenaturallytransformedbyplasmids,whichareringsofDNAthatcontain5‐10genes.Thus,thenaturalfunctionofaplasmidistotransfergeneticinformationintobacteria.Manyoftheplasmidsusedencoderesistancetoanantibioticviaaresistancegene,soanytransformedbacteriaareabletosurviveexposuretoanantibioticthatwouldnormallykillthem.Therefore,labworkerscangrowbacteriathathavebeentransformedwithaspecificplasmidinthepresenceofanantibioticandknowthatanysurvivingbacterialcellshaveantibioticresistanceandthereforetheplasmid.

Introduction to Biotechnology – A Georgia Teachers Guide

76

C.EssentialVocabularyThefollowingtermsareessentialvocabularyformasteryoftherelatedstandard.

Aseptic Aerobic Anaerobic Antibioticresistance Aspergillus Bacteria Caenorhabditiselegans(C.elegans) Cell Compotency Drosophiliamelagaster Ecoli electroporation Eukaryote Exponentialgrowth

Growthrate Heatschock Incubator Media Mitosis Modelorganism Nucleus Prokaryote Selection Transfection Transformation Yeast Virus

D.TextbookCorrelationsforBiotechnology:SciencefortheNewMillenniumChapter2 TheRawMaterialsofBiotechnology

2.1 TheRawMaterialsofBiotechnology 502.2 CellularOrganizationandProcesses 562.3 TheMoleculesofCells 632.4 The“New”Biotechnology–ManipulatingMolecules 74

Chapter6 FindingaPotentialBiotechnologyProduct

6.3 LookingforProductsinNature 2116.4 StudyingPlantProteinsasPossibleProducts 2166.5 ProducingrDNAProteinProducts 221

Chapter8 ModelingtheProductionofaBiotechnologyProduct8.1 ProducingaGeneticallyEngineeredProduct 2628.2 TransformingCells 2698.3 AfterTransformation 2788.4 Fermentation,Manufacturing,andGMP 2838.5 RetrievingPlasmidsafterTransformation 288

Introduction to Biotechnology – A Georgia Teachers Guide

77

E.SuggestedLabsandActivitiesBiotechnologyLaboratoryManualTheselabsallowstudentstoworkwithandlearnaboutcellbiologyandhowcellsareusedinresearchandproductionofbiotechproducts.ThelabsinChapter2ofthelaboratorymanualareexcellentforintroducingstudentstocellsandmodelorganisms.ThestudentsfindLaboratory2dparticularlychallengingandrewardstudents,thatabletobestmeasurethecells.Lab Title Page2b TheCharacteristicsofModelOrganism 17 2c UsingaCompoundMicroscopetoStudyCells 222d MakingMicroscopeMeasurements 25Lab Title Page4e MakingMediaforBacteriaCellCulture 714f SterileTechniqueandPouringPlates 744g BacteriaCellCulture 764h DNAExtractionfromBacteria 798c TransformationofE.coliwithpAmylase 1538d GrowingandMonitoringBacterialCultures 1568e Scaling‐UpE.coliCulturesforAmylaseProduction 159OtherIdeasTheNIHhasanexcellentwebsitefocusedonmodelorganismsandthepoliciesthatregulatetheiruseinresearch.(http://www.nih.gov/science/models/)TheVennDiagramlabeled“ProkaryoteCells”and“EukaryoteCells”onthenextpagehelpsstudentstoorganizetheirknowledgeofbasicfeaturesofthetwomajorclassesofcellsandisusedaseitherintroductoryactivityorsummarizingactivitybeforeassessingthestudents.F.GeneralTipsandMisconceptions

AnalternativetotheBiotechnologyLaboratoryManualexperimentsarethekitsavailablefrommanyscienceeducationsuppliers.Abiotechnology‐levelseriesofkitistheBio‐RadExplorerseries.WithregardstotheIntroductiontoBiotechnologycourse,themostrelevantandeasytousekitsarethekitsthatutilizeBio‐Rad'spGLOplasmid,encodingagreenfluorescentprotein(GFP).Thisseriesisabletointroducestudentstobacterialtransformation,cloning,proteinchromatography,andelectrophoresis.

