107
Introduction to Neutrino (Oscillation) Physics Standard Model of Particle Physics Rodejohann/Schoening 16/07/12 1

Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Introduction to Neutrino (Oscillation)Physics

Standard Model

of Particle Physics

Rodejohann/Schoening

16/07/12

1

Page 2: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Literature

• ArXiv:

– Bilenky, Giunti, Grimus: Phenomenology of Neutrino Oscillations,

hep-ph/9812360

– Akhmedov: Neutrino Physics, hep-ph/0001264

– Grimus: Neutrino Physics – Theory, hep-ph/0307149

• Textbooks:

– Fukugita, Yanagida: Physics of Neutrinos and Applications to

Astrophysics

– Kayser: The Physics of Massive Neutrinos

– Giunti, Kim: Fundamentals of Neutrino Physics and Astrophysics

– Schmitz: Neutrinophysik

2

Page 3: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Contents

I Basics

I1) Introduction

I2) History of the neutrino

I3) Fermion mixing, neutrinos and the Standard Model

3

Page 4: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Contents

II Neutrino Oscillations

II1) The PMNS matrix

II2) Neutrino oscillations in vacuum

II3) Results and their interpretation – what have we learned?

II4) Prospects – what do we want to know?

4

Page 5: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Contents

I Basics

I1) Introduction

I2) History of the neutrino

I3) Fermion mixing, neutrinos and the Standard Model

5

Page 6: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

I1) IntroductionStandard Model of Elementary Particle Physics: SU(3)C × SU(2)L × U(1)Y

uR

dR

cR

sR

tR

bR

eR

R

R

uL

dL

cL

sL

tL

bL

eL

L

Le

Species #∑

Quarks 10 10

Leptons 3 13

Charge 3 16

Higgs 2 18

18 free parameters. . .

+ Dark Matter

+ Gravitation

+ Dark Energy

+ Baryon Asymmetry

6

Page 7: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Standard Model of Elementary Particle Physics: SU(3)C × SU(2)L × U(1)Y

uR

dR

cR

sR

tR

bR

eR

R

R

uL

dL

cL

sL

tL

bL

eL

L

Le

Species #∑

Quarks 10 10

Leptons 3 13

Charge 3 16

Higgs 2 18

+ Neutrino Mass mν

7

Page 8: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Standard Model∗ of Particle Physicsadd neutrino mass matrix mν (and a new energy scale?)

Species #∑

Quarks 10 10

Leptons 3 13

Charge 3 16

Higgs 2 18

8

Page 9: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Standard Model∗ of Particle Physics

add neutrino mass matrix mν (and a new energy scale?)

Species #∑

Quarks 10 10

Leptons 3 13

Charge 3 16

Higgs 2 18

−→

Species #∑

Quarks 10 10

Leptons 12 (10) 22 (20)

Charge 3 25 (23)

Higgs 2 27 (25)

Two roads towards more understanding: Higgs and Flavor

9

Page 10: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

NEUTRINOS

LHCILC...

Baryon

...

GUT

SO(10) ...

BBN...

...

Supersymmetry

Astrophysics

cosmic rayssupernovae

Cosmology

Dark Matter

quark mixing

Flavor physics

proton decaysee−saw

Asymmetry

10

Page 11: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

NEUTRINOS

LHCILC...

Baryon

...

GUT

SO(10) ...

BBN...

...

Astrophysics

cosmic rays

Supersymmetry

Cosmologie

Dark Matter

Asymmetry

Flavor physics

see−sawproton decay

quark mixing

supernovae

11

Page 12: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

General Remarks

• Neutrinos interact weakly: can probe things not testable by other means

– solar interior

– geo-neutrinos

– cosmic rays

• Neutrinos have no mass in SM

– probe scales mν ∝ 1/Λ

– happens in GUTs

– connected to new concepts, e.g. Lepton Number Violation

⇒ particle and source physics

12

Page 13: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Contents

I Basics

I1) Introduction

I2) History of the neutrino

I3) Fermion mixing, neutrinos and the Standard Model

13

Page 14: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

I2) History

1926 problem in spectrum of β-decay

1930 Pauli postulates “neutron”

14

Page 15: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

1932 Fermi theory of β-decay

1956 discovery of νe by Cowan and Reines (NP 1985)

1957 Pontecorvo suggests neutrino oscillations

1958 helicity h(νe) = −1 by Goldhaber ⇒ V −A

1962 discovery of νµ by Lederman, Steinberger, Schwartz (NP 1988)

1970 first discovery of solar neutrinos by Ray Davis (NP 2002); solar neutrino

problem

1987 discovery of neutrinos from SN 1987A (Koshiba, NP 2002)

1991 Nν = 3 from invisible Z width

1998 SuperKamiokande shows that atmospheric neutrinos oscillate

2000 discovery of ντ

2002 SNO solves solar neutrino problem

2010 the third mixing angle

15

Page 16: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Contents

I Basics

I1) Introduction

I2) History of the neutrino

I3) Fermion mixing, neutrinos and the Standard Model

16

Page 17: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

I3) Neutrinos and the Standard ModelSU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)em with Q = I3 +

12 Y

Le =

νe

e

L

∼ (1, 2,−1)

eR ∼ (1, 1,−2)

νR ∼ (1, 1, 0) total SINGLET!!

