Introduction to Static Reservoir Modeling

Embed Size (px)

DESCRIPTION

udah gitu aja

Citation preview

  • PEMODELAN STATIS

    1

    INTRODUCTION TO STATICRESERVOIR MODELING

    Event09.00-10.30 Introduction10.30-10.45 Break10.45-12.00 Geological Control12.00-13.00 Break13.00-14.00 Well Correlation14.00-14.15 Break14.15-16.00 Seismic Interpretation16.00-16.15 Homework

    09.00-09.30 Review09.30-10.30 Geostatistic10.30-10.45 Break10.45-12.00 Geometry Modeling12.00-13.00 Break13.00-15.00 Facies & Property Modeling15.15-16.00 Volumetric & Uncertainty

    Time

    24-Mei-2014

    25-Mei-2014

    TRAINING SCHEDULE

  • PEMODELAN STATIS

    2

    OIL & GAS UPSTREAM BUSSINES PROCESS

    OIL & GAS UPSTREAM BUSSINES PROCESS

    EXPLORATION DEVELOPMENT PRODUCTIONPREPARATION MARKETING

    AcquiringContract Area

    ResourcesReserves

    Reserves Production

    ProductOptimization

    FindingMarket

    SKKMIGAS, 2013

  • PEMODELAN STATIS

    3

    GEOLOGICAL MODELING

    HISTORICAL PERSPECTIVESuppose you are required to prospect a very large area for gold. Youhave all the necessary tools for drilling to mine a spot for gold.However, due to costs and technical difficulty you do not have theluxury to mine physically the whole area (with extensive drilling) inorder to find out the locations where gold is deposited in highamounts. Another problem that complicates your objective is that thereis no precedence of gold mining in your area (i.e., no body reallyknows the geology or any historical fact to guide you to choosingdrilling locations that may have a high probability of having golddeposits.)So what do you do?

    (the founder of geostatistics Dr. Krige in South Africa was faced with thesame problem some 80 years ago)

  • PEMODELAN STATIS

    4

    GEOSTATISTICSGeostatistics defined as the branch of statistical sciences that studiedspatial/temporal phenomena and capitalizes on spatial relationship tomodel possible value(s) at unobserved, unsample location. (Caers,2005)

    Geostatistics concept: Quantify Spatial Relationship (i.e. by using Variogram)

    The non-randomness of geological phenomena entails that valuemeasured close to each other are more alike than value measurefarther apart.

    Modeling Spatial Relationship Estimation: Kriging Simulation: Conditional Simulation (SGS/SIS/TGS)

    GEOLOGICAL MODELINGGeomodeling consists of the set of all the mathematical methodsallowing to model in an unified way the topology, the geometry and thephysical properties of geological objects while taking into account anytype of data related to these objects. (Mallet, 2002)

    A Geomodel is the numerical equivalent of a three-dimensionalgeological map complemented by a description of physical quantitiesin the domain of interest. (Mallet, 2008)

    Geologic modeling or Geomodeling is the applied science of creatingcomputerized representations of portions of the Earth's crust basedon geophysical and geological observations made on and below theEarth surface. (Wikipedia)

  • PEMODELAN STATIS

    5

    WHY DO WE NEED GEOMODEL?3D models help us visualize the ground beneath our feet without the need fortraining in complex geological techniques.

    Modelling the Earth's subsurface can help us understand the relationshipbetween geology and our environment.Our traditional printed, 2D geological maps show the distribution of geologicalunits at the surface, but 3D models of the same geology shows us the depth offeatures such as faults, changes in thickness, tilted units and subsurfacecontacts.3D models can: allow non IT specialists to easily access geological information answer specific questions about the subsurface produce a range of outputs display 360 views

    DEVELOPMENT OF GEOMODELIn the 70's, geomodelling mainly consisted of automatic 2Dcartographic techniques such as contouring, implemented asFORTRAN routines communicating directly with plotting hardware.

    The advent of workstations with 3D graphics capabilities during the80's gave birth to a new generation of geomodelling software withgraphical user interface which became mature during the 90's

    Since its inception, geomodelling has been mainly motivated andsupported by oil and gas industry.

