32
1 Introduction to EES - 2 2.60/2.62/10.390 Fundamentals of Advanced Energy Conversion Spring 2020 Omar Labban Massachusetts Institute of Technology Credits: Adapted from the presentations created by Xiaoyu Wu and Aniket Patankar for 2.60 1

Introduction to EES - 2

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to EES - 2

1

Introduction to EES - 2

2.60/2.62/10.390 Fundamentals of Advanced Energy Conversion Spring 2020

Omar Labban Massachusetts Institute of Technology

Credits: Adapted from the presentations created by Xiaoyu Wu and Aniket Patankar for 2.60

1

Page 2: Introduction to EES - 2

2

Examples for Today

1. Adiabatic Flame Temperature 2. Throttling, Joule-Thomson effect 3. Chemical Equilibrium

2

Page 3: Introduction to EES - 2

3

Example 1: Adiabatic Flame Temperature • What’s the adiabatic temperature Ta of lean burning when the

equivalence ratio ϕ changes (ϕ < 1)

2 æ 2 ö 7.52CH + (O + 3.76N ) Þ CO + 2H O + - 2 O + N4 2 2 2 2 ç ÷ 2 2f f fè ø

T0 = 298 K P0 = 1 bar

CH4

Ta? æ 2 ö 7.52CO + 2H O + - 2 O + N2 2 ç ÷ 2 22 è f ø f(O2 + 3.76N2 )f

3

Page 4: Introduction to EES - 2

4

Equations

Assume: Only forward reaction occurs; constant pressure

2 æ 2 ö 7.52 CH + (O + 3.76N ) Þ CO + 2H O + - 2 O + N4 2 2 2 2 ç ÷ 2 2f f fè ø

Adiabatic condition:

Hreactnats (T0 , P0 ) = H products (Ta , P0 )

4

Page 5: Introduction to EES - 2

5

Before writing code – Set the Units right!

Options • Unit Systems: Set the unit system. Recommended – T in Kelvin, Specific properties per unit mole

5

Page 6: Introduction to EES - 2

6

Property Functions

Options • Function Information • Thermophysical properties • Ideal gases/Real gas • Then Paste

6

Page 7: Introduction to EES - 2

7

Equations 2 æ 2 ö 7.52 CH + (O + 3.76N ) Þ CO + 2H O + - 2 O + N4 2 2 2 2 ç ÷ 2 2f f fè ø

Why pressure isn’t required? ENTHALPY per unit mole in above formulation.

7

Page 8: Introduction to EES - 2

8

Ideal gas vs Real fluids Differences:

• Number of parameters required • Name of fluid • Reference values

8

Page 9: Introduction to EES - 2

9

Parametric Table and Plot

• Tables • New Parametric Table

9

Page 10: Introduction to EES - 2

10

Throwback to the notes

Figure from Chapter 3, 2.60 Spring Adiabatic flame temperature vs 2020 Equivalence ratio for Methane.

Calculated using EES. 10

Page 11: Introduction to EES - 2

11

Example 2 – Joule-Thomson Inversion

Isenthalpic expansion across a throttle valve can lead to an increase or decrease in temperature depending on conditions before throttling.

This effect is captured in terms of the Joule-Thomson coefficient defined below.

(credits: Wikipedia. α is the coefficient of thermal expansion) https://en.wikipedia.org/wiki/Joule%E2%80%93Thomson_effect

11

Page 12: Introduction to EES - 2

12

The Joule-Thomson Inversion Curve

Figure courtesy of NASA.

12

Page 13: Introduction to EES - 2

13

Application to refrigeration and liquefaction: Linde-Hampson Cycle

Figure from lecture 3, 2.60 Spring 2020

13

Page 14: Introduction to EES - 2

14

EES for Joule-Thomson Inversion

P1 = 135.6 [bar] T1 = 505 [K] n2$ = 'Nitrogen'

P2 = 1 [bar] H1 = enthalpy(n2$,T=T1,P=P1) T2 = temperature(n2$,h=H1,P=P2)

14

Page 15: Introduction to EES - 2

15

Joule-Thomson Inversion of Nitrogen

15

Page 16: Introduction to EES - 2

16

Example 3: Water Dissociation at 3000 K • 1 mole of water dissociated at 3000 K, 1 atm

a(1 a)H O + aH + OH O Þ -2 2 2 22

• The conditions for equilibrium is:

åµidni = 0 N

16

Page 17: Introduction to EES - 2

17

Equations

• Units

• Conditions

• Properties • Entropies using Partial pressure

• Equilibrium • Mass balance

2 0.7963H OX =

2 0.1358HX =

2 0.0679OX =

17

Page 18: Introduction to EES - 2

18

Example 3: Code T=3000 [K] P = 101.5 [kPa]

h_H2O = enthalpy(H2O, T=T) h_H2 = enthalpy(H2, T=T) h_O2 = enthalpy(O2, T=T)

s_H2O = entropy(H2O, T=T, P=P*X_H2O) s_H2 = entropy(H2, T=T, P=P*X_H2) s_O2 = entropy(O2, T=T, P=P*X_O2)

g_H2O = h_H2O - T*s_H2O g_H2 = h_H2 - T*s_H2 g_O2 = h_O2 - T*s_O2

0 = n_H2*g_H2 + n_O2*g_O2 - (1-n_H2O)*g_H2O

1 - n_H2O = n_H2 1 - n_H2O = 2*n_O2

X_H2O = n_H2O/(n_H2+n_O2+n_H2O) X_H2 = n_H2/(n_H2+n_O2+n_H2O) X_O2 = n_O2/(n_H2+n_O2+n_H2O) 18

