36
Introduction to random walks in random and non-random environments Nadine Guillotin-Plantard Institut Camille Jordan - University Lyon I Grenoble – November 2012 Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environments Grenoble – November 2012 1 / 36

Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Introduction to random walks in random andnon-random environments

Nadine Guillotin-Plantard

Institut Camille Jordan - University Lyon I

Grenoble – November 2012

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 1 / 36

Page 2: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Outline

1 Simple Random Walks in Zd

DefinitionRecurrence - TransienceAsymptotic distribution for n largeAsymmetric random walk

2 Random Walks in Random EnvironmentsDefinitionRecurrence-TransienceValleys (or traps) - Slowing downAsymptotic distributions for n large

3 Random Walk in Random Scenery

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 2 / 36

Page 3: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Definition

At time 0, a walker starts from the site 0, tosses a coin. If he gets ”Head”,then he goes to the site +1, otherwise to the site -1. (”Tail”)

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 3 / 36

Page 4: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Definition

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 4 / 36

Page 5: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Definition

Natural questions

Does the walker come back to the origin ?Notion of Recurrence - Transience.

Mean position of the walker, fluctuations around this position, largedeviations...

Probability that the walker be at site x at time n(Local limit theorem)

Number of distinct sites visited by the walker up to time n (Range)

Maximal (or minimal) position of the walker before time n

Number of visits to a fixed site x . (Local time )

The last time the random walker visits 0 before time n

The number of positive values of the random walk before time n

Number of self-intersections up to time n.

Favorite sites of the walkerand so on...

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 5 / 36

Page 6: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Definition

Let (Xi )i≥1 be i.i.d. random variables taking values +1 or −1 with equalprobability.{Xi = +1} ={ The walker gets ”Head” at time i}.

The position of the walker at time n is given by :

S0 := 0

and for any n ≥ 1,

Sn :=n∑

i=1

Xi

(Sn)n≥0 is called simple random walk on Z.From this writing, we can compute

E (Sn) = 0

and Var(Sn) = E (S2n ) = n. Therefore, Sn ∼

√n

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 6 / 36

Page 7: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Recurrence - Transience

For n integer,

P(S2n = 0) =Number of paths of length 2n from 0 to 0

Number of paths of length 2n

=Cn

2n

22n

=(2n)!

4n(n!)2

∼ 1√πn

for n large

using Stirling’s formula

n! ∼(n

e

)n√2πn.

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 7 / 36

Page 8: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Recurrence - Transience

A random walk is said recurrent iff

P[

lim supn{Sn = 0}

]= P

[Sn = 0 i.o.

]= 1

Otherwise, it is called transient. Since Sn is a Markov chain, we have thisuseful criterion :

Theorem

(Sn)n is recurrent iff+∞∑n=0

P(Sn = 0) = +∞

Since P(Sn = 0) ∼ C/√

n, the simple random walk on Z is recurrent.

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 8 / 36

Page 9: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Recurrence - Transience

Simple random walk in Z2

Simple random walk in Z2

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 9 / 36

Page 10: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Recurrence - Transience

Georges Polya (1887 – 1985)

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 10 / 36

Page 11: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Recurrence - Transience

In higher dimension

Theorem (Polya (1921) )

There exists some constant C = C (d) s.t. for n large enough

P(Sn = 0) ∼ C n−d/2.

Main tool: Fourier Inversion Formula

P(Sn = 0) =1

(2π)d

∫[−π,π]d

E (e iΘ·Sn)dΘ

Use that Sn is a sum of i.i.d. random vectors and for ||Θ|| small,

E (e iΘ·X1) = 1− ||Θ||2

2d+ o(||Θ||2)

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 11 / 36

Page 12: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Recurrence - Transience

Theorem

A simple random walk in Zd is recurrent for d = 1 or 2, but is transientfor d ≥ 3.

Another way to say that :”All roads lead to Rome except the cosmic paths ! ”

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 12 / 36

Page 13: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Asymptotic distribution for n large

Local limit theorem

For n and x integers s.t. n + x is even,

P(Sn = x) =Number of paths of length n from 0 to x

Number of paths of length n

=C

(n+x)/2n

2n

∼√

2

π.e−

x2

2n

√n

for n large and |x | = o(n2/3)

Therefore, for any x ∈ R s.t. n + [x√

n] is even,

P(Sn = [x√

n]) ∼√

2

π.e−

x2

2

√n

for n large

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 13 / 36

Page 14: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Asymptotic distribution for n large

Let a, b ∈ R with a < b,

P(

S2n ∈ [a√

2n, b√

2n])

=∑

k∈[a√

2n,b√

2n]

P(S2n = k)

∼√

2

n

∑m∈[a,b]∩ 2Z√

2n

1√2π

e−m2

2

→ 1√2π

∫ b

ae−

x2

2 dx = P(X ∈ [a, b])

where X is distributed as the Normal distribution N (0, 1).Notation: As n tends to infinity,

Sn√n

L−→ N (0, 1).

