46
Introduction to Neutrino Interaction Physics NUFACT08 Summer School Introduction to Neutrino Interaction Physics Introduction to Neutrino Interaction Physics NUFACT08 Summer School NUFACT08 Summer School 11-13 June 2008 Benasque, Spain Paul Soler

Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Introduction to Neutrino Interaction PhysicsNUFACT08 Summer School

Introduction to Neutrino Interaction PhysicsIntroduction to Neutrino Interaction Physics

NUFACT08 Summer SchoolNUFACT08 Summer School

11-13 June 2008Benasque, Spain

Paul Soler

Page 2: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School2

ReferencesReferences

1. K Zuber, “Neutrino Physics”, Institute of Physics Publishing, 2004.2. C.H. Kim & A. Pevsner “Neutrinos in Physics and Astrophysics”,

Harwood Academic Publishers, 1993.3. K. Winter (editor), “Neutrino Physics”, Cambridge University Press

(2nd edition), 2000.4. R.N. Mohapatra, P.B. Pal, “Massive Neutrinos in Physics and

Astrophysics”, World Scientific (2nd edition), 1998.5. H.V. Klapdor-Kleingrothaus & K. Zuber, “Particle Astrophysics”,

Institute of Physics Publishing, 1997.6. K. McFarland, Neutrino Interaction Physics, lectures at SUSSP61, St

Andrews, June 2006, (To be published in Proceedings SUSSP61, Taylor & Francis, 2008).

Page 3: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School3

ContentsContents

1. History and Introduction2. Neutrino Electron Scattering3. Neutrino Nucleon Deep-Inelastic Scattering4. Quasi-elastic, Resonant, Coherent and

Diffractive Scattering 5. Nuclear Effects

Page 4: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School4

1. History and Introduction1.1 Fermi Theory

1.2 Neutrino discovery

1.3 Parity violation and V-A theory

1.4 Neutral currents

1.5 Standard model neutrino interactions

Page 5: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School5

1.1 Fermi theory of beta decay (1932)1.1 Fermi theory of beta decay (1932)� Existence of a point-like four fermion interaction (Fermi, 1932):

eepn ν++→ −

n

peν

−e

� Lagrangian of the interaction:

[ ][ ])()()()(2

)( xxxxG

xL enpF

νµµ φγφφγφ−=

GF = Fermi coupling constant = 2510)00001.016637.1( −−×± GeV

� Gamow-Teller interaction when final spin different to initial nucleus:

[ ][ ] ..)()()()(2

)( chxxxxG

xLi

ien

i

pF +ΓΓ−= ∑ νφφφφ

TAVPSi ,,,,,,,,1 55 ==Γ µνµµ σγγγγPossible interactions:

Page 6: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School6

First neutrino crossFirst neutrino cross--section calculationsection calculation� Bethe-Peierls (1934): calculation of first cross-section for inverse beta

reaction or using Fermi theory

� Probability of interaction:

++→+ enpeν

� Mean free path of antineutrino in water:

yearslightcmn

−≈×≈= 1600105.11 21

σλ

ρA

Nn A2

volume

protons free num.≈=

120 )(107.6exp1 −−×=≈

−−= waterm

LLP

λλNeed very intense source of antineutrinos to detect inverse beta reaction.

Conversion from natural units:

MeVEcm 2)(105 244 =×≈ − νσ for

fmMeVc ⋅= 3.197h22272 103894.0)( cmGeVc ⋅×= −hCross-section: multiply by

p

eνbσ

−+→+ epneν

32223

107.618

1062 −×=××

= cmnIn water:

Accurate to factor 2

Page 7: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School7

� Reines and Cowan detect in 1953 (Hanford) (discovery confirmed 1956 in Savannah River):

– Detection of two back-to-back γs from prompt signal e+e- ->γγ at t=0.

– Neutron thermalization: neutron capture in Cd, emission of late γs<t>~ 20 ms

+en

γ

γ

γ

γ γ

ν

Scintillator

Scintillator

H2O + CdCl2

1.2 Neutrino discovery (1956)1.2 Neutrino discovery (1956)++→+ enpeν

Publication Science 1956:

σσσσ= 6 x10-44 cm2 ±±±± 25% (within 5% expected)

1956: parity violation discovery increases

theory cross-section: σσσσ=(10±±±±1.7)x10-44 cm2

Reanalysis data in 1960:

σσσσ= (12+7-4) x10-44 cm2

Nobel prize Reines 19954200 l scintillator

Page 8: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School8

1.3 Parity violation and V1.3 Parity violation and V--AA� Parity violation in weak decays postulated by Lee & Yang

in 1950

� Parity violation confirmed through forward-backward asymmetry of polarized 60Co (Wu, 1957).