  • PEMODELAN STATIS

    6

    APPLICATIONGeomodelingApplication

    Mining HydrologyPetroleum Geothermal

    Basin Reservoir

    UnconventionalConventional

    Silisiclastics Carbonate Basement Tight Sand ShaleHydrocarbonCoal BedMethane

    BASIN & RESERVOIR MODELING

    Basin ModelingLooks into larger aspects like existence ofa petroleum system in the areaAim is to predict Reservoir development, Source rock

    maturation, Migration history, Thermal history, Pressure development etc.

    Reservoir ModelingLooks into finer aspects of the reservoir Static Static model Presents the current geologic setup Presents the current state of tectonic

    deformation Presents the current state of

    stratigraphy Models current distribution of rock

    properties

  • PEMODELAN STATIS

    7

    CONVENTIONAL & UNCONVENTIONAL

    Conventional Hydrodynamic emplacement and

    trapping Controlled by local structure and

    stratigraphy Well defined limits (e.g. seal and

    fluid contact) Discrete fields

    Un-stimulated Production

    Unconventional Trapping not hydrodynamic Controlled by regional stratigraphy Poorly defined limits Continuous or Dispersed

    Accumulations Requires stimulation / de-watering

    SOURCE OF DATASource of data are reservoir modeling: Geological Data any data related to the style of geological

    deposition: Core data porosity, permeability, and relative permeability per

    facies Well log data any suite of logs that indicate lithology,

    petrophysics, and fluid types near the wellbore Sedimentological and stratigraphic interpretation Outcrop analog data

    Geophysical Data any data originating from seismic surveys: Surface and fault interpreted on 3D seismic Seismic Attribute Rock physics data

    Reservoir Engineering Data any data related to the testing andproduction of the reservoir: Pressure/volume/temperature (PVT) data. Well-test data Production data

  • PEMODELAN STATIS

    8

    ROLE OF GEOMODELER Data QC and data harmonization (structural, sedimentological, petrophysical,

    geophysical and geomechanical analysis) Elaboration of conceptual model as an integrated process that involves experts from

    various fields Structural modeling: Incorporate relevant structural elements and delineate

    different fault blocks Gridding of target area Facies Modeling (Sequential Indicator Simulation (SIS), Truncated Gaussian

    Simulation (TGS), object based modeling or Multi Point Statistics (MPS)) Petrophysical Modeling: Geostatistical data analysis and simulation (Sequential

    Gaussian Simulation (SGS) and co-simulation)Water saturation modeling (J-function analysis) Static Model upscaling Uncertainty Analysis: Visualize dependencies between the input parameters

    (seismic, structure, facies, petrophysics) and quantification and visualization of thespatial location and variability of the uncertainty

    Discrete Fractured Network modeling (DFN)

    GEOLOGICAL CONTROL

  • PEMODELAN STATIS

    9

    SILISICLASTICS

    CARBONATES

  • PEMODELAN STATIS

    10

    FRACTURED BASEMENT

    SHALE HYDROCARBON

  • PEMODELAN STATIS

    11

    COAL BED METHANE

    End of Slide Show

  • PEMODELAN STATIS

    12

    End of Slide Show

    WELL CORRELATION

  • PEMODELAN STATIS

    13

    Scope of discussion

    Sequence Stratigraphy ConceptsElectrofaciesRegional Geology of Jambi Sub-BasinCore DescriptionSequence Stratigraphy Correlation

    Sequence Stratigraphy Concepts

    Sediment patterns in siliciclastic non-marine and shelf deposits are controlled by twofundamental parameters :1. The rate of sediment influx (Sedimentation rate)2. Changes in the potental space available for sedimentation (Space accomodation)