uR

dR

cR

sR

tR

bR

eR

R

R

uL

dL

cL

sL

tL

bL

eL

L

Le

17

Page 18: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Mass Matrices

3 generations of quarks

L′1 =

u′

d′

L

, L′2 =

c′

s′

L

, L′3 =

t′

b′

L

u′R , c′R , t

′R ≡ u′i,R and d′R , s

′R , b

′R ≡ d′i,R

gives mass term

−LY =∑

i,j

L′i

[

g(d)ij Φ d′j,R + g

(u)ij Φu′j,R

]

EWSB−→ ∑

i,j

v√2g(d)ij d′i,L d

′j,R + v√

2g(u)ij u′i,L u

′j,R

= d′LM(d) d′R + u′LM

(u) u′R

arbitrary complex 3× 3 matrices in “flavor (interaction, weak) basis”

18

Page 19: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Diagonalization

U †d M

(d) Vd = D(d) = diag(md,ms,mb)

U †uM

(u) Vu = D(u) = diag(mu,mc,mt)

with unitary matrices Uu,dU†u,d = U †

u,dUu,d = Vu,dV†u,d = V †

u,dVu,d = 1

in Lagrangian:

−LY = d′LM(d) d′R + u′LM

(u) u′R

d′L Ud︸ ︷︷ ︸

U †d M

(d) Vd︸ ︷︷ ︸

V †d d

′R

︸ ︷︷ ︸+ u′L Uu

︸ ︷︷ ︸U †uM

(u) Vu︸ ︷︷ ︸

V †u u

′R

︸ ︷︷ ︸

dL D(d) dR uL D(u) uR

physical (mass, propagation) states uL =

u

c

t

L

19

Page 20: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

in interaction terms:

−LCC = g√2W+

µ u′L γµ d′L

g√2W+

µ u′L Uu︸ ︷︷ ︸

γµ U †u Ud︸ ︷︷ ︸

U †d d

′L

︸ ︷︷ ︸

uL V dL

Cabibbo-Kobayashi-Maskawa (CKM) matrix survives:

V = U †u Ud

Structure in Wolfenstein-parametrization:

V =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

=

1− λ2

2 λ Aλ3 (ρ− i η)

−λ 1− λ2

2 Aλ2

Aλ3 (1− ρ− i η) −Aλ2 1

with λ = sin θC = 0.2253± 0.0007, A = 0.808+0.022−0.015,

ρ = (1− λ2

2 ) ρ = 0.132+0.022−0.014, η = 0.341± 0.013

20

Page 21: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Lesson to learn:

|V | =

0.97428± 0.00015 0.2253± 0.0007 0.00347+0.00016−0.00012

0.2252± 0.0007 0.97345+0.00015−0.00016 0.0410+0.0011

−0.0007

0.00862+0.00026−0.00020 0.0403+0.0011

−0.0007 0.999152+0.000030−0.000045

small mixing in the quark sector

related to hierarchy of masses?

M =

0 a

a b

= U DUT with U =

cos θ sin θ

− sin θ cos θ

where D = diag(m1,m2)

from 11-entry one gets

tan θ =

√m1

m2

compare with√

md/ms ≃ 0.22 and tan θC ≃ 0.23

21

Page 22: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Number of parameters in V for N families:

complex N ×N 2N2 2N2

unitarity −N2 N2

rephase ui, di −(2N − 1) (N − 1)2

a real matrix would have 12 N (N − 1) rotations around ij-axes

in total:

families angles phases

2 1 0

3 3 1

4 6 3

N 12 N (N − 1) 1

2 (N − 2) (N − 1)

22

Page 23: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Masses in the SM:

−LY = ge LΦ eR + gν L Φ νR + h.c.

with

L =

νe

e

L

and Φ = iτ2 Φ∗ = iτ2

φ+

φ0

=

φ0

−φ+

after EWSB: 〈Φ〉 → (0, v/√2)T and 〈Φ〉 → (v/

√2, 0)T

−LY = gev√2eL eR + gν

v√2νL νR + h.c. ≡ me eL eR +mν νL νR + h.c.

⇔ in a renormalizable, lepton number conserving model with Higgs doublets the

absence of νR means absence of mν

23

Page 24: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Lepton Masses

−LY = e′LM(ℓ) e′R

=e′L Uℓ︸ ︷︷ ︸

U †ℓ M

(ℓ) Vℓ︸ ︷︷ ︸

V †ℓ e

′R

︸ ︷︷ ︸

eL D(ℓ) eR

and in charged current term:

−LCC = g√2W+

µ e′L γµ ν′L

g√2W+

µ e′L Uℓ︸ ︷︷ ︸

γµ U †ℓ Uν︸ ︷︷ ︸

U †ν ν

′L

︸ ︷︷ ︸

eL U νL

Rotation of νL is arbitrary in absence of mν : choose Uν = Uℓ

⇒ Pontecorvo-Maki-Nakagawa-Saki (PMNS) matrix

U = 1 for massless neutrinos!!

⇒ individual lepton numbers Le, Lµ, Lτ are conserved

24

Page 25: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Contents

II Neutrino Oscillations

II1) The PMNS matrix

II2) Neutrino oscillations in vacuum

II3) Results and their interpretation – what have we learned?

II4) Prospects – what do we want to know?