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 14 / 36

Page 15: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Asymptotic distribution for n large

Maximum of the path at time n

Define

Mn := maxk=0..n

Sk

= maxt∈[0,1]

S[nt]

For any t > 0, as n large,S[nt]√

n∼ N (0, t) and

Mn√n

= maxt∈[0,1]

(S[nt]√

n

)Functional of the path from 0 to time n, a convergence in distribution onthe space of the cad-lag paths (φ(t))t∈[0,1] is needed.

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 15 / 36

Page 16: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Asymptotic distribution for n large

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 16 / 36

Page 17: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Asymptotic distribution for n large

Functional limit theorem

The sequence(S[nt]√

n

)t≥0

converges in law to the real Brownian motion

(Bt)t≥0, that is a stochastic process satisfying :

B0 := 0

Stationarity of the increments : Bt − Bs ∼ Bt−s for s < t

Independence of the increments : Bt − Bs independent from Bs

Bt ∼ N (0, t)

The law of the maximum of the Brownian motion is well-known :

maxt∈[0,1]

Bt ∼ B1 ∼ N (0, 1)

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 17 / 36

Page 18: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Asymptotic distribution for n large

Arcsine distributions

With the same method, we can compute the asymptotic distributions ofmany functionals of the random walk :

Nn = max{k = 1 . . . n ; Sk = 0} the last time the random walkervisits 0 before time n

Vn = #{k = 1 . . . n ; Sk > 0} the number of positive values of therandom walk before time n

We have for any x ∈ (0, 1), as n is large,

P(Nn ≤ xn) ∼ 2

πarcsin(

√x)

and

P(Vn ≤ xn) ∼ 2

πarcsin(

√x).

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 18 / 36

Page 19: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Asymptotic distribution for n large

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 19 / 36

Page 20: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Asymmetric random walk

The random walker moves to the right with probability p and to the leftwith probability q = 1− p.

Same questions as before: Recurrence, Transience, Asymptoticdistribution,....

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 20 / 36

Page 21: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Asymmetric random walk

Let (Xi )i≥1 be i.i.d. random variables taking values +1 or −1 withprobability p and q = 1− p respectively. The position of the walker attime n is given by :

S0 := 0

and for any n ≥ 1,

Sn :=n∑

i=1

Xi

From this writing, we can compute

E (X1) = p − q 6= 0

The strong law of large numbers gives : as n→ +∞,

Sn

n=

1

n

n∑i=1

Xi → E (X1) = p − q a.s.

The random walk (Sn)n is transient, tends to +∞ (resp. −∞) whenp > q (resp. p < q).

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 21 / 36

Page 22: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Simple Random Walks in Zd Asymmetric random walk

Asymptotic distribution for n large

As n→ +∞,Sn − n (p − q)√

n

L−→ N (0, σ2)

where σ2 = 4p(1− p).

Indeed, for n integer and x ∈ Z s.t. n + x is even,

P(Sn = x) = C(n+x)/2n p(n+x)/2q(n−x)/2

∼ ....

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 22 / 36

Page 23: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Random Walks in Random Environments Definition

Random Environment : Let ωx , x ∈ Z, be i.i.d. random variables withvalues in [0, 1], uniformly bounded away from 0 and 1.For a given realization of the environment, we consider the Markov chain(Sn)n which jumps to the site x + 1, with probability ωx and to x − 1 withprobability 1− ωx , given it is located at x .

They were introduced by A.A. Chernov in 1967 in order to model thereplication of DNA.

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 23 / 36

Page 24: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Random Walks in Random Environments Definition

Quenched law: Denote by Pω the law of the walk (starting from 0)in the environment ω.

Annealed law: If P denotes the law of the environment,

P = P× Pω

defined as

P(.) =

∫Pω(.) dP(ω)

Fundamental remark :Under P, the random walk is not a Markov chain.(Under Pω, the random walk is a Markov chain (inhomogeneous in space))

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 24 / 36

Page 25: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Random Walks in Random Environments Recurrence-Transience

Solomon I

The ratio

ρx :=1− ωx

ωx

plays an important role in the study of RWRE.

Theorem (Solomon (1975))

If E(ln ρ0) < 0 (resp. > 0) then the random walk is transient and

limn→+∞

Sn = +∞ (resp−∞) P − a.s.

If E(ln ρ0) = 0, then the random walk is recurrent and

lim supn→+∞

Sn = +∞ and lim infn→+∞

Sn = −∞ P − a.s.

