29
1 Introduction to electrochemical Introduction to electrochemical techniques techniques Valentin Mir č eski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius” University, Skopje Republic of Macedonia

Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

Embed Size (px)

Citation preview

Page 1: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

1

Introduction to electrochemical Introduction to electrochemical techniquestechniques

Valentin MirčeskiInstitute of Chemistry

Faculty of Natural Sciences and Mathematics“Ss Cyril and Methodius” University, Skopje

Republic of Macedonia

Page 2: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

2

Electrochemistry: basic terms

Electrochemistry is interdisciplinary science dealing with the interrelation between the chemical and electrical phenomena.

Chemical (redox) transformations caused by a flow of electric current Gaining electrical current due to spontaneous chemical

transformation

Understanding electrochemistry means: Understanding electrode processes Understanding electrical properties of interfaces

The main phenomena: Charge transfer across an interfaces formed, most frequently, between an electric conductor of a

first kind (an electrode) (electron conductivity) and second kind (electrolyte solution, i.e., a solution of ions) (ion

conductivity)

Page 3: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

3

Electrochemical cells

Galvanic cell:Spontaneous redox (electrode)

reactions give raise to a current flow.

Electrolysis cell: non-spontaneous redox

(electrode) reactions are driven by the power of an external electric supply!

Page 4: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

4

Electrochemical cells and electrochemical reactions

The simples electrochemical experiment involves charge transfer across at least two interfaces

Electric potential difference between the electric potential of the two electrodes

(the main driving force as a measure for the energy available to drive electric charges through the electrochemical cell)

Page 5: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

5

Electrical potential (E (V – volt)) is a measure for the potential energy of a charge in an electric field;

The difference in the potential (potential energy) causes a charged species to move in the electric field (charge transfer)

Potential of 1 V (volt) is equivalent to the potential energy of 1J of a charged species with a charge of 1 C (coulomb)

Charge transfer in time is called electric current (I (A – ampere)

Electric potential and current

Page 6: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

6

Electrode reactions, half reactions…

Electrode/electrolyte interface is characterized with a large potential difference , thus a strong electric filed exists at the interface! Electrode reactions Half-reactions The overall reaction Working electrode Reference electrode

R (reduced species)

O (oxidized species)

- e

Ele

ctro

de

Ele

ctro

de

O + ne- ⇄ R(electrode reaction)

electrode|solution Interface

Page 7: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

7

The main reference electrode: Standard (normal) hydrogen electrode (SHE) (NHE)

Reference callomel electrode Hg/Hg2Cl2/KCl (saturated in water) 0.242 V vs SHE

Reference silver-silver chloride electrode Ag/AgCl/KCl (saturated in water) 0.197 V vs SHE

In the course of the electrochemical experiment the chemical composition, hence the electric potential, of the reference electrode remains constant!

Standard hydrogen electrode

Controlling the potential difference between the working and reference electrode, one controls actually the potential of the working electrode only!

Page 8: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

8

Reduction Reduction current (“ – “)

Oxidation Oxidation current (“ + “)

Standard redox potential E, which is related to the standard Gibbs energy

Synonyms: standard electrode potential; standard reduction potential.

O + ne- = R

n – number of electronsF – Faraday constant (96 485.3 C mol-1). Thus, the physical meaning of the

Faraday constant is that one mole of a single charged species has a charge of 96 485.3 C; e.g., one mole of electrons has a charge of - 96 485.3 C.

Faraday law: A charge of 96485.3 C corresponds to the transformation of 1 mol reactant and 1 mol product in a one-electron electrohemical reaction O + e- = R

Current sign convention, standard redox potential, Faraday law

G = -nFE

Page 9: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

9

I – E curve: polarisation curve

(working electrode) 2H+ + 2e- = H2

(reference electrode) Ag + Br- = AgBr + e-

2Br- = Br2 + 2e-

AgBr + e- = Ag + Br-

The overall current flow must be equal at both electrodes, and it is dictated by the working electrode, which has much smaller electrode surface area.