BeginningwiththepGloBacterialTransformationKit,studentsareabletounderstandtransformationandbacterialcellgrowth.Whilerecommendedforaclassof32students,thiskitprovidesenoughresourcesandmaterialsfor40‐50students,ortwoclassperiods,ifmanagedcarefully.Aslongasthelabhastheappropriatebacterialcellcultureresources,theplasmidDNAandE.coliaresufficientformorestudents.ThiskitflowsnicelyintoeithertheChromatographyKitortheSDS‐PAGEanalysisoftheGFP.WhileitisnotnecessarytopurchasethekitfortheSDS‐PAGE,sincemostproteinscanbeexaminedquite

Introduction to Biotechnology – A Georgia Teachers Guide

78

easilyviaSDS‐PAGE,theBio‐RadchromatographykitisrecommendedifoneisattemptingtopurifytheGFPviachromatography.Therecommendedkitsinthisseriesareexplainedbelow.ThesekitshavebeenusedbytheauthorandareusefulforteachingtheIntroductorytoBiotechnologystandards.InGeorgia

1. pGLOBacterialTransformationKitInthisactivity,studentstransformbacteriabyintroducingagene,GFP,fromthebioluminescentjellyfishAequoreavictoria.ThepGloplasmidallowsforeasyvisualizationoftheGFPgene,anditisalsoeffectiveinteachingtranscriptionalregulation.

2. GreenFluorescentProteinChromatographyKit

ThiskitguidesstudentsthroughtheprocessofcreatinganewBiotechnologyproduct—fromdiscoveryinthelaboratorytobiomanufacturingtomarket.ItprovidesstudentswiththeopportunitytoproduceandpurifyarecombinantDNAproduct,whichisafoundationalprocessofmodernbiotechnology.

Introduction to Biotechnology – A Georgia Teachers Guide

79

EukaryoteProkaryote

Complete the Venn Diagram comparing and contrasting prokaryotic and eukaryotic cells.

Introduction to Biotechnology – A Georgia Teachers Guide

80

AppendixA:RecipesforStandardBiotechLabSolutionsA.1MTris

121.1g.Trisbase 800ml.ddH2O AdjustthepHtothedesiredvaluebyaddingconcentratedHCl.

pHHCl 7.470ml 7.660ml 8.042ml Allowthesolutiontocooltoroomtemperaturebeforemakingfinaladjustmentstothe

pH.Adjustthevolumeofthesolutionto1literwithH2O.Aliquotintocontainersandsterilizebyautoclaving.

Comments:Ifthe1Msolutionhasayellowcolor,discarditandobtainabetterqualityTris.AlthoughmanytypesofpHelectrodesdonotaccuratelymeasurethepHofTrissolutions,suitableelectrodescanbeobtainedfrommostmanufacturers.ThepHofTrissolutionsistemperature‐dependentanddecreasesapproximately0.03pHunitsforeach1oCincreaseintemperature.Forexample,a0.05MsolutionhaspHvaluesof9.5,8.9,and8.6at5oC,25oC,and37oCrespectively.B.TEBuffer(pH8.0)

FinalConcentration

2ml1MTrisHCl(pH8.0) (10mM) 0.4ml0.5MEDTA(pH8.0) (1mM) 200mlddH2O

C.1%Agarose 1g.agarose 100ml.1XTAEBuffer

MixintotheagaroseintheTAEfor1‐2minutesatroomtemperaturetohydratetheagarose.HeattonearboilingtodissolvetheagaroseintotheTAE.Theagarosesolutioncanbestoredat65oCinaliquidform,butatroomtemperature,themixtureisasolid.Therefore,whenpouringagel,onemustworkquicklyandcarefullytodissolvetheagaroseandpourintothegelformbeforeitsolidifies.Keepinga65oCwaterbathandmakingtheagaroseinbulkkeepsstudentsfromhavingtoheatthesolutiontonearboiling.D.10%SDS(SodiumDodecylSulfateisalsoknownassodiumlaurylsulfate) 100g.SDS(eletrophoresis‐grade) 900mlddH2O Mixandheatto68OCtodissolve.AdjustthepHto7.02byaddingafewdropsof

concentratedHCl.AdjustthevolumetolliterwithddH2O.Aliquotintocontainers.