More electrons emitted in direction opposite to 60Co spins, implying maximal parity violation

� Helicity operator:

eeNiCo ν++→ −*6060

Hp

p

p

pH

P −=−⋅

→⋅

= r

rr

r

rr)(σσ

Projects spin along direction of motion

Page 9: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School9

1.3 Parity violation and V1.3 Parity violation and V--AA

� Goldhaber, Grodzins, Sunyar (1958) measure helicity of neutrino from K capture of 152 Eu:

γ

ν

+→

+→++−

−−−

)0()1(

)1()0(

*152*152

*152152

SmSm

SmeEu e

Asymmetry of photon spectrum in magnetic field determines helicity of νe:

Neutrinos are “left-handed” Antineutrinos are “right-handed”

( ) ( ) 11 +=⇒−= ee HH νν

pγ=-pν

σγ=-σν

Hγ=Hν

Page 10: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School10

1.3 Parity violation and V1.3 Parity violation and V--AA

� The only possible coupling is V-A, due to maximal parity violation in weak interactions (Feynman, Gell-Mann, 1958):

[ ][ ] 0028.02573.1with)1()1(2

55 ±−=−−−=− AenApF

AV ggG

L νµµ φγγφφγγφ

� Left and right handed projection operators:

� Chirality operator:

same as helicity operator for massless neutrinos (E=p).

� If only νL interact and νR do not interact, then Γi have to transform as:

νγνν )1(2

15−== LL P νγνν )1(

2

15+== RR P

( ) ( )

( ) ( )555

_____

12

1:1

2

1: γγγγγγγ

ννν

µµµµ −−=−=

Γ=Γ→Γ

LRLR

LiRLiLi

PPAPPV

PPePePe

LLL H νννγ −==5 RRR H νννγ +==5

(determined empirically)

3210

5 γγγγγ i=

Page 11: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School11

1.4 Neutral currents 1.4 Neutral currents � Two types of weak interaction: charged current (CC) and neutral

current (NC) from electroweak theory of Glashow, Weinberg, Salam.

±W

0Z

� First example of NC observed in 1973, inside the Gargamelle bubble chamber filled with freon (CF3Br): no muon!

XN +→+ µµ νν

0Z

µν µν

N X

Page 12: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School12

1.5 Standard Model Neutrino Interactions1.5 Standard Model Neutrino Interactions

� Lagrangian for electroweak interactions:

[ ] [ ]

[ ] µµµ

µµµ

µµ

µµ

θθ

θθ

Ajgjgi

ZjgjgiWjWjg

iL

Y

WW

Y

WW

)2/()3(

)2/()3()()(

int

cos'sin

sin'cos2

++

+−++= +−+

� 1st term: charged current interactions (W+, W- exchange)

� 2nd term: neutral current interactions (Z0 exchange)

� 3rd term:electromagnetic interactions (photon exchange)

� Electron charge:

� 3rd term:

(neutrinos only couple to W± and Z0)

WW gge θθ cos'sin ==

)( )2/()3(.. Yme jjeej µµµ +=

Page 13: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School13

S.M. interactions (cont)S.M. interactions (cont)

� A) Neutrino electron interaction

� Where:

=−= )sin(2 .2)3()( me

W

Z jjj µµµ θ

eej eLLe )1(2

15,

)( γγνγν µµµ −==+

eLeL eej νγγνγ µµµ )1(2

15,

)( −==−

[ ] meZ

W

iejZjg

iWjWjg

iL.)()()(

intcos22

µµ

µµ

µµ

µθ

+++= +−+

eggej AVee

Z )()1(2

155

)( γγνγγν µµµ −+−=⇒

WVg θ2sin22

1+−=� With:

2

1−=Ag

eeee

eeee

Wee

WLLLeLe

µµµ

µµµ

γθγγνγγν

γθγνγν

2

55

2

,,

sin2)1(2

1)1(

2

1

sin2

+−−−=

=+−=

Page 14: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School14

S.M. interactions (cont)S.M. interactions (cont)