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 25 / 36

Page 26: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Random Walks in Random Environments Recurrence-Transience

Solomon II

Theorem (Solomon (1975))

P-almost surely,

limn→+∞

Sn

n= v

where

v =

1−E(ρ0)1+E(ρ0) if E(ρ0) < 1E(1/ρ0)−1E(1/ρ0)+1 if 1 < 1/E(ρ−1

0 )

0 if 1/E(ρ−10 ) ≤ 1 ≤ E(ρ0)

Comparison with the random walk in Z:1- |v | < |E(S1)| −→ some slowdown already occurs.2- The random walk can be transient with zero speed !

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 26 / 36

Page 27: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Random Walks in Random Environments Valleys (or traps) - Slowing down

Potential:

V (x) =

x∑k=1

log(ρk) if x ≥ 1

0 if x = 0

−0∑

k=x+1

log(ρk) if x ≤ −1

(V (x))x is a real random walk with mean E[log ρ0] and varianceE[(log ρ0)2].Remark also that

ωx =e−V (x)

e−V (x−1) + e−V (x)>

1

2

if and only ifV (x − 1) > V (x).

When the potential decreases (resp. increases), the random walker tendsto go to the right (resp. left).

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 27 / 36

Page 28: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Random Walks in Random Environments Valleys (or traps) - Slowing down

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 28 / 36

Page 29: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Random Walks in Random Environments Valleys (or traps) - Slowing down

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 29 / 36

Page 30: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Random Walks in Random Environments Asymptotic distributions for n large

Recurrent case – E[log ρ0] = 0

Theorem (Sinai (1982), Kesten (1986), Golosov (1986))

Denoteσ2 = E(log ρ0)2 ∈ ]0,+∞[

Then,σ2

(log n)2Sn

L−→ b∞

where b∞ is a symmetric random variable with Laplace transform

E(e−λ|b∞|) =cosh(

√2λ)− 1

λ cosh(√

2λ), λ > 0.

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 30 / 36

Page 31: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Random Walks in Random Environments Asymptotic distributions for n large

Transient case – E[log ρ0] < 0

Under both assumptions :1- There exists κ > 0 s.t. E(ρκ0) = 1 and E(ρκ0(log ρ0)+) <∞.2- The distribution of log(ρ0) is non-lattice.

Theorem (Kesten-Kozlov-Spitzer (1975))

When κ < 1, (v = 0)

limn→+∞

P(Sn

nκ≤ x

)= 1− Lκ,b(x−1/κ)

When κ ∈ (1, 2),

limn→+∞

P( Sn − nv

v 1+1/κn1/κ≤ x

)= 1− Lκ,b(−x).

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 31 / 36

Page 32: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Random Walks in Random Environments Asymptotic distributions for n large

Transient case – E[log ρ0] < 0

Lκ,b is a stable distribution with characteristic function

Lκ,b(t) = exp

{−b|t|κ

(1− i

t

|t|tan(πκ/2)

)}The value of b for κ ∈ (0, 2) was determined by Enriquez, Sabot andZindy (’09)

Theorem (Kesten-Kozlov-Spitzer (1975))

When κ > 2,Sn − nv√

n

L−→ N (0, σ2)

where σ2 > 0.

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 32 / 36

Page 33: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Random Walk in Random Scenery

Riddle

Is this random walk recurrent or transient ?

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 33 / 36

Page 34: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Random Walk in Random Scenery

Theorem (Campanino – Petritis (2003))

The random walk (Sn)n is transient for almost every realization of theorientations.

A local limit theorem can even be proved.

Theorem (Castell – Guillotin-Plantard – Pene – Schapira (AOP, 2011))

For n large,

P[Sn = 0] ∼ C

n5/4.

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 34 / 36

Page 35: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Random Walk in Random Scenery

(Sn)n has the same distribution as (Xn,Yn)n where

Yn is the ”blue” random walk on Z.Xn is the random walk (Yn) in random scenery (”H”, ”T ”) :

ξi = 1 (resp. −1) if ”Tail” (resp. ”Head”) at site i ∈ Z,

Xn =n−1∑k=0

ξYk

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 35 / 36

Page 36: Introduction to random walks in random and non-random ...joye/quawagtalks/Guillotin.pdf · Simple Random Walks in Zd De nition Let (X i) i 1 be i.i.d. random variables taking values

Random Walk in Random Scenery

We have

P[Sn = 0] = P[Xn = 0; Yn = 0]

∼ P[Xn = 0|Yn = 0]P[Yn = 0]

We know that

P[Yn = 0] ∼ C

n1/2

and (not easy !)

P[Xn = 0|Yn = 0] ∼ C

n3/4

Nadine Guillotin-Plantard (ICJ) Introduction to random walks in random and non-random environmentsGrenoble – November 2012 36 / 36