Introduction to Biotechnology – A Georgia Teachers Guide

81

ThedisodiumsaltofEDTAwillnotgointosolutionuntilthepHofthesolutionisadjustedtoapproximately8.0bytheadditionofNaOH.

Comments:WearamaskwhenweighingSDSbecauseSDSgranulesdisperseeasilyandwipedowntheweighingareaandbalanceafteruse,Doesnotneedautoclaving.0.5MEDTA(pH8.0)

186.1g.Disodiumethylenediaminetetraacetate·2H2O 800mlddH2O Stirvigorouslyonamagneticstirrer.AdjustthepHto8.0withNaOH(~20gofNaOH

pellets).Aliquotandsterilizebyautoclaving.E.LysisBuffer

FinalConcentration 20ml10%SDS (1%) 2mlIMTris·HCl(pH8.0) (10mM) 4ml0.5MEDTA(pH8.0) (10mM) 5.84gNaCl (0.5M) Bringupto200mlwithddH2O.Dispenseintobottles.

F.5XTris‐borate(TBE)

54gTrisBase(orSigma7‐9) 27.5g.Boricacid 20ml.0.5MEDTA(pH8.0) 800mlddH2O Stirtogetintosolution.Bringupto1literwithddH2O.Doesnotneedtobe

autoclaved.Removestirbar.

G.50XTris‐acetate(TAE)

242g.TrisBase 57.1mlGlacialaceticacid 100ml0.5MEDTA(pH8.0) 1000mlddH2O

H.TrackingDyeforElectrophoresis

O.25%bromophenolblue 40%(w/v)sucroseinwater

Introduction to Biotechnology – A Georgia Teachers Guide

82

AppendixB:OnlineBiotechnologyResourcesAccessExcellence www.accessexcellence.orgAseriesoflearningmodulesonmultiplescienceandhealthtopics,includingbiotechandgenetics.SponsoredbytheNationalHealthMuseum,anon‐profitorganizationfoundedbyformerU.S.SurgeonGeneralC.EverettKoop.The"AboutBiotech"sectionofthesiteincludestopics:IssuesandEthics,BiotechApplied,Careers,GraphicsGallery,andBiotechChronicles.Bio‐RadDestinyScienceCurriculumModules DestinyModulesFiveCurriculumModulesthatalignBio‐RadeducationalkitswithNorthCarolinaScienceStandards.Excellentlessonplansandsupportmaterialsavailableasapdffiles.CurrentTopicsinGenomeAnalysis www.genome.gov/12514286Alectureseriescoveringcontemporaryareasingenomicsandbioinformatics.GenomeSciencesOutreachProject http://chroma.gs.washington.edu/outreachInnovativeprogramsthatbringlaboratoryscienceandmaterialstoK‐12studentsandteachers.DirectedbytheDepartmentofGenomeSciencesattheUniversityofWashingtoninSeattle,Wash.DivingintotheGenePool www.exploratorium.edu/genepool/genepool_home.htmlAnonlineexhibitionexploringgeneticsandtheHumanGenomeProjectfromavarietyofperspectives.ProducedbytheExploratorium,SanFrancisco,Calif.TheDNAFiles www.dnafiles.org/Aseriesof14one‐hourpublicradiodocumentariesandrelatedinformation.DNAfromtheBeginning www.dnaftb.org/dnaftbAnanimatedprimeronthebasicsofDNA,genesandheredity.DNAInteractive www.dnai.org/index.htmDNAandgenome‐relatedteachingguidesandlessonbuilders,personalizedWebpages,MyDNA,studentactivities,more.DolanLearningCenter www.dnalc.orgDolan'smissionistopreparestudentsandfamiliestothriveinthegeneage,envisioningadaywhenallelementarystudentsareexposedtoprinciplesofgeneticsanddiseaserisk;whenallhighschoolstudentshavetheopportunitytodohands‐onexperimentswithDNA;andwhenallfamilieshaveaccesstogeneticinformationtheyneedtomakeinformedhealthcarechoices.IncludesaninteractiveDNAtimeline.FoundationsofClassicalGenetics www.esp.org/foundations/genetics/classicalCompleteversionsofclassicgeneticsworkswrittenbetween350A.D.and1932.GeneTests www.genetests.org/Informationforhealthprofessionalsabouthundredsofgenetictests.