� B) Quark weak interactions

� Where:

dBAduBAuj dduu

Z )()( 55

)( γγγγ µµµ −+−=

duj )1(2

15

)( γγ µµ −=+

udj )1(2

15

)( γγ µµ −=−

[ ] meZ

W

iejZjg

iWjWjg

iL.)()()(

intcos22

µµ

µµ

µµ

µθ

+++= +−+

WuA θ2sin3

4

2

1−=

� With:

2

1=uB

WdA θ2sin3

2

2

1+−=

2

1−=dB

Page 15: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School15

S.M. interactions (cont)S.M. interactions (cont)

� After introducing Higgs field and spontaneous symmetry breaking:

� Masses: vmH λ2=

422 φλφµφµ −−−= DLHiggs

� Vacuum expectation value:

2

gvm

W=±

vgg

mZ 2

'22

0

+=

W

Z

W

gg

g

m

mθ2

22

22

cos'0

=+

=

±

( ) GeVGv F 24622/1

≈=−

� Effective Hamiltonian:

[ ] =++= −+ )()(

22

2)()(

2

2

cos8..

4

ZZ

WZW

eff jjm

gchjj

m

gH µ

µµ

µ

θ

[ ])()()()( ..22

ZZF jjchjjG

µµ

µµ ++= −+

Page 16: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School16

S.M. interactions (cont)S.M. interactions (cont)

� The vector boson masses are then predicted:

� Masses: 2

2

sin

2805.37

=

W

Wmθ

WWWWW

F

mm

e

m

gG

θ

πα

θ 2222

2

2

2

sin8

4

sin882===

GeVmW 058.0450.80 ±=

GeVmZ 0021.01876.91 ±=

00035.022280.0sin2 ±=Wθ

� Need radiative corrections:

2/1)1(sin

2805.37

rm

W

W∆−

GeVm

GeVmGeVmr

W

Ht

11.051.80:yields

1177.172for0011.003630.0with

±=

==±≈∆

036.137/1=α

Page 17: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School17

2. Neutrino Electron Scattering2.1 Charged current

2.2 Neutral current

2.3 Interference charged and neutral current

2.4 Mass suppression

2.5 Number of neutrinos

Page 18: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School18 251016637.1

33.197−−×=

⋅=

GeVG

fmMeVc

F

h

2.1 Neutrino2.1 Neutrino--electron CC scatteringelectron CC scattering

� Only charged current:−− +→+ µνν µ ee

( ) )(22 LABinEmpps ee µµ νν =+=

( )222µν µ

ppQqt −=−==

( ))( LABin

E

EE

pp

pppy

e

e

µ

µ

µ

µ

ν

µν

ν

µν −=

−⋅=

∫+

=⇒+

= −

− s

W

WFCC

W

WFCCdQ

mQ

mGe

mQ

mG

dydQ

ed

0

2

222

42

222

42

2)(

)()(

)(

πνσ

π

νσµ

µ

Inelasticity variable

(0<y<1)

( )241

22

22

11072.1

2)(

)(2

)(

cmGeV

EEcmGe

LABinEmGsG

e

eF

CC

eFFCC

×==⇒

=≈

−−

µµ

µ

νν

µ

νµ

πνσ

ππνσ

h

Total cross-section (ignoring mass terms):

(cross-section proportional to energy!)

[ ][ ]eF

eff eG

H νγγµγγν µµ

µ )1()1(2

55 −−=

(Inverse Muon Decay)

Measurement CHARM-II:

( ) 241

110093.0651.1)( cm

GeV

Ee

×±= −−

µνσ

−W

µν

eν−e

−µ

Total spin J=0

Page 19: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School19

2.2 Neutrino2.2 Neutrino--electron NC scatteringelectron NC scattering

� Only neutral current: −−

−−

+→+ ee µµ νν)()(

−+

+−

+=

24

2

2

222

max

42

)1(sinsin2

1

)(

)(y

mQ

msG

dy

edWW

Z

zFNC θθπ

νσ µ

+−

+−

+=

WW

Z

ZFNCy

mQ

msG

dy

edθθ

π

νσ µ 42

2

2

222

max

42

sin)1(sin2

1

)(

)(

eegeegegge RLAV )1()1()( 555 γγγγγγ µµµ ++−=−

WAVL ggg θ2sin2

1)(

2

1+−=+=

WAVR ggg θ2sin)(2

1=−=

[ ][ ]eggeG

H AVF

eff )()1(2

55 γγνγγν µµµ

µ −−=

WVg θ2sin22

1+−=

2

1−=Ag

Elastic scattering

0Z

µν)(−

−e

µν)(−

−e

Couples to eL and eR: J=0,1

Right handed current suppressed in backward direction:2

*cos11

θ+=− y

Page 20: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School20

017.0035.0 ±−=Vg

2.2 Neutrino2.2 Neutrino--electron NC scatteringelectron NC scattering

� Only neutral current (total cross-section):