25

Page 26: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

II1) The PMNS matrix

Neutrinos have mass, so:

−LCC =g√2ℓL γ

µ U νLW−µ with U = U †

ℓ Uν

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

να = U∗αi νi

connects flavor states να (α = e, µ, τ) to mass states νi (i = 1, 2, 3)

26

Page 27: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Number of parameters in U for N families:

complex N ×N 2N2 2N2

unitarity −N2 N2

rephase νi, ℓi −(2N − 1) (N − 1)2

a real matrix would have 12 N (N − 1) rotations around ij-axes

in total:

families angles phases

2 1 0

3 3 1

4 6 3

N 12 N (N − 1) 1

2 (N − 2) (N − 1)

this assumes νν mass term, what if νT ν ?

27

Page 28: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Number of parameters in U for N families:

complex N ×N 2N2 2N2

unitarity −N2 N2

rephase ℓα −N N(N − 1)

a real matrix would have 12 N (N − 1) rotations around ij-axes

in total:

families angles phases extra phases

2 1 1 1

3 3 3 2

4 6 6 3

N 12 N (N − 1) 1

2 N (N − 1) N − 1

Extra N − 1 “Majorana phases” because of mass term νT ν

(absent for Dirac neutrinos)

28

Page 29: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Majorana Phases

• connected to Majorana nature, hence to Lepton Number Violation

• I can always write: U = U P , where all Majorana phases are in

P = diag(1, eiφ1 , eiφ2 , eiφ3 , . . .):

• 2 families:

U =

cos θ sin θ

− sin θ cos θ

1 0

0 eiα

29

Page 30: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

• 3 families: U = R23 R13R12 P

=

1 0 0

0 c23 s23

0 −s23 c23

c13 0 s13 e−iδ

0 1 0

−s13 eiδ 0 c13

c12 s12 0

−s12 c12 0

0 0 1

P

=

c12 c13 s12 c13 s13 eiδ

−s12 c23 − c12 s23 s13 e−iδ c12 c23 − s12 s23 s13 e

−iδ s23 c13

s12 s23 − c12 c23 s13 e−iδ −c12 s23 − s12 c23 s13 e

−iδ c23 c13

P

with P = diag(1, eiα, eiβ)

30

Page 31: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Dirac vs. Majorana neutrinos

See next term: Standard Model II (Prof. Lindner)

31

Page 32: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Contents

II Neutrino Oscillations

II1) The PMNS matrix

II2) Neutrino oscillations in vacuum

II3) Results and their interpretation – what have we learned?

II4) Prospects – what do we want to know?

32

Page 33: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

II2) Neutrino Oscillations in Vacuum

Neutrino produced with charged lepton α is flavor state

|ν(0)〉 = |να〉 = U∗αj |νj〉

evolves with time as

|ν(t)〉 = U∗αj e

−i Ej t |νj〉

amplitude to find state |νβ〉 = U∗βi |νi〉:

A(να → νβ , t) = 〈νβ|ν(t)〉 = Uβi U∗αj e

−i Ej t 〈νi|νj〉︸ ︷︷ ︸

δij

= U∗αi Uβi e

−i Ei t

33

Page 34: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Probability:

P (να → νβ , t) ≡ Pαβ = |A(να → νβ , t)|2

=∑

ij

U∗αi Uβi U

∗βj Uαj

︸ ︷︷ ︸e−i (Ei−Ej) t︸ ︷︷ ︸

J αβij e−i∆ij

= . . . =

Pαβ = δαβ − 4∑

j>i

Re{J αβij } sin2

∆ij

2+ 2

j>i

Im{J αβij } sin∆ij

with phase

12∆ij =

12 (Ei − Ej) t ≃ 1

2

(√

p2i +m2i −

p2j +m2j

)

L

≃ 12

(

pi (1 +m2

i

2p2

i

)− pj (1 +m2

j

2p2

j

))

L ≃ m2

i−m2

j

2E L

1

2∆ij =

m2i −m2

j

4EL ≃ 1.27

(

∆m2ij

eV2

)(L

km

)(GeV

E

)

34

Page 35: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Pαβ = δαβ − 4∑

j>i

Re{J αβij } sin2

∆ij

2+ 2

j>i

Im{J αβij } sin∆ij

• α = β: survival probability

• α 6= β: transition probability

• requires U 6= 1 and ∆m2ij 6= 0

•∑

α

Pαβ = 1 ↔ conservation of probability

• J αβij invariant under Uαj → eiφα Uαj e

iφj

⇒ Majorana phases drop out!

35

Page 36: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

CP Violation

In oscillation probabilities: U → U∗ for anti-neutrinos

Define asymmetries:

∆αβ = P (να → νβ)− P (να → νβ) = P (να → νβ)− P (νβ → να)

= 4∑

j>i

Im{J αβij } sin∆ij

• 2 families: U is real and Im{J αβij } = 0 ∀α, β, i, j

• 3 families:

∆eµ = −∆eτ = ∆µτ =

(

sin∆m2

21

2EL+ sin

∆m232

2EL+ sin

∆m213

2EL

)

JCP

where JCP = Im{Ue1 Uµ2 U

∗e2 U

∗µ1

}

= 18 sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δ

vanishes for one ∆m2ij = 0 or one θij = 0 or δ = 0, π

36

Page 37: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

• CP violation in survival probabilities vanishes:

P (να → να)− P (να → να) ∝∑

j>i

Im{J ααij } =

j>i

Im{U∗αi Uαi U

∗αj Uαj} = 0

• Recall that U = U †ℓ Uν

If charged lepton masses diagonal, then mν is diagonalized by PMNS matrix:

mν = U diag(m1,m2,m3)UT

Define h = mν m†ν and find that

Im {h12 h23 h31} = ∆m221 ∆m

231 ∆m

232 JCP

37

Page 38: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Two Flavor Case

U =

Uα1 Uα2

Uβ1 Uβ2

=

cos θ sin θ

− sin θ cos θ

⇒ J αα12 = |Uα1|2|Uα2|2 =

1

4sin2 2θ

and transition probability is Pαβ = sin2 2θ sin2∆m2

21

4EL

38

Page 39: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

39

Page 40: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

• amplitude sin2 2θ

• maximal mixing for θ = π/4 ⇒ να =√

12 (ν1 + ν2)

• oscillation length Losc = 4π E/∆m221 = 2.48 E

GeVeV2

∆m221

km

⇒ Pαβ = sin2 2θ sin2 πL

Losc

is distance between two maxima (minima)

e.g.: E = GeV and ∆m2 = 10−3 eV2: Losc ≃ 103 km

40

Page 41: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

(km/MeV)eν/E0L

20 30 40 50 60 70 80 90 100

Surv

ival

Pro

babi

lity

0

0.2

0.4

0.6

0.8

1

eνData - BG - Geo Expectation based on osci. parameters

determined by KamLAND

41

Page 42: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

L≫ Losc: fast oscillations 〈sin2 πL/Losc〉 = 12

and Pαα = 1− 2 |Uα1|2 |Uα2|2 = |Uα1|4 + |Uα2|4

sensitivity to mixing

42

Page 43: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

L≫ Losc: fast oscillations 〈sin2 πL/Losc〉 = 12

and Pαβ = 2 |Uα1|2 |Uα2|2 = |Uα1|2 |Uβ1|2 + |Uα2|2 |Uβ2|2 = 12 sin

2 2θ

sensitivity to mixing

43

Page 44: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

L≪ Losc: hardly oscillations and Pαβ = sin2 2θ (∆m2L/(4E))2

sensitivity to product sin2 2θ∆m2

44

Page 45: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

large ∆m2: sensitivity to mixing

small ∆m2: sensitivity to sin2 2θ∆m2

maximal sensitivity when ∆m2L/E ≃ 2π

45

Page 46: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Characteristics of typical oscillation experiments

Source Flavor E [GeV] L [km] (∆m2)min [eV2]

Atmosphere(−)νe ,

(−)νµ 10−1 . . . 102 10 . . . 104 10−6

Sun νe 10−3 . . . 10−2 108 10−11

Reactor SBL νe 10−4 . . . 10−2 10−1 10−3

Reactor LBL νe 10−4 . . . 10−2 102 10−5

Accelerator LBL(−)νe ,

(−)νµ 10−1 . . . 1 102 10−1

Accelerator SBL(−)νe ,

(−)νµ 10−1 . . . 1 1 1

46

Page 47: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Quantum Mechanics

Can’t distinguish the individual mi: coherent sum of amplitudes and interference

47

Page 48: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Quantum Mechanics

Textbook calculation is completely wrong!!

• Ei − Ej is not Lorentz invariant

• massive particles with different pi and same E violates energy and/or

momentum conservation

• definite p: in space this is eipx, thus no localization

48

Page 49: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Quantum Mechanics

consider Ej and pj =√

E2j −m2

j :

pj ≃ E +m2j

∂pj∂m2

j

∣∣∣∣∣mj=0

≡ E − ξm2

j

2E, with ξ = −2E

∂pj∂m2

j

∣∣∣∣∣mj=0

Ej ≃ pj +m2j

∂Ej

∂m2j

∣∣∣∣∣mj=0

= pj +m2

j

2pj= E +

m2j

2E(1− ξ)

in pion decay π → µν:

Ej =m2

π

2

(

1−m2

µ

m2π

)

+m2

j

2m2π

thus,

ξ =1

2

(

1 +m2

µ

m2π

)

≃ 0.8 in Ei − Ej ≃ (1− ξ)∆m2

ij

2E

49

Page 50: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

wave packet with size σx(>∼ 1/σp) and group velocity vi = ∂Ei/∂pi = pi/Ei:

ψi ∝ exp

{

−i(Ei t− pi x)−(x− vi t)

2

4σ2x

}

1) wave packet separation should be smaller than σx!

L∆v < σx ⇒ L

Losc<

p

σp

(loss of coherence: interference impossible)

2) m2ν should NOT be known too precisely!

if known too well: ∆m2 ≫ δm2ν =

∂m2ν

∂pνδpν ⇒ δxν ≫ 2 pν

∆m2=Losc

(I know which state νi is exchanged, localization)

In both cases: Pαα = |Uα1|4 + |Uα2|4 (same as for L≫ Losc)

50

Page 51: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Quantum Mechanics

total amplitude for α→ β should be given by

A ∝∑

j

∫d3p

2Ej

A∗βj Aαj exp {−i(Ejt− px)}

with production and detection amplitudes

Aαj A∗βj ∝ exp

{

− (p− pj)2

4σ2p

}

we expand around pj :

Ej(p) ≃ Ej(pj) +∂Ej(p)

∂p

∣∣∣∣p=pj

(p− pj) = Ej + vj (p− pj)

and perform the integral over p:

A ∝∑

j

exp

{

−i(Ejt− pjx)−(x− vjt)

