21
 6/11/2010  Introduction to percolations Introduction to Percolation Theory Danica Stojiljkovic  6/11/2010  Introduction to percolations 11

Introduction to Percolation Theory

  • Upload
    others

  • View
    37

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

Introduction to Percolation Theory

Danica Stojiljkovic

 6/11/2010  Introduction to percolations11

Page 2: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

System in concern

•Discrete system in d dimensions•Lattices

– 1D: array– 2D: square, triangular, honeycomb– 3D: cubic, bcc, fcc, diamond– dD: hypercubic– Bethe lattice (Cayley tree)

 6/11/2010  Introduction to percolations22

Page 3: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

System in concern

 6/11/2010  Introduction to percolations33

Page 4: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

System in concern

•Each lattice site is occupied randomly and independently with probability p•Nearest neighbors: sites with one side in common•Cluster: a group of neighboring sites

 6/11/2010  Introduction to percolations44

Page 5: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

Site and Bond Percolation

•A “site” can be a field or a node of a lattice•Bond percolation: bond is present with probability x•Site-bond percolation: continuous transition between site and bond percolation

 6/11/2010  Introduction to percolations55

Page 6: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

Percolation thresholds

 6/11/2010  Introduction to percolations66

• At some occupation probability pc a spanning (infinite) cluster will appear for the first time

• Percolation thresholds are different for different systems

20 x 20 site lattice

Page 7: Introduction to Percolation Theory

6/11/2010 Introduction to percolations

Percolation thresholds

6/11/2010 Introduction to percolations77

Page 8: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

Cluster numbers

•Number of cluster with s sites per lattice sites: ns •For 1D lattice:

•In general:

•t – perimeter

•gst –number of lattice animals with size s and perimeter t

2)1( ppn ss −=

∑ −=t

tssts ppgn )1(

 6/11/2010  Introduction to percolations88

Page 9: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

Average cluster size

•Probability that random site belongs to a cluster of size s is ws=sns/∑sns

•Average size of a cluster that we hit if we point to and arbitrary occupied site that is not a part of an infinite cluster

S   =  ∑wss     =  ∑s2ns/∑sns

 6/11/2010  Introduction to percolations99

Page 10: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

Average cluster size

•For 1D:       S  = (1+p)/(1­p)

~ | pc­p |­1 

•For Bethe lattice:       S  ~ | pc­p |­1 

•In general       S  ~ | pc­p |­γ  •compressibility, susceptibility

 6/11/2010  Introduction to percolations1010

Page 11: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

Cluster numbers at pc 

•If ns at pc decays exponentially, than S would be finite, therefore:

 ns(pc) ~ s­τ

•We calculate for Bethe ns(p)/ ns(pc) ~ exp (­Cs)

whereC ~ | pc – p |1/σ

 6/11/2010  Introduction to percolations1111

Page 12: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

Scaling assumption

•Generalizing Bethe result: ns(p) ~ s­τ exp(­|p­pc|1/  σ s) 

(1D result does not fit)

•We can derive all other critical exponents from τ and σ•Scaling assumption

ns(p) ~ s­τ F(|p­pc|1/  σ s)

or  ns(p) ~ s­τ  ((p­pc)sΦ  σ) 

 6/11/2010  Introduction to percolations1212

Page 13: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

Universality

• (z) Φ depends only on dimensionality, not on lattice structure• τ and σ, as well as function (z) Φare universal•Plotting ns(p)s­τ  versus (p­pc)s σ would fall on the same line

 6/11/2010  Introduction to percolations1313

Page 14: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

Strength of the infinite network

•P – probability of an arbitrary site belonging to the infinite network

P + ∑sns = p•Applicable only at p > pc•For Bethe lattice  P ~ (p – pc)•In general

P ~ |p – pc|β•Spontaneous magnetization, difference between vapor and liquid density

 6/11/2010  Introduction to percolations1414

Page 15: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

Correlation function

•g(r) -Probability that a site at distance r from an occupied site belongs to the same cluster•In 1D array:

 g(r) = pr = exp(­r/ξ) ξ = ­1/ln(p) = 1/(pc­p)

•  ξ  ­ Correlation length

 6/11/2010  Introduction to percolations1515

Page 16: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

Radius of gyration

•Average of the square radii

•r0 – center of mass

•Relation of gyration radii and average site distance

 6/11/2010  Introduction to percolations1616

∑=

−=

s

i

is s

rrR

1

202

∑−

=ij

jis s

rrR 2

2

22

Page 17: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

Correlation length

•Average distance between two sites belonging to the same cluster:

•Near the percolation threshold ξ ~ |p – pc| ­ν

 6/11/2010  Introduction to percolations1717

∑∑∑∑

=

=

r s

s ss

r

r

ns

nsR

rg

rgr

2

22

22

2

)(

)(ξ

Page 18: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

Fractal dimension

•At p = pc :M  ~  LD 

where M is mass of the largest cluster in a box with sides L•D<d and it is called fractal dimension•For gyration radii: Rs  ~  s1/D 

 6/11/2010  Introduction to percolations1818

Page 19: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

Crossover phenomena

•For finite lattices whose linear dimension L <<ξ , cluster behaves as fractals  M ~ L D•ξ acts like a measuring stick, and in its absence all the relevant functions becomes power laws•For L >ξ, M ~ (L/ ξ)d   ∙ ξD ~ L d 

 6/11/2010  Introduction to percolations1919

Page 20: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

References

•Introduction to Percolation Theory, 2nd revised edition,1993by Dietrich Stauffer and Amnon Aharony

 6/11/2010  Introduction to percolations2020

Page 21: Introduction to Percolation Theory

 6/11/2010  Introduction to percolations

To be continued…

•Exact solution for 1D and Bethe lattice•Scaling assumption•Deriving relations between critical coefficients •Numerical methods•Renormalization group

 6/11/2010  Introduction to percolations2121