2414

2

2

2

11016.0sin

3

1sin

2

1)( cm

GeV

EsGe WW

FNC

×=

+

+−= −− ν

µ θθπ

νσ

2414

2

2

2

11013.0sinsin

2

1

3

1)( cm

GeV

EsGe WW

FNC

×=

+

+−= −− ν

µ θθπ

νσ

� Can obtain value of sin2θW

from neutrino electron elastic scattering (CHARM II):

0059.00058.02324.0sin2 ±±=Wθ

−−

−−

+→+ ee µµ νν)()(

)1(22ymE ee −=Θ

017.0503.0 ±−=Ag

Page 21: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School21

2.3 Interference CC and NC2.3 Interference CC and NC� Tree level Feynman diagrams: both neutral and charged currents

0Z

eν eν

−e

−e

−W

eν−e

−e

−− +→+ ee ee νν

� Effective Hamiltonian:

[ ][ ]{ }eggeG

AVeeF ))1(1()1(2

55 γγνγγν µµ +−+−=

(through a Fierz transformation)

[ ][ ] [ ][ ]{ }eggeeeG

H AVeeeeF

eff )()1()1()1(2

5555 γγνγγννγγγγν µµ

µµ −−+−−=

Page 22: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School22

2.3 Interference CC and NC 2.3 Interference CC and NC � Rearranging terms in charged and neutral current contributions for:

Then:

−− +→+ ee ee νν

WWAVL ggg θθ 22 sin2

11sin

2

1)11(

2

1+=++−=+++=

WAVR ggg θ2sin))1(1(2

1=+−+=

( )

−+

+=

−24

2

2

2

1sinsin2

1)(y

sG

dy

edWW

Fe θθπ

νσ

These cross-sections are a consequence of the interference of the charged and neutral current diagrams.

2414

2

2

2

11040.0sinsin

2

1

3

1)( cm

GeV

EsGe WW

Fe

×=

+

+= −− νθθ

πνσ :Also

2414

2

2

2

11096.0sin

3

1sin

2

1)( cm

GeV

EsGe WW

Fe

×=

+

+=⇒ −− νθθ

πνσ

Page 23: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School23

2.3 Interference CC and NC2.3 Interference CC and NC

� Neutrino pair production:

Then:

eeee νν +→+ −+

+

+=→−+

4

1sin2

2

1

12)(

2

2

2

WF

ee

sGee θ

πννσ

Contribution from both W and Z graphs.

W

+e

−e

Z

+e

−e

� Only neutral current contribution to: µµ νν +→+ −+ee

+

−=→−+

4

1sin2

2

1

12)(

2

2

2

WF sG

ee θπ

ννσ µµ

Caveat: below the Z pole!

Page 24: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School24

NeutrinoNeutrino--electron scattering summaryelectron scattering summary

� Summary neutrino electron scattering processes:

−− +→+ ee µµ νν

( )

+− WW

F sGθθ

π422

2

sin3

41sin2

4

Total cross-sectionProcess

−− +→+ ee µµ νν

−− +→+ ee ee νν

ee νµν µ +→+ −−

−− +→+ ee ee νν

eeee νν +→+ −+

µµ νν +→+ −+ ee

( )

+− WW

F sGθθ

π422

2

sin41sin23

1

4

( )

+− WW

F sGθθ

π422

2

sin3

41sin2

4

( )

++ WW

F sGθθ

π422

2

sin41sin23

1

4

π

sGF

2

++ WW

F sGθθ

π42

2

sin4sin22

1

12

+− WW

F sGθθ

π42

2

sin4sin22

1

12

frame)LABthe(inνEms e2=

Page 25: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School25

� We have not taken into account the effect of initial and final state masses yet

� For example:

Threshold

� Cross-section modification:

� Therefore:

−− +→+ µνν µ ee

( )