2

4σ2x

}

51

Page 52: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

the probability is the integral of |A|2 over t:

P =

dt |A|2 ∝ exp

{

−i[

(Ej − Ek)vj + vkv2j + v2k

− (pj − pk)

]

x

}

× exp

{

− (vj − vk)2x2

4σ2x(v

2j + v2k)

− (Ej − Ek)2

4σ2p(v

2j + v2k)

}

now express average momenta, energy and velocity as

pj ≃ E − ξm2

j

2E

Ej ≃ E + (1− ξ)m2

j

2E, vj =

pj

Ej

≃ 1−m2

j

2E2

this we insert in first exponential of P :[

(Ej − Ek)vj + vkv2j + v2k

− (pj − pk)

]

=∆m2

jkL

2E

52

Page 53: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

the second exponential (damping term) can also be rewritten and the final

probability is

P ∝ exp

−i

∆m2ij

2EL−

(

L

Lcohjk

)2

− 2π2(1− ξ)2

(

σxLoscjk

)2

with

Lcohjk =

4√2E2

|∆m2jk|σx and Losc

jk =4πE

|∆m2jk|

expressing the two conditions (coherence and localization) for oscillation

discussed before

53

Page 54: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Contents

II Neutrino Oscillations

II1) The PMNS matrix

II2) Neutrino oscillations in vacuum

II3) Results and their interpretation – what have we learned?

II4) Prospects – what do we want to know?

54

Page 55: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

II3) Results and their interpretation – what have welearned?

• Main results as by-products:

– check solar fusion in Sun → solar neutrino problem

– look for nucleon decay → atmospheric neutrino oscillations

• almost all current data described by 2-flavor formalism

• future goal: confirm genuine 3-flavor effects:

– third mixing angle (check!)

– mass ordering

– CP violation

• have entered precision era

55

Page 56: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Interpretation in 3 Neutrino Framework

assume ∆m221 ≪ ∆m2

31 ≃ ∆m232 and small θ13:

• atmospheric and accelerator neutrinos: ∆m221L/E ≪ 1

P (νµ → ντ ) ≃ sin2 2θ23 sin2∆m2

31

4EL

• solar and KamLAND neutrinos: ∆m231L/E ≫ 1

P (νe → νe) ≃ 1− sin2 2θ12 sin2∆m2

21

4EL

• short baseline reactor neutrinos: ∆m221L/E ≪ 1

P (νe → νe) ≃ 1− sin2 2θ13 sin2∆m2

31

4EL

56

Page 57: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Solar Neutrinos

98% of energy production in fusion of net reaction

4 p+ 2 e− →4He++ + 2 νe + 26.73 MeV

26 MeV of the energy go in photons, i.e., 13 MeV per νe;

get neutrino flux from solar constant

S = 8.5× 1011 MeVcm−2 s−1 ⇒ Φν =S

13 MeV= 6.5× 1010 cm−2 s−1

57

Page 58: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Solar Standard Model (SSM) predicts 5 sources of neutrinos from pp-chain

Bahcall et al.

58

Page 59: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Different experiments sensitive to different energy, hence different neutrinos

• Homestake: νe +37Cl → 37Ar + e−

• Gallex, GNO, SAGE: νe +71Ga → 71Ge + e−

• (Super)Kamiokande: νe + e− → νe + e−

All find less neutrinos than predicted by SSM, deficit is energy dependent:

“solar neutrino problem”

Breakthrough came with SNO experiment, using heavy water

59

Page 60: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

60

Page 61: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

charged current: Φ(νe)

neutral current: Φ(νe) + Φ(νµτ )

elastic scattering: Φ(νe) + 0.15Φ(νµτ )

61

Page 62: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

0 1 2 3 4 5 60

1

2

3

4

5

6

7

8

)-1 s-2 cm6

(10eφ

)-1

s-2

cm

6 (

10

τµ

φ SNONCφ

SSMφ

SNOCCφSNO

ESφ

62

Page 63: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Results of fits give

sin2 θ12 ≃ 0.30

∆m221 ≡ ∆m2

⊙ ≃ 8× 10−5 eV2

only works with matter effects and resonance in Sun

⇒ ∆m2⊙ cos 2θ12 = (m2

2 −m21) (cos

2 θ12 − sin2 θ12) > 0

choosing cos 2θ12 > 0 fixes ∆m2⊙ > 0

63

Page 64: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

low E: Pee = 1− 12 sin

2 2θ12 ≃ 59

large E: Pee = sin2 θ12 = 13

64

Page 65: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

∆m

2 in e

V2 x10-4

0

1

sin2(Θ)

0.2 0.3 0.4

∆m

2 in e

V2

x10-5

6

7

8

9

sin2(Θ)

0.2 0.3 0.4

KamLAND: reactor neutrinos

n→ p+ e− + νe with E ≃ few MeV

If L ≃ 100 km:

∆m2⊙

EL ∼ 1 ⇒ solar ν parameters!!

65

Page 66: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

νe + p→ n+ e+ with Eν ≃ Eprompt + Erecoiln + 0.8 MeV

200 µs later: n+ p→ d+ γ

66

Page 67: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Neutrinos do oscillate

(km/MeV)eν/E0L

20 30 40 50 60 70 80 90 100

Surv

ival

Pro

babi

lity

0

0.2

0.4

0.6

0.8

1

eνData - BG - Geo Expectation based on osci. parameters

determined by KamLAND

KamLAND

67

Page 68: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Atmospheric Neutrinos

zenith angle cos θ = 1 L ≃ 500 km

zenith angle cos θ = 0 L ≃ 10 km down-going

zenith angle cos θ = −1 L ≃ 104 km up-going

68

Page 69: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

SuperKamiokande

69

Page 70: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

70

Page 71: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

71

Page 72: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Atmospheric Neutrinos

Dip at L/E ≃ 500 km/GeV ⇒ Oscillatory Behavior!!