Limiting potentials dictated by electrochemical reactions of the supporting electrolyte at particular electrode.

Electrode reactions are heterogeneous in their nature.

The rate depends on the electric field, i.e., on the electrode potential.

Page 10: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

10

Overpotential: additional energy required than thermodynamically predicted due to the slow electrode

kinetics

Hg

A large overpotential for hydrogen reduction at Hg electrode

Page 11: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

11

Electroactive species in a supporting electrolyte

Polarization curve in the presence of traces of electroactive species (Cd2+)

Page 12: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

12

Possible electrode reactions at different electrodes

Page 13: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

13

Faradaic and nonfaradaic processesFaradaic and nonfaradaic processes

Faradaic processes: charge transfer due to redox reactions (electrode reaction)-current flow

Nonfaradaic processes: no charge transfer across the interface; adsorption, desorption, changes in the structure of the layer of the solution adjacent to the electrode formation of an electic double layer etc. Important: although there is no

charge transfer, the nonfaradaic processes cause the current to flow in the electrochemical cell!

Ideally polarizable electrode: no charge transfer, e.g. Hg in 1 M KCl in acetonitrile over 2 V (from 0.25 to -2.1 V vs SHE.

Page 14: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

14

Electrode/electrolyte interface: an electric capacitorElectrode/electrolyte interface: an electric capacitor

Page 15: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

15

Structure of the electrical doubly layerStructure of the electrical doubly layer

(IHP) - inner Helmholtz plane

(OHP) - Outer Helmholtz plane

Page 16: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

16

Potential profile across the double-layerPotential profile across the double-layer

= dE/dx

The intensity of the electric field is very high due to

the potential variation over

very small (nanometer range)

distance!

Page 17: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

17

O + ne- ⇄ R(electrode reaction)

nFA

Iv

Electric current (Electric current (II) measured at ) measured at the electrode is proportional to the the electrode is proportional to the rate (rate (vv)) of the electrode reaction!of the electrode reaction!((qq – charge, t – time, – charge, t – time, FF – Faraday constant; – Faraday constant; AA – electrode surface area; – electrode surface area; nn – number of – number of electrons, n(O) – number of moles of the electrons, n(O) – number of moles of the reactant O)reactant O)

Rate of an electrode reaction: the flux

R (reduced species)

O (oxidized species)

- e

Ele

ctro

de

Ele

ctro

de

electrode|solution Interface

AnF

I

AnFt

qv

tA

nv

nFnqt

qI

1

d

d

d

)O(d

)O(d

d Flux (the rate of the heterogeneous electrode reaction) is equal to the amount of reacted material per unit of time per unit of electrode surface area (mol s

-1 cm-2). This chemical rate is equal to the ratio of the electric current, number of exchanged electrons in a unit reaction and electrode surface area.

Page 18: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

18

Factors affecting the rate of electrode processes

Modes of mass transfer:

MigrationMigration DiffusionDiffusion ConvectionConvection

Nernst-Plank equation

Page 19: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

19

Electrode reaction controlled by the mass transportElectrode reaction controlled by the mass transport

0x

0x'0

[R]

[O]ln

nF

RTEE

If the mass transfer is the slowest step of the electrode reaction, then the electrode reaction is termed as being “electrochemically reversible”. At each potential difference (E) of the interface, the electrode reaction is in redox equilibrium, which is described by the Nernst equation:

The Nernst eq. reveals that variation of the potential difference at the interface (E) causes variation of the equilibrium concentrations of the redox species ([O] and [R]). In other words, it shifts the position of the redox equilibrium, which is manifested as a flow of electric current in the system.