  • PEMODELAN STATIS

    14

    Sequence Stratigraphy Concepts

    Sequence Stratigraphy Concepts

  • PEMODELAN STATIS

    15

    Sequence Stratigraphy Concepts

    Boyd & Diesel, 1994

  • PEMODELAN STATIS

    16

    Electrofacies

    Serra. O, 1985

    Electrofacies

    Fluvial Environment

  • PEMODELAN STATIS

    17

    Electrofacies

    Incised Valley and Estuarine Environment

    Electrofacies

    Delta Environment

  • PEMODELAN STATIS

    18

    Electrofacies

    Deepwater Submarine and Turbidite Environment

    Electrofacies

    Deepwater Submarine and Turbidite Environment

  • PEMODELAN STATIS

    19

    Core Description

    bottom

    top

    Interval: 1219.00 - 1229.43 M

    Sequence Statigraphic Analysis of Well LogPrevious Study

  • PEMODELAN STATIS

    20

    Transgresisive

    retrogradational

    Lowstandaggradation

    Highstandprogradatio

    nal

    Lowstandaggradation

    Transgresisive

    retrogradational

    Uppe

    rPen

    dopo

    Lowe

    rPen

    dopo

    Core

    interval

    A

    B

    FERG-2

    Interval: 1219.00 - 1229.43 m / 3999.344 - 4033.563 ft

    End of Slide Show

  • PEMODELAN STATIS

    21

    Sedimentology and StratigraphyReview for Static Modeling

    Scope of discussion

    Important of sedimentology and stratigraphy in static modeling Definition review Aim of sedimentology and stratigraphy in static modeling Scale of observation Reservoir Geometry

  • PEMODELAN STATIS

    22

    Important of sedimentology and stratigraphy in staticmodeling

    (Examples)

    Almost onSedimentary Rocks

    Definition review

    Outline of our discussion : Introduction Geology control Silisiclastic Correlation and Seismic Picking Geostatistic Geometrical modelling Property Modelling Volumetric

    Geolo

    gical

    Facto

    r

    Sedim

    entol

    ogy a

    ndStr

    atigra

    phy

    Facto

    r

    Geological understanding need

  • PEMODELAN STATIS

    23

    Definition review

    Sedimentology of the scientific study of sediments (unconsolidated) andsedimentary rocks (consolidated) in terms of their description,classification, origin and diagenesis (Shanmugam, 2006).

    Reading (1986) suggested four steps for reconstructing ancientenvironments: (1) description of the rocks; (2) interpretation ofprocesses; (3) establishment of vertical and lateral facies relationships;and (4) use of modern analogs.

    Good News!!

    Sedimentology field activities

  • PEMODELAN STATIS

    24

    Definition Review

    Stratigraphy is a branch of geology which studies rock layers (strata) andlayering (stratification)(Wikipedia.org).

    Some stratigraphic subfields : Lithologic stratigraphy Biologic stratigraphy Chronostratigraphic Magnetostratigraphic Archeological stratigraphy

    Definition Review

    Sequence stratigraphy is a methodology that provides aframework for the elements of any depositional setting,facilitating paleogeographic reconstruction and the prediction offacies and lithologies away from control point(Catuneanu, 2011)

    This framework ties changes in stratal stacking patterns to theresponses to varying accomodation and sediment suplly throughtime.

  • PEMODELAN STATIS

    25

    Aim of sedimentology and stratigraphy in static modeling

    Data should be talking about geological processes and feature,not only statistic and useful for hydrocarbon exploration andproduction.

    What geological processes and feature means : Geometry of sand body would be filled by hydrocarbon. Depositional environment and paleogeography.

    Scale of observation

    Gunter et al (1997)

    : Sedimentology and stratigraphy applied

    : Sedimentology and stratigraphy model applied

    Stage I : Geological Assesment provides a description of the sand-

    body dimensions, geometry, andconnectivity.

    Stage II : Petrophysical Evaluation focuses on the rock and fluid

    systems at a much smaller scale,i.e. the pore scale.

    Stage III : Formation Evaluation pore-scale descriptions from Stage

    II are upscaled and integrated intocontinuous profiles of porosity,permeability, water saturation,and hydraulic rock types at thewellbore

    Stage IV : Reservoir Modeling

  • PEMODELAN STATIS

    26

    Scale of observation

    Mini-scale Core description include lithology, sedimentary structure and

    textural atribute.