(3.8 σ evidence for ντ appearence)

72

Page 73: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Testing Atmospheric Neutrinos with Accelerators: K2K, MINOS,T2K, OPERA, NoνA

Proton beam

p+X → π± , K± → π± →(−)νµ with E ≃ GeV

If L ≃ 100 km:

∆m2A

EL ∼ 1 ⇒ atmospheric ν parameters!!

P (νµ → νµ) = 1− sin2 2θ23 sin2∆m2

31

4EL

73

Page 74: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

)θ(22) or sinθ(22sin0.6 0.7 0.8 0.9 1

)2 e

V-3

| (1

02

m∆| o

r |

2m∆|

1

2

3

4

5

1

2

3

4

5

MINOS 90% C.L. 2009-2011µν 2009-2010µν 2010-2011µν 2005-2010µν

90% C.L.µνSuper-K

Results of fits give

sin2 θ23 ≃ 0.50 maximal mixing?!

|∆m231| ≡ ∆m2

A ≃ 2.5× 10−3 eV2 ≃ 30∆m2⊙

NEW TREND (2012): less-than-maximal θ23

74

Page 75: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

The third mixing: Short-Baseline Reactor Neutrinos

Eν ≃ MeV and L ≃ 0.1 km:

∆m2A

E L ∼ 1 ⇒ atmospheric ν parameters!!

Pee = 1− sin2 2θ13 sin2∆m2

A

4E L

75

Page 76: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

3 families: U = R23 R13R12 P

=

1 0 0

0 c23 s23

0 −s23 c23

c13 0 s13 e−iδ

0 1 0

−s13 eiδ 0 c13

c12 s12 0

−s12 c12 0

0 0 1

P

=

c12 c13 s12 c13 s13 eiδ

−s12 c23 − c12 s23 s13 e−iδ c12 c23 − s12 s23 s13 e

−iδ s23 c13

s12 s23 − c12 c23 s13 e−iδ −c12 s23 − s12 c23 s13 e

−iδ c23 c13

P

with P = diag(1, eiα, eiβ)

76

Page 77: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

U =

c12 c13 s12 c13 s13 eiδ

−s12 c23 − c12 s23 s13 e−iδ c12 c23 − s12 s23 s13 e

−iδ s23 c13

s12 s23 − c12 c23 s13 e−iδ

−c12 s23 − s12 c23 s13 e−iδ c23 c13

=

1 0 0

0 c23 s23

0 −s23 c23

︸ ︷︷ ︸

c13 0 s13 e−iδ

0 1 0

−s13 eiδ 0 c13

︸ ︷︷ ︸

c12 s12 0

−s12 c12 0

0 0 1

︸ ︷︷ ︸

atmospheric and SBL reactor solar and

LBL accelerator LBL reactor

77

Page 78: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

U =

c12 c13 s12 c13 s13 eiδ

−s12 c23 − c12 s23 s13 e−iδ c12 c23 − s12 s23 s13 e

−iδ s23 c13

s12 s23 − c12 c23 s13 e−iδ

−c12 s23 − s12 c23 s13 e−iδ c23 c13

=

1 0 0

0 c23 s23

0 −s23 c23

︸ ︷︷ ︸

c13 0 s13 e−iδ

0 1 0

−s13 eiδ 0 c13

︸ ︷︷ ︸

c12 s12 0

−s12 c12 0

0 0 1

︸ ︷︷ ︸

atmospheric and SBL reactor solar and

LBL accelerator LBL reactor

1 0 0

0√

1

2−

√1

2

0√

1

2

√1

2

1 0 0

0 1 0

0 0 1

√2

3

√1

30

√1

3

√2

30

0 0 1

(sin2 θ23 = 1

2) (sin2 θ13 = 0) (sin2 θ12 = 1

3)

∆m2

A∆m

2

A∆m2

78

Page 79: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Tri-bimaximal Mixing

approximation to PMNS matrix:

UTBM =

√23

√13 0

−√

16

√13 −

√12

−√

16

√13

√12

Harrison, Perkins, Scott (2002)

with mass matrix

(mν)TBM = U∗TBMmdiag

ν U †TBM =

A B B

· 12 (A+B +D) 1

2 (A+B −D)

· · 12 (A+B +D)

A =1

3

(2m1 +m2 e

−2iα), B =

1

3

(m2 e

−2iα −m1

), D = m3 e

−2iβ

⇒ Flavor symmetries. . .

79

Page 80: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Tri-bimaximal Mixing

UTBM =

√23

√13 0

−√

16

√13 −

√12

−√

16

√13

√12

Harrison, Perkins, Scott (2002)

This was still okay till end of 2010. . .

80

Page 81: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

|U |2 ≃

0.779 . . . 0.848 0.510 . . . 0.604 0.122 . . . 0.190

0.183 . . . 0.568 0.385 . . . 0.728 0.613 . . . 0.794

0.200 . . . 0.576 0.408 . . . 0.742 0.589 . . . 0.775

• normal ordering: ∆m231 > 0

• inverted ordering: ∆m231 < 0

81

Page 82: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

T2K: 2.5σ

p !"!