Introduction to Biotechnology – A Georgia Teachers Guide

83

GeneticCounselingProgramwww.hgen.pitt.edu/counseling/counseling/counsel_overview.htmClinicalandeducationalinformationrelatedtogeneticcounseling.GeneticScienceLearningCenter http://gslc.genetics.utah.eduFromtheEcclesInstituteofHumanGeneticsattheUniversityofUtah,aWebsitecreatedtohelppeopleunderstandhowgeneticsaffectstheirlivesandsociety.GeneticTesting:WhatItMeansForYourHealthandYourFamily'sHealthFromtheTrans‐NIHGeneticsWorkingGroupforthePublicGeneticsandDiseasePreventionInformationwww.cdc.gov/genomics/default.htm2Resourcesongenetics,includingjournals,reportsandfactsheets.Alsoinlcudesonlinemulitmediapresentationsrangingfrombasicgeneticstolatestresearch.GeneticsandMolecularMedicine(AmericanMedicalAssociation)www.ama‐assn.org/ama/pub/category/1799.htmlLinkstocurrentarticlesandotherresourcesGeneticsatAbout.Com biology.about.com/cs/genetics/index.htm?terms=geneticsGeneticsWebresourcesfeaturedatAbout.Com,ahomeworkhelpsite.GeneticsEducationCenter www.kumc.edu/gecAcomprehensivelistingofgeneticseducationresources,includingnetworkingsites,documentaryfilms,lectures,booklets,activities,andprograms.CompiledbytheGeneticsEducationCenter,UniversityofKansasMedicalCenter.GeneticsEducationPartnershipgenetics‐education‐partnership.mbt.washington.eduTeacherinstructionguides,curricula,classroomactivitiesandsuggestedoutreachactivitiesongenetics.ProducedbytheGeneticsEducationPartnership,acoalitionofWashingtonstateteachersandgeneticsprofessionalscommittedtogeneticsteaching.Genetics:EducationalInformation www.faseb.org/genetics/careers.htmMedicalschoolcoursesingenetics,somewithsyllabi.GeneticsHomeReference http://ghr.nlm.nih.govProvidesconsumerinformationaboutgeneticconditionsandthegenesorchromosomesresponsibleforthoseconditions.GeneticsProgramforNursingFaculty www.gpnf.orgLinkstogeneticsresourcesofparticularinteresttonurses.GeneticsOrigins www.geneticorigins.org/geneticoriginsProvidesbiochemicalmethodsandcomputertoolstoallowstudentstousetheirownDNA"fingerprints"asastartingpointinthestudyofhumanevolution.

Introduction to Biotechnology – A Georgia Teachers Guide

84

GenomeGateway www.nature.com/genomicsComprehensiveWebresourceongeneticinformation.HostedbyNaturePublishingCompany.GenomeNewsNetwork(TheCenterfortheAdvancementofGenomics)www.genomenewsnetwork.org/index.phpOriginalarticlesandlinksTheGenomicResourceCentre www.who.int/genomics/enFromtheWorldHealthOrganization,providesinformationandraisesawarenessonhumangenomics.TheGenomicRevolutionwww.amnh.org/exhibitions/genomics/0_home/index.htmlAnonlineexhibitaboutgenomics.ProducedbytheAmericanMuseumofNaturalHistory,N.Y.HowardHughesMedicalInstitute http://www.hhmi.orgExcellentVirtualELISAlab.TheHumanGenome www.ncbi.nlm.nih.gov/genome/guide/human/Comprehensiveone‐stopgenomicinformationcenter.HostedbytheNationalCenterforBiotechnologyInformation(NCBI)oftheNationalLibraryofMedicine(NLM).HumanGenomeEpidemiologyNetwork(HuGENet)http://www.cdc.gov/genomics/hugenet/default.htmHostedbytheCentersforDiseaseControl(CDC),aninternationalcollaborationforsharingpopulation‐basedhumangenomeepidemiologicinformation.HumanGenomeProjectEducationResourceswww.ornl.gov/hgmis/education/education.htmlAnextensivecollectionofpublications,teachingaids,andadditionalinternetresources.HostedbytheHumanGenomeProgramoftheU.S.DepartmentofEnergy.infoGENETICS www.infogenetics.org/Clinicalpracticetools.IMMEX.Onlineproblemsolving. http://www.immex.ucla.eduSeveralproblemsthatareofparticularinteresttotheBiotechnologyclassroom:

A. TrueRootsaboutchildrenswitchedatbirth.UseRFLP,bloodtyping,pedigreestosolveayounglady'sparentage.

B. Mysteryplasmid.Determineidentityofvialofplasmidbycomparingrestrictionmapsandantibioticresistances.

C. UglyGelasksstudentstotracetheirlabprocedurestepstofindanerrorintheirDNAFingerprintprotocol(RFLPsimulation)andtodecideiftheerrorrenderstheirgelinvalidforforensicuse.

Introduction to Biotechnology – A Georgia Teachers Guide

85

D. FrankenfoodsasksstudentstodeterminewhatgenesDr.Frankensteininstertedintovariousplants.Then,theyareaskedtodeterminewhichgeneisnotexpressingandwhereintheprocessofproteinsynthesistheerroroccurs(transcription,translation,expression).

Theseprogramsallowtheteachertheabilitytotrackandanalyzestudentthinking.InformationforGeneticsProfessionals www.kumc.edu/gec/geneinfo.htmlEducational,clinical,andresearchresources.MendelWeb www.mendelweb.org/Mendel'spapersinEnglishandGermanandrelatedmaterials.NationalCentreforBiotechnologyEducation http://www.ncbe.reading.ac.uk/TheUniversityofReadinginBerkshireEnglandrunsthisnon‐profitWebsite,providinginnovativeeducationalresources.ReadspecialfeaturesonGMfoodsandhumangenetics,downloadlabactivitiesandprotocols,orpurchaseequipmentandmaterialsattheironlinestore.NationalCoalitionforHealthProfessionalEducationinGenetics www.nchpeg.org/Corecompetenciesingeneticsandreviewsofeducationprograms.NationalLibraryofMedicine:PubMed www.ncbi.nlm.nih.gov/PubMedBasicsearchengineforbiomedicalresearch,includingresearchandcommentaryregardingclinicalresearchethicsandregulations.NationalHumanGenomeResearchInstitute http://www.genome.gov/Education/TheNationalHumanGenomeResearchInstitutesupportsgeneticandgenomicresearch,investigationintotheethical,legalandsocialimplicationssurroundinggeneticsresearch,andeducationaloutreachactivities.TheNewGenetics:AResourceforStudentsandTeacherswww4.umdnj.edu/camlbweb/teachgen.htmlLinkstogeneticeducationresources.OnlineMendelianInheritanceinMan(OMIM)http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIMInformationabouthumangenesanddisease.ScienceNewsPresentedbyBIO(BiotechnologyIndustryOrganization)science.bio.org/genomics.news.htmlLinkstocurrentarticlesScitable www.nature.com/scitableAfreesciencelibraryandpersonallearningtoolbroughttoyoubyNaturePublishingGroup,theworld'sleadingpublisherofscience.Scitablecurrentlyconcentratesongenetics.

Introduction to Biotechnology – A Georgia Teachers Guide

86

UnderstandingGeneTesting www.accessexcellence.org/AE/AEPC/NIH/index.htmlAninformative,illustratedtutorialongenesandgenetictesting.HostedbytheNationalCancerInstitute.What'saGenome?http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp1_1_1.shtmlAninformativeoverviewofgenomicspresentedbytheGenomeNewsNetwork.Topicsinclude:What'saGenome?,What'sGenomeSequencing?andWhat'saGenomeMap?YourGenesYourHealth www.ygyh.orgAmultimediaguidetogeneticsdisorders.YourGenome www.yourgenome.orgProducedbytheWellcomeTrustSangerInstitute,YourGenomeprovidesanintroductiontothemainconceptsofDNA,genes&genomes,focusingonbasicquestionssuchas"Whatisagenome?"and"Whataregenes?"ThereisalsoanintroductiontotheHumanGenomeProjectandmuchmore.