R

O

Ele

ctro

de

Ele

ctro

de

electrolyte electrolyte solutionsolution

E = E = elecc.elecc. – – sol. sol. (Potential difference (E) across the interface

is externally controlled by controlling the inner potential () of the electrode. In simple words, one controls the activity, i.e., concentration of electrons participating in the electrode reaction, thus affecting both the position of the redox equilibrium O/R and the kinetics of the redox transformation. Note, frequently, the potential difference E is designated simply as electrode potential with a symbol E)

O + ne ⇄ R(electrode reaction)

Page 20: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

20

Semi-empirical treatment of a voltammetric experiment when the diffusion layer has a constant thickness: a steady-state

mass transfer

0)d

d( x

RR x

cDv

)0(*

xcc

Dv RRR

)0(*

xcc

DnFA

I RRR

0)d

d( x

R

x

cv

.)(*R concbulkc

)0( xcR

x

Rc

ele

ctr

od

e

R

RRRR

Dmxccm

nFA

I));0(( *

O

OOOO

Dmxccm

nFA

I));0(( *

)0( xcmnFA

IOO

*RR

l cmnFA

I

In this experiment, the flux at the electrode (i.e., the rate of the electrode reaction, thus the current), depends on the diffusion rate only (i.e., depends on the mass transfer only). According to the First Fick law, the rate of diffusion depends on the diffusion coefficient (D) and the concentration gradient (dc/dx); (D – diffusion coefficient (it is the rate constant of the diffusion (cm 2 s-1)). In addition, it is assumed that the diffusion layer has a constant thickness . The flux of R species must be equal, but opposite in sign, with the flux of O species. R diffuses toward the electrode, while O, formed by oxidation of R, diffuses away from the electrode (in the opposite direction)

0.)(*O concbulkc

R = O + ne-

The maximal flux of R will be if cR(x = 0) = 0. Thus, the corresponding current is termed limiting current, Il

Page 21: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

21

R

lR nFAm

Ic *

R

lR nFAm

IIxc

)0(

II

I

nF

RT

m

m

nF

RTEE

xc

xc

nF

RTEE

lO

R

lnln

)0(

)0(ln

0

R

O0

O

R

l

m

m

nF

RTEE

II

ln

2/

2/1

II

I

nF

RTEE

l ln2/1

E / V

I / A

E1/2

Il (limiting current)

Typical I-E curve (voltammogram) for an electriochemical experiment

with a constant thickness of the diffusion layer (steady state

voltammetry)

Page 22: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

22

Kinetics of a simple homogeneous chemical reaction

A ⇄ Bkf

kb

Aff ck

Bbb ck

BbAfnet ckck

][

][

A

BK

k

k

b

f Symbols and abbreviations

ff – forward – forwardbb – backward – backwardnetnet – overall reaction – overall reactionKK – equilibrium constant – equilibrium constant[X] - equilibrium concentration [X] - equilibrium concentration of a species Xof a species X

The rate of a common chemical reaction depends on the concentrations of participants, and (through the rate constant) on the temperature and activation energy.

Page 23: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

23

R ⇄ O + ne-kf

kb

nFA

Ick a

Rff nFA

Ick c

Obb

nFA

Ickck ObRfbfnet

][ ObRfca ckcknFAIII

)](exp[ '00 EERT

nFkk f )]()1(exp[ '00 EE

RT

nFkkb

)()1()(0'0'0

),0(),0(EE

RT

nF

O

EERT

nF

R etcetcFAkI

c – cathodic (reductive)a – anodic (oxidative) – electron transfer coefficient (dimensionless number between 0 and 1; most frequently the value is 0.5)k (cm s-1)- standard rate constant (rate constant when the electrode potential is equal to the standard potential of the redox couple, E’)

Butler-Volmer equation

Electrode kineticsElectrode kinetics

Rate constants depend on the potential! The unique feature of electrochemical rate constants. Thus, the rate of the electrode reaction can be controlled by the potential!

Page 24: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

24

Limiting current

limiting current

Dependence of the current on the electrode potential

R

O (at the electrode surface)

v = I/nFA

Ele

ctr

od

eE

lectr

od

e O (in the

solution)

diffusion

Although the rate of the electrode reaction could be very fast due to the large overpotential, the overall rate will by limited by the supply of the electrode surface with the electroactive material by the mass transport, i.e. diffusion!