    Scale of observation

    Meso-scale Upscaled interpretation of the vertical distribution of the depositional

    rock type and identification of the processes influencing their verticaldistribution.

  • PEMODELAN STATIS

    27

    Scale of observation

    Mega-scale The associated geologic processes and the depositional rock types are interpreted in terms of

    depositional environments that further provide insights into the initial reservoir dimensions,geometry, position, and connectivity.

    Reservoir GeometryMini-Scale Meso-Scale

  • PEMODELAN STATIS

    28

    Reservoir GeometryMega Scale

    End of Slide Show

  • PEMODELAN STATIS

    29

    GEOSTATISTICS IN RESERVOIRMODELING

    OUTLINE

    IntroductionSome basic definitionSpatial StatisticsDeterministic ModelingStochastic Modeling

  • PEMODELAN STATIS

    30

    INTRODUCTION

    What is Geostatistics?

    Geostatistics: study of phenomena that vary in space and/or time (Deutsch, 2002)

    Geostatistics can be regarded as a collection of numerical techniques that deal with thecharacterization of spatial attributes, employing primarily random models in a manner similarto the way in which time series analysis characterizes temporal data. (Olea, 1999)

    Geostatistics offers a way of describing the spatial continuity of natural phenomena andprovides adaptations of classical regression techniques to take advantage of this continuity.(Isaaks and Srivastava, 1989)

    Statistical technique that accounts for spatial relationships of variables in estimating values ofthe variables at unsampled locations. (Kelkar and Perez, 19??)

  • PEMODELAN STATIS

    31

    Application of Geostatistics

    Interpolation and Extrapolation Spatial Distribution Analysis Risk Analysis/Uncertainty Estimates Use of Intercorrelated Attributes

    Limitations of Geostatistics Geostatistics Does Not Create Data or Eliminate the Value of

    Obtaining Additional Good Data Geostatistics Does Not Replace Sound Qualitative Understanding and

    Expert Judgment Geostatistics Does Not Necessarily Save Time, At Least in the Short

    Term. Geostatistics Does Not Work Well as a Black Box

    Porosity at X is 13.7%

  • PEMODELAN STATIS

    32

    Reservoir Modeling Some basic definition

    BASIC DEFINITION

    STATIC RESERVOIR MODEL

    DYNAMIC RESERVOIR MODEL

    Parameters which does not change in timeie: Facies, Reservoir Rock Type (RRT), Phi, Initial Sw, etc.

    Parameters that change in timeie: Fluid flow, Pressure, etc.

  • PEMODELAN STATIS

    33

    HOMOGENY Vs. ISOTROPYHomogeny & Heterogenic Vs. Isotropy & Anisotropy

    high Heterogeneity Low Heterogeneity

    a) b)

    c) d)

    Anisotopy:a) 1b) 0.8c) 0.5d) 0.2

    The directionof Maximum continuity

    The directionof Minimum continuity

    STATIONARY

  • PEMODELAN STATIS

    34

    Mean ValueArithmetic

    Geometric

    Harmonic

    Deterministic Vs StochasticDeterministic If One Knows Enough About the Process Responsible forthe DistributionStochastic If the Underlying Process Is Not Well Understood Deterministic Models Depend

    on Outside Information NotContained in the Data Values(i.e. Quantitative ProcessDescription) and the Context ofthe Data

    Deterministic Model Examples: Distance a Ball Will Travel

    When Thrown Information Needed

    Equation Velocity and Angle Ball Is

    Thrown Gravitational Constant

    (g)

    Stochastic Models Stochastic Models Are Useful

    When the Process Responsiblefor the Distribution of Values isNot Well Understood

    A Stochastic Model is a RandomModel Controlled by a SpatialCorrelation Model

    Stochastic Models are a UsefulReservoir Characterization ToolBecause a Reservoir is the EndProduct of Many PoorlyUnderstood Processes

  • PEMODELAN STATIS

    35

    Estimation Vs Simulation

    Estimation is Process of Obtaining theSingle Best Value of a ReservoirProperty at an Unsampled Location.Local Accuracy Takes Precedence OverGlobal Spatial Variability. EstimationMethods, Therefore, Tend to ProduceSmooth Property Distributions.