140m 0m 280m

off-axis

120m 295km280m0m

off-axis

110m

target

station decay

pipe

beam

dump

muon

monitors

280m

detectors

Super-Kamiokande

2.5o

P (νµ → νe) ≃ sin2 θ23 sin2 2θ13 sin

2 ∆m2A

4EL

normal inverted

82

Page 83: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

More data

• MINOS: 1.7σ

• Double Chooz: 0.017 < sin2 2θ13 < 0.16 at 90 % C.L.

Pee = 1− sin2 2θ13 sin2∆m2

A

4EL

83

Page 84: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

θ13: status

Double Chooz: sin2 2θ13 = 0.086± 0.051 6= 0 at 1.9σ (3.1)

Daya Bay: sin2 2θ13 = 0.092± 0.017 6= 0 at 5.2σ (> 7)

RENO: sin2 2θ13 = 0.113± 0.023 6= 0 at 4.9σ

84

Page 85: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

at least, Double Chooz are the only ones who made it to Big Bang Theory. . .

85

Page 86: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

12θ 2sin0.25 0.30 0.35

0

1

2

3

4

23θ 2sin0.3 0.4 0.5 0.6 0.7

13θ 2sin0.01 0.02 0.03 0.04

2 eV-5/102mδ6.5 7.0 7.5 8.0 8.50

1

2

3

4

2 eV-3/102m∆2.0 2.2 2.4 2.6 2.8

π/δ0.0 0.5 1.0 1.5 2.0

oscillation analysisνSynopsis of global 3

σNσN

NHIH

86

Page 87: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

What’s that good for?

1e-05 0.0001 0.001 0.01 0.1

sin2θ13

0

1

2

3

4

5

6

7

8

9

10

11

12N

umbe

r of M

odel

sanarchytexture zero SO(3)A

4

S3, S

4

Le-Lµ-Lτ

SRNDSO(10) lopsidedSO(10) symmetric/asym

Predictions of All 63 Models

2025↑

2020↑

2013↑

24/2/12

Albright, Chen

87

Page 88: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

CKM vs. PMNS

|VCKM| ≃

0.97419 0.2257 0.00359

0.2256 0.97334 0.0415

0.00874 0.0407 0.999133

|UPMNS| ≃

0.82 0.58 0

0.64 0.58 0.71

0.64 0.58 0.71

88

Page 89: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Contents

II Neutrino Oscillations

II1) The PMNS matrix

II2) Neutrino oscillations in vacuum and matter

II3) Results and their interpretation – what have we learned?

II4) Prospects – what do we want to know?

89

Page 90: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

II4) Prospects – what do we want to know?

9 physical parameters in mν

• θ12 and m22 −m2

1 (or θ⊙ and ∆m2⊙)

• θ23 and |m23 −m2

2| (or θA and ∆m2A)

• θ13 (or |Ue3|)

• m1, m2, m3

• sgn(m23 −m2

2)

• Dirac phase δ

• Majorana phases α and β (or α1 and α2, or φ1 and φ2, or. . .)

90

Page 91: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

The future: open issues for neutrinos oscillationsLook for three flavor effects:

• precision measurements

– how maximal is θ23 ? how small/large is Ue3 ?

• sign of ∆m232 ?

tan 2θm = f(sgn(∆m2))

• is there CP violation?

• Problems:

– two small parameters: ∆m2⊙/∆m

2A ≃ 1/30 and |Ue3| <∼ 0.2

– 8-fold degeneracy for fixed L/E and νe → νµ channels

91

Page 92: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

DegeneraciesExpand 3 flavor oscillation probabilities in terms of R = ∆m2

⊙/∆m2A and |Ue3|:

P (νe → νµ) ≃ sin2 2θ13 sin2 θ23sin2 (1−A)∆

(1−A)2+ R2 sin2 2θ12 cos2 θ23

sin2 A∆

A2

+sin δ sin 2θ13 R sin 2θ12 cos θ13 sin 2θ23 sin∆sin A∆ sin (1−A)∆

A(1−A)

+ cos δ sin 2θ13 R sin 2θ12 cos θ13 sin 2θ23 cos∆sin A∆ sin (1−A)∆

A(1−A)

with A = 2√2GF neE/∆m

2A and ∆ =

∆m2A

4E L

• θ23 ↔ π/2− θ23 degeneracy

• θ13-δ degeneracy

• δ-sgn(∆m2A) degeneracy

Solutions: more channels, different L/E, high precision,. . .

92

Page 93: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

DegeneraciesExpand 3 flavor oscillation probabilities in terms of R = ∆m2

⊙/∆m2A and |Ue3|:

P (νe → νµ) ≃ sin2 2θ13 sin2 θ23sin2 (1−A)∆

(1−A)2+ R2 sin2 2θ12 cos2 θ23

sin2 A∆

A2

+sin δ sin 2θ13 R sin 2θ12 cos θ13 sin 2θ23 sin∆sin A∆ sin (1−A)∆

A(1−A)

+ cos δ sin 2θ13 R sin 2θ12 cos θ13 sin 2θ23 cos∆sin A∆ sin (1−A)∆

A(1−A)

with A = 2√2GF neE/∆m

2A and ∆ =

∆m2A

4E L

If A∆ = π:

P (νe → νµ) ≃ sin2 2θ13 sin2 θ23sin2 (1−A)∆

(1−A)2

This is the “magic baseline” of L =√2π

GF ne≃ 7500 km

93

Page 94: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Typical time scale

2005 2010 2015 2020 2025 2030Year

10-5

10-4

10-3

10-2

10-1

100

sin2 2Θ

13dis

cove

ryre

achH3ΣL

CHOOZ+Solar excluded

Branching pointConv. beams

Superbeams+Reactor exps

Superbeam upgrades

Ν-factories

MINOSCNGSD-CHOOZT2KNOîAReactor-IINOîA+FPD2ndGenPDExpNuFact

94

Page 95: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Future experiments

• what detector?

