26
5/6/2016 1 Introduction to Building Structural Dynamics for Seismic Design Geoff Bomba, SE Forell/Elsesser Engineers, Inc. San Francisco, CA Learning Objectives Importance of dynamic analysis of structures Understand ground motion input for design IBC Code requirements for dynamic analysis Best practices for implementing building dynamic analysis Troubleshooting and debugging analysis models

Introduction to Building Structural Dynamics for Seismic

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to Building Structural Dynamics for Seismic

5/6/2016

1

Introduction to Building Structural Dynamics for Seismic Design 

Geoff Bomba, SEForell/Elsesser Engineers, Inc.

San Francisco, CA

Learning Objectives

• Importance of dynamic analysis of structures

• Understand ground motion input for design

• IBC Code requirements for dynamic analysis

• Best practices for implementing building dynamic analysis

• Troubleshooting and debugging analysis models

Page 2: Introduction to Building Structural Dynamics for Seismic

5/6/2016

2

Scope

• Structural dynamics for practicing engineers

• Intended for new engineers or PM for QC

• Basic background in dynamics is assumed

• Covering seismic lateral forces  

• Using IBC and ASCE 7‐10

• Notes on coming revisions to ASCE 7‐16 and FEMA P‐1050: NEHRP 2015

Focus

• Seismology for new building seismic design

• Buildings height less than 100 feet

• Linear Analysis

• Typical Structural Systems

– Not including energy dissipation devices and seismically isolated structures

Page 3: Introduction to Building Structural Dynamics for Seismic

5/6/2016

3

Structural Dynamics in Practice

• The Challenge:– Predicting and estimating response of buildings for design is difficult to quantify. Major sources of uncertainty and variability are present.

• We rely on codes and standards as discussed herein• Good engineering judgement is needed for design• Consider goals of the analysis early in design • Level of analysis equates to complexity of behavior: 

– 1 story Moment Resisting Frame– 10 story irregular structure with plan offsets– 30 story (E) non‐ductile concrete structure with URM

Outline

• Ground Motions and Structures

• Modeling Characteristics and Structural Dynamics

• Dynamic Analysis, ELF, MRSA, LRHA

• Practical Considerations for Implementing Dynamic Analysis

• Conclusions and References

Page 4: Introduction to Building Structural Dynamics for Seismic

5/6/2016

4

GROUND MOTIONS AND STRUCTURES

Ground Motion Characteristics• Seismic “INPUT" for design is dependent on:

– Seismic hazard

– Magnitude 

– Distance from fault

– Frequency content

– Duration 

– Fault mechanism

– Soil at site

REF: USGS

Page 5: Introduction to Building Structural Dynamics for Seismic

5/6/2016

5

Ground Motion Time History

REF: PEER.BERKELEY.EDU

Ground Motion Response Spectrum

REF: strongmotioncenter.org

Page 6: Introduction to Building Structural Dynamics for Seismic

5/6/2016

6

Generating a Response Spectrum

REF: strongmotioncenter.org

ug..

ug..

m

k

1. SDOF, “Stick Model” at Ti2. Run “analysis” 3. Find max acc. for SDOF4. Plot max acc. at Ti

Ti

Max Acc @ Ti

Ti

Ground Motion Response Spectrum

REF: strongmotioncenter.org

Page 7: Introduction to Building Structural Dynamics for Seismic

5/6/2016

7

Design Response Spectrum

REF: ASCE 7‐10

Structural Dynamics Characteristics

• Seismic “RESPONSE” is dependent on:

– Structural System & Seismic Detailing

– Building configuration (i.e. regularities) 

– Stiffness

– Mass 

– Damping 

– Also: material strengths, system ductility, reliability, foundations, SSI, construction....

} Building Period

Page 8: Introduction to Building Structural Dynamics for Seismic

5/6/2016

8

Historical EQ, Mexico City 1985

• Mw=8.0, approximately 5 min. of shaking

• Epicenter 250 mi away from Mexico City

• 9,500 killed, 400 buildings collapsed

• “Lake Zone” clay material, 6x amplification

• Period of maximum shaking was 2 ‐ 4 sec

• “Resonance” of medium to high‐rise structures, low rise unscathed even though unscathed

• Buildings 6 to 17 stories badly damagedREF: NIST NIBS Mexico Rpt

Historical EQ, Mexico City 1985

REF: USGS

Page 9: Introduction to Building Structural Dynamics for Seismic

5/6/2016

9

Mexico City 1985, Spectrum

REF: NIST NIBS Mexico Rpt

Comparison El Centro vs. Mexico City

REF: EERI.org

Page 10: Introduction to Building Structural Dynamics for Seismic

5/6/2016

10

MODELING CHARACTERISTICS AND STRUCTURAL DYNAMICS

Structural Modeling

• Most realistic structural model would:

– All sources of stiffness of structure and soil foundation system

– Includes P‐Delta, geometric nonlinearity

– Material inelastic behavior in superstructure and foundation

• In typical design practice, “realistic modeling”:

– Is time consuming, rarely warranted for typical buildings in scope of ASCE 7‐10, Use R and Cd

Page 11: Introduction to Building Structural Dynamics for Seismic

5/6/2016

11

Linear Elastic Structural Modeling

• Defining building mass

• Effective stiffness of elements

• Determining damping assumptions

• Evaluating building period assumptions

Defining Building Mass

• Effective Seismic Weight (12.7.2)– Self‐weight

– Partition loads, 10 psf

• Storage, 25% Live Load

• Equipment weights

• Snow loads if > 30 psf and/or green roof

• lumped mass ‐ lateral mass only

• Distributed mass over Lumped Mass

• Hand calculation to verify assumptions

Page 12: Introduction to Building Structural Dynamics for Seismic

5/6/2016

12

Stiffness of Elements

• 3d‐models commonplace

• Effective stiffness of elements 

• Wall stiffness modifiers

• Frame stiffness, panel zones 

• Beam‐column joints

• Boundary conditions 

– Consider practical aspects at structural base condition

How does Damping affect Response?

5% critical damping

20% critical damping

Page 13: Introduction to Building Structural Dynamics for Seismic

5/6/2016

13

Damping Assumptions

• Viscous vs. hysteretic damping 

• Inherent Damping input for linear analysis viscous: 0.5% to 5% maximum

• Raleigh Damping (mass stiffness proportional damping matrix specified at two periods)

• Energy Dissipation Systems (additional) 10% to 40%

Building Period

• ASCE 7 Code Equation (12.8‐7)

• Cap on Ta, Cu*Ta

• Approximation: T = 0.1N, for frames

• Rational AnalysisREF: ASCE 7‐10

Page 14: Introduction to Building Structural Dynamics for Seismic

5/6/2016

14

STRUCTURAL DYNAMIC ANALYSIS:ELF, MRSA, LRHA

Analysis Goals

• Is to develop an understanding of the design and building behavior

• Meet acceptance criteria and code requirements 

• Determine specific response parameters:

– Maximum Inter‐story Drift Demands

– Peak Floor Accelerations

– Maximum Element Force Demands

Page 15: Introduction to Building Structural Dynamics for Seismic

5/6/2016

15

Equations of Motion

REF: FEMA 751

ASCE 7 Analysis Procedure Selection

• Requirements for analysis vary depending on:

– Seismic Design Category

– Structural system

– Dynamic properties

– Building height (typically 160’+)

– Regularity

• Rational approach

– Assess (de‐) coupling between lateral and torsional

Page 16: Introduction to Building Structural Dynamics for Seismic

5/6/2016

16

ASCE 7 Table of Analysis Requirements

REF: ASCE 7‐10

ASCE Table of Irregularities

REF: ASCE 7‐10

Page 17: Introduction to Building Structural Dynamics for Seismic

5/6/2016

17

Equivalent Lateral Force ‐ ELF

• Linear static method intended to represent inelastic dynamic response of structures

• Structure SDOF, 100% Modal Mass in 1st Mode• Used in the Code as static forces that represent fundamental mode induced seismic forces

• ELF is best for:– Regular structures and preliminary analysis

• ELF is needed for:– Torsion and redundancy check (12.8.4, 12.3)– P‐Delta (12.8.7)– Scaling of MRSA, LRHA

Modal Response Spectrum Analysis

• MRSA: Structure decomposed in a number of SDOF systems w/ individual mode shape/period.

• Number of modes equal to mass degrees of Freedom. e.g. rigid diaphragms 3 DOF per Floor

• In each direction displacement of each mode is determined from spectral acceleration, modal participation, and mode shape

• Results defined by combining each mode

– Assumes peak acceleration at each period all at once

Page 18: Introduction to Building Structural Dynamics for Seismic

5/6/2016

18

Modal Response Spectrum Analysis

REF: csi.berekely.edu

= + + +..