( ) ( )22

2min

2max

2

2min

2max22

min22

max

42

2

222

42

))(()()(

2max

2min

µ

µ

ππ

ππνσ

msG

QQG

QQmQmQ

mGdQ

mQ

mGe

FF

WW

WF

Q

Q W

WFCC

−=−≈

≈−++

=+

= ∫−

2.4 Mass suppression2.4 Mass suppression

GeVm

mmEmEmms

e

e

ee 112

2

22

22≈

−≥⇒≥+= µ

νµν

−=

−= −−

s

me

s

msGe massless

CCF

CC

222

1)(1)(µ

µµ

µ νσπ

νσ

Page 26: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School26

2.5 Number of neutrinos2.5 Number of neutrinos

� Width of the Z-pole resonance: Breit-Wigner distribution

0Z

+e

−e

eν 0Z

+e

−e

+l

−l 0

Z

+e

−e

q

q

ZZZ

fe

Z MsMs

s

M

cfee

/)(

)(12)(

2222

2

Γ+−

ΓΓ=→−+ hπ

σ

)()()(12)(12

)( 002

2

2

ffZBeeZBM

c

M

cfee

ZZ

fe

Z

peak →→=Γ

ΓΓ=→ −+−+ hh ππ

σ

MeVNllhadZ 24903 =Γ+Γ+Γ=Γ −+ ννν

MeVbscduhad 1741=Γ+Γ+Γ+Γ+Γ=Γ

MeV1.167=Γ νν

MeVll

9.83=Γ −+

0083.09841.2 ±=⇒ νN

� Only 3 neutrinos with mass less than the Z mass

3 neutrinos

4 neutrinos

2 neutrinos

Page 27: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School27

3. Neutrino Nucleon Deep-Inelastic Scattering

3.1 Definition and variables

3.2 Charged current

3.3 Quark content of nucleons

3.4 Sum rules

3.5 Neutral current

3.6 A case study: sin2θW from neutrino interactions3.7 Charm production in neutrino interactions

Page 28: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School28

� Deep inelastic neutrino-nucleon scattering reactions have large q2

(q2 >>mN2,Eν>>mN):

� Quark-parton model valid due to asymptotic freedom of QCD, which makes quarks behave as free point-like particles.

� Infinite momentum frame: a parton takes a fraction x (0<x<1), of momentum when struck by a neutrino. Final quark state:

XplNpl +′→+ − )()(ν

MEMEpps N 22)( 2 =≈+= ν

( ) 222

22

2q

N

qN mqifqp

qxmqxp >>

⋅−≈⇒=+

� Variables in DIS:

2sin4)( 2222 θ

EEppqQ ′=′+−=−=

EEM

pq N ′−=⋅

22222 2 MMQpEW XX ++−=−= ν

Bjorken Variables

(0<x<1, 0<y<1):

MEx

Q

Epp

pqy

N

N

2

2

==⋅

⋅=

ν

νM

Q

pq

qx

N 22

22

=⋅

−=

3.1 Definition and Variables3.1 Definition and Variables

Recoil mass

Page 29: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School29

� Neutrino proton CC scattering:

= number of u-quarks in proton between x and x+dx

In the sea:

For proton (uud):

Xppp +′→+ − )()( µν µ

[ ]∫∫ =−=1

0

1

02)()()( dxxuxudxxuV

� Neutrino-quark/antineutrino-antiquark scattering:

� Neutrino-antiquark/antineutrino-quark scattering:

dxxu )()()()( xuxuxu SV += )()()( xdxdxd SV +=

)()( xuxuS = )()( xdxdS =

[ ]∫∫ =−=1

0

1

01)()()( dxxdxddxxdV

π

νσνσ µµ EmG

dy

qd

dy

qd qFCCCC

22)()(

==

( )2

2

12)()(

yEmG

dy

qd

dy

qd qFCCCC−==

π

νσνσ µµ

( )θcos12

11 −=

′−=

E

Ey with

3.2 Charged current3.2 Charged current

Page 30: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School30

3.2 Charged current3.2 Charged current

� Scattering off proton: )()()()( ccssdduuuudproton ++++=

[ ] [ ]{ }2

2

)1()()()()(2)(

yxcxuxsxdxMEG

dxdy

pdFCC

−+++=π

νσ µ

[ ] [ ]{ })()()1()()(2)(

2

2

xsxdyxcxuxMEG

dxdy

pdFCC

++−+=π

νσ µ

� Neutron (isospin symmetry): )()()()( ccssdduuuudneutron ++++=

[ ] [ ]{ }2

2

)1()()()()(2)(

yxcxdxsxuxMEG

dxdy

ndFCC −+++=π

νσ µ

[ ] [ ]{ })()()1()()(2)(

2

2

xsxuyxcxdxMEG

dxdy

ndFCC ++−+=π

νσ µ

)()()( xdxdxu pn ≡=

)()()( xuxuxd pn ≡=

)()()( xsxsxs pn ≡=

)()()( xcxcxc pn ≡=

−µ

+W

µν

ud

−W

µν

u d

Page 31: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School31

� Structure functions:

Fi (x,Q2) are the structure functions, which depend on the helicity structure of q-W interactions. For massless spin-1/2 partons, we have the Callan-Gross relationship*:

3.2 Charged current3.2 Charged current

−±

−−+= ),(

212),(

212),(2

2

2

3

2

2

2

1

2

2,2

QxxFy

yQxFE

MxyyQxxFy

sG

dxdy

d F

π

σ νν

( )

( )( ) ( )( )[ ]),(11),(112

),(2

12),(2

112

23

222

22

23

22

22,2

QxxFyQxFysG

QxxFy

yQxFE

Mxyy

sG

dxdy

d

F

F

−−±−+=

=

−±

−+−=

π

π

σ νν

)()(2 21 xFxxF =

* Deviations from the Callan-Gross relation are parameterised in terms of the

“longitudinal” cross-section (ie.gluon splittting g→→→→qq):

+==

2

2

1

2 41

)(2

)(

Q

Mx

xxF

xFR

T

LL

σ

σ

Assuming massless

target

Page 32: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School32

� Comparing the y distribution of both cross-sections we can compare the parton distribution functions to the proton structure functions:

� Also, the neutron structure functions:

3.2 Charged current3.2 Charged current

[ ])()()()()(2 xcxsxuxdxxF p +++=ν

[ ])()()()()(3 xcxsxuxdxxxF p −+−=ν

[ ])()()()()(2 xsxdxcxuxxF p +++=ν

[ ])()()()()(3 xsxdxcxuxxxF p −−+=ν

[ ])()()()()(2 xcxsxdxuxxF p +++=ν

[ ])()()()()(3 xcxsxdxuxxxF n −+−=ν

[ ])()()()()(2 xsxuxcxdxxF n +++=ν

[ ])()()()()(3 xsxuxcxdxxxF n −−+=ν

Page 33: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School33

� Scattering off isoscalar target (equal number neutrons and protons):

{ }2

2

)1()()(2

2)(yxqxqx

MEG

dxdy

NdFCC −+=

π

νσ µ

csduq +++≡ csduq +++≡[ ])()()(2 xqxqxxF

N +=ν

( )[ ])()(2)()()(3 xcxsxqxqxxxFN −−−=ν

( )[ ])()(2)()()(3 xcxsxqxqxxxFN −+−=ν

{ })()1)((2

2)(2

2

xqyxqxMEG

dxdy

NdFCC +−=

π

νσ µ

� Total cross-section:

( ) )(/10014.0677.03

1

2)( 238

2

GeVEGeVcmQQsG

N FCC ××±=

+= −

πνσ µ

( ) )(/10008.0334.03

1

2)( 238

2

GeVEGeVcmQQsG

N FCC ××±=

+= −

πνσ µ

3.2 Charged current3.2 Charged current

Page 34: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School34

3.2 Charged current3.2 Charged current

� Structure functions:

Scaling violations

Page 35: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School35

3.3 Quark content of nucleons3.3 Quark content of nucleons

� Quark content of nucleons from CC cross-sections

� Define:

� Experimental values from y distribution of cross-sections yields:

Since

then:

therefore:

191.03

13≈

−=

r

r

Q

Q

.,)(1

0etcdxxxuU ∫=

03.016.0 ±=+ QQ

Q

(measured)016.0493.0)(

)(±=≡

N

Nr

CC

CC

νσ

νσ

078.0405.0 ==⇒ QandQ

48.0)(1

02 ≈+=∫ QQdxxF Nν

� Quarks and antiquarks carry 48% of proton momentum, valence quarks only 33% and sea quarks only 7.8% (u and d sea quarks carry 6%, s quarks carry 1.3% and c quarks 0.5%).