– Water Cerenkov?

– liquid scintillator?

– liquid argon?

• Neutrino Physics

– oscillations (hierarchy, CP, precision)

– non-standard physics (NSIs, unitarity violation, steriles, extra forces,. . .)

• other physics

– SN (burst and relic)

– geo-neutrinos

– p-decay

95

Page 96: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Example LBNE

FNAL → Homestake, L = 1300 km

96

Page 97: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

97

Page 98: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Example ICAL at INO

7300 km from CERN, 6600 km from JHF at Tokai

98

Page 99: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Precision era!

∆m

2 in

eV

2

x10-5

6

7

8

9

sin2(Θ)

0.2 0.3 0.4

1998 today

99

Page 100: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Limits on neutrino mass(es)

∆m221 = 8× 10−5 eV2 and |∆m2

31| ≃ |∆m232| = 2× 10−3 eV2

• normal ordering: ∆m231 > 0

• inverted ordering: ∆m231 < 0

We don’t know the zero point!

100

Page 101: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Neutrino masses

• neutrino masses ↔ scale of their origin

• neutrino mass ordering ↔ form of mν

• m23 ≃ ∆m2

A ≫ m22 ≃ ∆m2

⊙ ≫ m21: normal hierarchy (NH)

• m22 ≃ |∆m2

A| ≃ m21 ≫ m2

3: inverted hierarchy (IH)

• m23 ≃ m2

2 ≃ m21 ≡ m2

0 ≫ ∆m2A: quasi-degeneracy (QD)

101

Page 102: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Neutrino masses

Neutrino mass hierarchy is moderate!

NH :m2

m3≥√

∆m2⊙

∆m2A

≃ 1

5

IH :m1

m2

>∼ 1− 1

2

∆m2⊙

∆m2A

≃ 0.98

102

Page 103: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Summary

Neutrinos are massive: ⇒ 3 Tasks

• determine parameters

• explain why neutrinos are so light

• explain why leptons mix so weirdly

103

Page 104: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

NEUTRINOS

LHCILC...

Baryon

...

GUT

SO(10) ...

BBN...

...

Supersymmetry

Astrophysics

cosmic rayssupernovae

Cosmology

Dark Matter

quark mixing

Flavor physics

proton decaysee−saw

Asymmetry

104

Page 105: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

NEUTRINOS

LHCILC...

Baryon

...

GUT

SO(10) ...

BBN...

...

Astrophysics

cosmic rays

Supersymmetry

Cosmologie

Dark Matter

Asymmetry

Flavor physics

see−sawproton decay

quark mixing

supernovae

105

Page 106: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

Experiment Status Name Start

WC (3 kton) finished Kamiokande 1983WC (50 kton) running SuperKamiokande 1996WC (1000 kton) proposed HyperK, MEMPHYS 2015?li. Ar in discussion GLACIER 2015?li. Szintillator in discussion LENA 2015?Monopoles and CR finished MaCRO 1994Solar B finished SNO 2001Solar Be in construction Borexino 2006?Solar pp running Gallex, SAGE 1991Solar pp proposed LENSReactor finished CHOOZ 1997Reactor running KamLAND 2002Reactor proposed Double-CHOOZ, DayaBay 2009Long baseline finished K2K 1999Long baseline in construction CNGS 2006Long baseline in construction NuMI 2004Long baseline proposed Noνa 2011Long baseline funded T2K 2009Long baseline proposed Super-beam 2010?Long baseline in discussion ν-Fabrik 2020?Long baseline in discussion β-beam 2020?

Cosm. Rays running Auger 2006ν-telescope funded ANITA 2007ν-telescope in construction IceCube 2009?ν-telescope proposed KM3NeT 2012?

β-decay at 2 eV finished Mainz, Troitsk 1993β-decay at 0.2 eV in construction KATRIN 20080νββ at 1 eV finished HM 19900νββ at 0.1 eV running Cuoricino, NEMO3 20030νββ at 0.1 eV in construction GERDA 20080νββ at 0.01 eV proposed 2012?

t-Scale DM search proposed 2012?ν-couplings finished NuTeV 1996

ee-collider (103 GeV) finished LEP 1989ee-collider (0.5 TeV) proposed ILC 2020?pp-collider (7 TeV) in construction LHC 2008Satellite running WMAP 2003Satellite in construction Planck 2007Satellite in construction GLAST 2008Gravitational waves running LIGO + VIRGO 2002

106

Page 107: Introduction to Neutrino (Oscillation) Physics · 1957 Pontecorvo suggests neutrino oscillations 1958 helicity h(νe) = −1 by Goldhaber ⇒ V−A 1962 discovery of νµ by Lederman,

107