Page 19: Introduction to EES - 2

19

Another approach – Equilibrium Constant

o1. Definition of equilibrium æ DG (T ) öK T( ) = exp ç- rxn ÷ (1) constant in terms of change p ç ÂT ÷

è øin Gibbs Free energy. 2. A sample reaction 3. Definition of equilibrium

constant in terms of partial pressures of reactants and products (3)

(2)

19

Page 20: Introduction to EES - 2

20

Calculating Kp

• Standard Gibbs free energy of the reaction at T

• Evaluated the stoichiometric reaction • Standard G at T and P0

H O = H + 0.5O2 2 2

o o o o(T ) = v × g ( ) + v × g T - v × g ( )DG T ( ) Trxn H H O O H O H O2 2 2 2 2 2

20

Page 21: Introduction to EES - 2

21

Equations

• Properties • Entropies using standard pressure

• Equilibrium constant

• Standard Gibbs Free Energy

0.1457 a =

2 2 2 2(1 ) aH O a H O aH OÞ - + +

2 2 20.5H O H O= +

21

2

Page 22: Introduction to EES - 2

22

Example 3: Code (Approach II)

T=3000 [K] P = 101.5 [kPa] R = 8.314

h_H2O = enthalpy(H2O, T=T) h_H2 = enthalpy(H2, T=T) h_O2 = enthalpy(O2, T=T)

s_H2O_0 = entropy(H2O, T=T, P=P) s_H2_0 = entropy(H2, T=T, P=P) s_O2_0 = entropy(O2, T=T, P=P)

G_p = h_H2 + 0.5*h_O2 - T*(s_H2_0 + 0.5*s_O2_0) G_r = h_H2O - T*s_H2O_0

Delta_G = G_p-G_r

K_P = exp(-Delta_G/R/T)

a/(1+0.5*a)*(0.5*a/(1+0.5*a))^0.5/((1-a)/(1+0.5*a)) = K_P 22

Page 23: Introduction to EES - 2

23

Example 4: Methane reforming

• What’s the equilibrium products of a methane reformer?

• Natural gas contains 4 – 6% N2 when it is sold to the pipeline

CH + 0.05N + H O Þ ?4 2 2

P = 1 bar T = 950 – 1350 K

CH4 + 0.05 N2

H2O

?T2 =Ta=2325 K

23

Page 24: Introduction to EES - 2

24

CHEM_EQUIL libraries • CHEM_EQUIL calculates the equilibrium composition for an ideal gas

mixture containing elements C, H, O, N, and A (A = Argon).

• INPUTS: • P: pressure [kPa] • T: temperature [K] (600 K < T < 5000 K) • AO: ratio of molecules of the inert species to atomic oxygen • CO: ratio of atomic carbon to atomic oxygen • HO: ratio of atomic hydrogen to atomic oxygen • NO: ratio of atomic nitrogen to atomic oxygen Note: AO can be set to zero. However, the minimum value for any of the other ratios is 1E-5.

• Call function: • CALL

CHEM_EQUIL(P,T,AO,CO,HO,NO:x_H2,x_O2,x_H2O,x_CO,x_CO2,x_OH,x_ H,x_O,x_N2,x_N,x_NO,x_NO2,x_CH4,x_A)

24

Page 25: Introduction to EES - 2

25

Equations CH + 0.05N + H O Þ ?4 2 2

• Pressure

• Atom ratios

• Call function

**You need to have CHEM_EQUIL library installed (available on EES website). 25

Page 26: Introduction to EES - 2

26

Example 4 - Code P = 101.3 [kPa] {T = 950}

AO = 0 CO = 1/1 HO = 6/1 NO = 0.05/1

Call chem_equil(P,T,AO,CO,HO,NO:x_H2,x_O2,x_H2O,x_CO,x_CO2,x_OH ,x_H,x_O,x_N2,x_N,x_NO,x_NO2,x_CH4,x_A)

26

Page 27: Introduction to EES - 2

27

Parametric Table and Plot • Tables • New Parametric Table • Plot • New Plot Windows • X-Y Plot

27

Page 28: Introduction to EES - 2

28

Plot of data from the previous slide. Steam reforming of Methane with N2 impurity.

28

Page 29: Introduction to EES - 2

29

Throwback to the notes

Figure from Lecture 6, 2.60 Spring Plot of data from the previous 2020

slide. Steam reforming of Methane with N2 impurity. 29

Page 30: Introduction to EES - 2

30

Examples for Today

1. Adiabatic Flame Temperature 2. Throttling, Joule-Thomson effect 3. Chemical Equilibrium

30

Page 31: Introduction to EES - 2

31

Summary 1. Thermodynamics property libraries

• Ideal gas and Real fluids

2. Thermodynamic equilibrium • Gibbs free energy • Equilibrium constant • Equilibrium Libraries

31

Page 32: Introduction to EES - 2

MIT OpenCourseWare https://ocw.mit.edu/

2.60J Fundamentals of Advanced Energy Conversion Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

32