Mode 1T1 = 0.3 sM1 = 0.83

Mode 2T2 = 0.5 sM2 = 0.11

Mode 3T3 = 0.1 sM3 = 0.04

Modal Response Spectrum Analysis

• Eigen Vectors or Ritz Vectors, Ritz Vectors are preferred 

• Number of modes to include should be studied

• Rigid diaphragm assumption reduces DOF

• Recommend semi‐rigid diaphragms where applicable

• ASCE 7‐10 Requirements:– Mass Participation, 90% min

– Damping, 5% max

– Combining results for each mode• SRSS, square root sum of squares

• CQC, complete quadratic combination

Base Shear

# of modes included

Page 19: Introduction to Building Structural Dynamics for Seismic

5/6/2016

19

Modal Response Spectrum Analysis

• Design spectral ordinates x Ie/R• Calculated Drifts x Cd/Ie• Equilibrium is not satisfied in results• Possible lower component actions• Can not use MRSA for calculating torsional irregularity, use ELF

• Foundation design ‐ results are positive values• MRSA gives better results than ELF for stories with different heights, stiffness, masses, and irregularities

Linear Response History Analysis

• LRHA is Direct Analysis or Direct Integration:

– Solving Equation of Motion at each time step

• Signs preserved for Moments, Forces, etc.

• Equilibrium Satisfied

• ASCE 7‐10 Requirements: 

– Number of records, Scaling of records

– Results are maximum for each record or average

– Damping is 5% max

Page 20: Introduction to Building Structural Dynamics for Seismic

5/6/2016

20

Dynamic Analysis Summary

PRACTICAL CONSIDERATIONS FORSTRUCTURAL DYNAMIC ANALYSIS

Page 21: Introduction to Building Structural Dynamics for Seismic

5/6/2016

21

Base Shear Scaling• Scaling may be needed if: 

– Period in model is longer than used to calculate V– Response is not characterized by a single mode– ELF base shear assumes 100% in first mode, which is an overestimate

• MRSA (12.9)– Where calculated V MRSA < 85% VELF

– Scale forces up to 85% VELF

• LRHA (16.1.4)– Same scaling for forces as MRSA.

• Coming changes from FEMA P1050 & ASCE 7‐16: – Scaling to 100% VELF REF: ASCE 7‐10, 

FEMA‐1050

Displacement Scaling

• Scaling of Drifts is required when – VMRSA < 85% CsW, where Cs is Eq. 12.8‐6

• Scaling required is 85% * CsW / VMRSA

• MRSA Displacements are otherwise, “not scaled because of an overly flexible model results in conservative estimate of displacement.”

• Coming changes from FEMA P1050 & ASCE 7‐16: Scaling to 100% CsW

Page 22: Introduction to Building Structural Dynamics for Seismic

5/6/2016

22

Debugging Models

• Elastic modes consistent with expectations– Checking for spurious modes, Periods make sense?

• Debugging Mass

• For LRHA, Run Vertical Response History compare with expected Linear Static “Self Weight”

• Center of Mass (CoM), Center of Rigidity (CoR)– Review, understand, and track changes

Debugging Models

• Review Participation Factors, Periods, and look for coupling UX, UY, and Rotation Z

Page 23: Introduction to Building Structural Dynamics for Seismic

5/6/2016

23

Modal Response Spectrum Analysis

• Troubleshooting of spurious modes…

Debugging Models

• Use program summary tables.

– Modifiers:

– Center of mass:

Page 24: Introduction to Building Structural Dynamics for Seismic

5/6/2016

24

Debugging Models

• Review Boundary Conditions; pinned, fixed

• Review diaphragm assumptions

• Recommendations:– Parametric and sensitivity studies

– One model: gravity and lateral

– Revision numbers for model files

– Use an analysis log to track major changes

– Review elastic displacement spectra

– Build your understanding and confidence of software tools with increasing complex models

CONCLUSIONS & REFERENCES

Page 25: Introduction to Building Structural Dynamics for Seismic

5/6/2016

25

Conclusions

• Dynamic analysis is a useful tool for seismic design if used correctly

• Even ELF design method can use a dynamic analysis to troubleshoot models

• Use engineering judgement, calibrate yourself

• Know what you want to get from your analysis 

• Consider level of analysis required based on presumed complexity of behavior 

References

• ASCE 7 and Expanded Commentary 

• Steel AISC 341, Concrete ACI 318, Wood AF&PA SDPWS

• http://www.nehrp.gov/library/guidance.htm– NIST / NEHRP / ATC GCR Reports

– NEHRP Tech Briefs

• FEMA 451 – Design Examples

• FEMA P‐1050 – NEHRP Provisions 2015

• SEAOC Blue Book and Seismic Design Manuals

• Chopra, Dynamics of Structures

• Wilson, 3d Static and Dynamic Analysis of Structures

Page 26: Introduction to Building Structural Dynamics for Seismic

5/6/2016

26

Thank You!

Send questions, comments, suggestions:

[email protected]