33.0≈−= QQQV

Page 36: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School36

3.3 Quark content of nucleons3.3 Quark content of nucleons� Parton distribution functions as a function of x, fitted from structure

functions:

= number of u-quarks in proton between x and x+dx

In the sea:

For proton (uud):

[ ]∫∫ =−=1

0

1

02)()()( dxxuxudxxuV

dxxu )()()()( xuxuxu SV += )()()( xdxdxd SV +=

)()( xuxuS =)()( xdxdS =

[ ]∫∫ =−=1

0

1

01)()()( dxxdxddxxdV

Page 37: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School37

� Sum rules:– Gross-Llewellyn Smith:

– Adler:

– Gottfried:

– Bjorken:

∫ +=1

033 ))()((

2

1dxxFxFS GLS

νν

06.064.213))()((

321

0±=

−−=−= ∫ π

α

π

α

π

α sssGLS badxxqxqS

1))()(())()((1

2

1 1

0

1

022 =−=+= ∫∫ dxxdxudxxFxF

xS VV

pn

A

νν

3

1))()()()((

3

1))()((

1

2

1 1

0

1

022 =−−+=+= ∫∫ dxxdxdxuxudxxFxF

xS

pn

G

µµ

026.0235.0 ±=GS Maybe isospin asymmetry: )()( xdxu ≠

π

ανν

3

)(21))()((

21

011

QdxxFxFS spp

B −=+= ∫

3.4 Sum rules3.4 Sum rules

Page 38: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School38

� Neutral currents:

==dy

qd

dy

qd NCNC )()( µµ νσνσ

� Coupling constants:

Xp +→+−−

µµ νν)()(

−+−−++ yggE

mygggg

EmGVA

q

AVAV

qF)()1()()(

2

22222

2

ν

ν

π

==dy

qd

dy

qd NCNC )()( µµ νσνσ

−+−++− yggE

mygggg

EmGVA

q

AVAV

qF)()1()()(

2

22222

2

ν

ν

π

WVg θ2sin3

4

2

1−=

2

1=Ag for q=u,c

WVg θ2sin3

2

2

1+−=′

2

1−=′

Ag for q=d,s

( )

( )

−=

+=

AVR

AVL

ggg

ggg

2

12

1

3.5 Neutral current3.5 Neutral current

Page 39: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School39

� Neutral currents off nucleons (neglecting c and s quark contributions):

� Defining:

XN +→+−−

µµ νν)()(

[ ] [ ]{ }2222222

)1()()1()()(

yqqggyqqggxMEG

dxdy

NdRRLL

FNC −+′++−+′+=π

νσ µ

)(

)(

N

NR

CC

NC

νσ

νσν ≡

yields:

[ ] [ ]{ }2222222

)1()()1()()(

yqqggyqqggxMEG

dxdy

NdLLRR

FNC −+′++−+′+=π

νσ µ

)(

)(

N

NR

CC

NC

νσ

νσν ≡

)(

)(

N

Nr

CC

CC

νσ

νσ≡

2

222

1 r

RrRgg LL

−=′+ νν

2

22

1

)(

r

RRrgg RR

−=′+ νν

WWRRLL rggrggR θθν422222

sin9

5)1(sin

2

1)()( ++−=′++′+=

WWRRLLr

ggr

ggR θθν422222

sin9

511sin

2

1)(

1)(

++−=′++′+=

(Llewelyn-Smith

relationships)

3.5 Neutral current3.5 Neutral current

Page 40: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School40

(Paschos-Wolfenstein

relationship)

WWCCCC

NCNC

dy

Nd

dy

Nd

dy

Nd

dy

Nd

R θθνσνσ

νσνσ

µµ

µµ

42 sin9

10sin

2

1

)()(

)()(

+−=

+

+

=+

WCCCC

NCNC

r

rRR

dy

Nd

dy

Nd

dy

Nd

dy

Nd

R θνσνσ

νσνσ

νν

µµ

µµ

2sin2

1

1)()(

)()(

−=−

−=

=−

3.5 Neutral currents 3.5 Neutral currents

� More relationships from the combination of neutrino and antineutrino tagged interactions:

� Paschos-Wolfenstein relation removes the effects of sea quark differences (especially at low x) since the neutrino and antineutrino cross-sections are equal. It would also remove error from c quark

� All of these relationships can be used in neutrino experiments to test the

electroweak theory and measure sin2θW

Page 41: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School41

� Llewellyn-Smith relationship used to measure sin2θW by performing ratios of charged current to neutral current of neutrino nucleonscattering.