The current increases exponentially with the potential as predicted by the dependence of the rate constants on the potential!

Page 25: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

25

Electrochemical techniques: chronoamperometry

The dependence of the potential and current on time in the course of the chronoamperometric experiment. The experiment is conducted at a given fixed potential (E2), which is sufficiently height (E2 >> E) to cause complete electrochemical (redox) transformation of the electroactive species at the electrode surface. As a consequence, the current is flowing in the cell, and it is being measured as a function of time.

t

E

E2

E1

0t

I

0

R O + ⇄ ne

Page 26: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

26

Description of the mathematical model referring to a simple chronoamperometric experiment - Cottrell equation

)()()(

),0()(

0),0(

),(lim

),(),(

*

0

*

2

2

equationCottrellt

DnFActItI

x

tcD

nFA

tI

tc

ctxc

x

txcD

t

txc

RRd

x

RR

R

RRx

RR

R

R O + ⇄ ne

x

c R /

c*R

1

0,2

t = 0

t = 0,001 s

t = 0,01 s

t = 0,1 s

t = 1 s

Concentration profiles. Variation of the concentration of electroactive species with the distance x measured from the electrode surface at different times of the chronoamperometric experiment. As shown above, the thickness of the diffusion layer increases with time.

Cottrell experiment: Chronoamperometric experiment in a homogenous solution containing only R species, at a potential E >> E , thus enabling complete transformation of all R species at the electrode surface. Mass transfer is occurring only by diffusion without any specific adsorption phenomena on the electrode surface.

Page 27: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

27

Chronoamperometry with a double potential step

tI

0

For mechanistic purposes, i.e. to reveal the mechanism of the electrode reaction, the chronoamperometric experiment can be conducted with a double potential step, as shown in the figure below. At the potential E2, the initially present R species undergo electrochemical oxidation at the electrode surface to produce species O, resulting in the first branch of the current, presented in the right plot (i.e.. chronoamperogram). In the second potential step, the potential is changed to a value E3, at which the reduction of previously formed species O is taking place, producing the second branch of the chronoamperogram presented on the right panel.

t

E

E2

0

E3E1

Page 28: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

28

Chronocoulometry

Chronocoulometry is equivalent method to chronoamperometry, the difference being in measuring the charge consumed in the course of the electrode reaction instead of the current. We recall, the definition of the current

Hence, the charge is simply calculated as an integral of the current-time function, i.e.

In the course of the experiment, contrary to the chronoamerometry, the response of the crhronocoulometry increases with time, as the amount of the material transformed at the electrode increases with time. By integration of the current, the noise effect is usually smoothed out and it is not so significant as in chronoametrometry. The contribution of the double layer as well as from electrode reaction of immobilized species can be easily separated from the contribution of diffusing species. Thus, chronocoulometry is especially valuable for studying surface processes, thus it is of particular importance in studying conducting polymers.

t

ttIq0

d)(

t

qI

d

d

Page 29: Introduction to electrochemical techniques Valentin Mirčeski Institute of Chemistry Faculty of Natural Sciences and Mathematics “Ss Cyril and Methodius”

29

For a Cottrell experiment described on page 27, the chronocoulometric response is defined as:

The charge consumed during the experiment of species that diffuses toward the electrode is proportional to the square-root of time and the plot vs. t1/2 is linear with a slop from which some of the constants of the equation above can be obtained, given the knowledge of others.

2/1

2/12/12

ctnFAD

Q

The eq. above shows that at t = 0, the charge is 0. However, in a real experiment the line Q vs t1/2 does not cross through the origin, as shown in the plot. This is due to the charge consumed by the double layer formation and by electrode transformation of species immobilized on the electrode surface. Thus the total charge can be separated in three terms:

The first term is due to electrode reaction controlled by the diffusion of the species, homogeneously distributed in the solution, the second term Qdl is due to formation of the double layer and the third is due to electrode transformation of adsorbed species.

RnFAΓQdlctnFAD

Q 2/1

2/12/12