� CHARM, CDHS and CCFR and NuTeV are all large sampling calorimeters that can measure large statistics CC and NC data:

CCFR/NuTeV

3.6 sin3.6 sin22θθWW

WW

CC

NC rN

NR θθ

νσ

νσν

42 sin9

5)1(sin

2

1

)(

)(++−==

WW

CC

NC

rN

NR θθ

νσ

νσν

42 sin9

511sin

2

1

)(

)(

++−==

(Llewelyn-Smith

relationships)

Page 42: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School42

For example, the CDHS experiment at CERN obtained:

� The world average value is:

Example of data from the CHARM experiment

� The ratio of NC to CC data from an average of different experiments

(CDHS, CHARM, CCFR, NUTEV) gives a value of sin2θW

� This on-shell value relates to the W and Z boson masses:

005.0003.0233.0sin2 ±±=⇒ Wθ

CHARM data

3.6 sin3.6 sin22θθWW

0033.03072.0 ±=νR 016.0382.0 ±=νR

00037.02227.0sin: 2 ±=WaverageWorld θ

CC

NC

2

22 1sin

Z

WshellonW

M

M−=−θ

Page 43: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School43

3.6 sin3.6 sin22θθWW

� NuTeV experiment at Fermilab uses Paschos-Wolfensteinrelationship and obtains reduced systematic errors but their result is

>3σ away from world average:

00037.02227.0sin

:2 ±=W

averageWorld

θ

0027.04050.00013.03916.0: ±=±= νν RRNUTEV

� Charged current events had a muon (µ- from neutrinos and µ+ from antineutrinos) and neutral current events were “short” events.

� Sign-selected neutrino beam, tags neutrino and antineutrino interactions (selected by

decay of π+ and π-).

� Allows use of Paschos-Wolfenstein formula to reduce systematics.

00095.000135.022773.0sin2 ±±=⇒ Wθ

Page 44: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School44

Therefore:

3.7 Charm production3.7 Charm production

� Production of charm can be carried out from deep inelastic neutrino scattering from d or s quarks:

( ) 222222'2 cmpMqpqpq ==+⋅+=+ ξξξ

+=→=

2

22

12 Q

mx

M

Qx cξ

ν

+=

+=

+=

+=

+−≈

2

2

2

22222222

1/222 Q

mx

xQ

mQ

M

mQ

M

mQ

qp

mq ccccc

ννξ

(Petersen function, but there are others)

� Slow rescaling model (LO): effect of a heavy quark threshold

� Replace:

� Cross-section:

Fragmentation of charm quark into hadrons:

[ ]{ } )(1),(2),(),(22222

23

zDxy

yVQsVQdQuMEG

dydzd

dcscd

F

+−++=

ξξξξ

π

ξ

ξ

σ ν

2

1

11

1)(

−−−∝

z

p

zzzD

ε

Page 45: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School45

3.7 Charm production3.7 Charm production

� Production of opposite sign dimuon events is signal of charm production because of semileptonic decay of charm:

� Charm production can probe strange sea, measure charm mass and Vcd

NOMAD

� High statistics opposite sign dimuonsamples were acquired by CDHS, CCFR, NOMAD, CHORUS, NUTEV

CCFR/NUTEV

Page 46: Introduction to Neutrino Interaction Physics NUFACT08 ...benasque.org/2008nufact/talks_contr/123soler_lectures_1_and_2.pdf · Neutrino Nucleon Deep-Inelastic Scattering 4. Quasi-elastic,

Neutrino Interaction Physics

NUFACT08 Summer School46

3.7 Charm production3.7 Charm production

� Some results from opposite sign dimuons:

016.0246.0

010.0232.0

±=

±=NLO

cd

LO

cd

V

V

Cross-section: between 0.2%-1% depending on energy

Measurement charm mass (average):

Strange sea asymmetry

Measurement Vcd (average):

CHORUS

)(09.058.1

)(019.070.1

10.043.1

04.009.0 NOMADm

NUTEVm

m

NLO

c

NLO

c

LO

c

+−±=

±=

±=

Review: G di Lellis et al, Phys. Rep. 399, 2004, 227.