    Many Traditional MethodsBlock AveragesInverse Distance WeightedInterpolationTriangulation

    Many Geostatistical MethodsOrdinary KrigingCollocated Cokriging

    Simulation is Process of ObtainingOne or More Good Values of aReservoir Property at an UnsampledLocation. The SimulatedDistributions Honor Global Featuresand Statistics Instead of LocalAccuracy. Simulation Methods Tendto Produce More Realistic PropertyDistributions.Variety of Methods Available,Including:

    Gaussian Sequential Simulation(GSS)Sequential Indicator Simulation(SIS)Simulated AnnealingBoolean (Marked-Point, ObjectBased)

    Simulation is Process of ObtainingOne or More Good Values of aReservoir Property at an UnsampledLocation. The SimulatedDistributions Honor Global Featuresand Statistics Instead of LocalAccuracy. Simulation Methods Tendto Produce More Realistic PropertyDistributions.Variety of Methods Available,Including:

    Gaussian Sequential Simulation(GSS)Sequential Indicator Simulation(SIS)Simulated AnnealingBoolean (Marked-Point, ObjectBased)

    Estimation Vs SimulationEstimation Simulation

    Effective Porosity

    Note Smooth ContoursOn Estimation Map

    Compared to Simulation(Stochastic) Map.

    Note that Areas ofGreatest Difference

    Between the Two MapsAre In Areas of Littleor No Well Control.

    Note Smooth ContoursOn Estimation Map

    Compared to Simulation(Stochastic) Map.

    Note that Areas ofGreatest Difference

    Between the Two MapsAre In Areas of Littleor No Well Control.

  • PEMODELAN STATIS

    36

    SPATIAL STATISTICS

    Spatial Analysis Characteristics of Geoscience Data Sets : Exhibit SpatialRelationships neighboring values are related to each other The relationship gets stronger as the distance between twoneighbors becomes smaller

    In most instances, beyond certain distance the neighboringvalues becomes uncorrelated

    Statistical methods to quantify spatial relationship: Covariance Variogram

  • PEMODELAN STATIS

    37

    Covariance

    Variogram

  • PEMODELAN STATIS

    38

    Covariance Vs. Variogram

    Covariance measures similarities whereas variogram measures the difference Relationship under most situations

    In geostatistics, we use variogram instead of covariance to describe spatialrelationship

    Covariance Variogram

    Variogram

  • PEMODELAN STATIS

    39

    DETERMINISTIC MODELING Estimation Process - Kriging

    ESTIMATION

    Estimation means the process to estimate the value atinterwell locations.

    Common method : Linear Interpolation. Linear Interpolation in Geostatistics is done using Kriging

    Kriging is named after it founder Danny Krige, a gold minerscientist from South Africa (1948)

    Kriging is a deterministic method. The main difference between kriging and conventionallinear interpolation is the use of spatial relationship (i.e.,variogram), instead of based on pre-defined formula.

  • PEMODELAN STATIS

    40

    LOCAL ESTIMATION Point Estimation Methods

    Geological Experience and/or Artistic License Traditional Algorithms That Use Weights Based on Euclidean (Geometric)Distance Polygon Method (Nearest Neighbor) Triangulation Local Sample Mean Inverse Distance

    Geostatistical Algorithms That Use Weights Based on Structural (orStatistical) Distance Simple Kriging Ordinary Kriging Universal Kriging Kriging with Trend Collocated Cokriging

    ESTIMATION PROCESS - KRIGING

  • PEMODELAN STATIS

    41

    Stochastic modeling

    SEQUENTIAL SIMULATION

    The most popular technique in reservoir description Uses grid based method Can generate multiple realizations of various reservoirattributes

    The two common most methods are: Sequential IndicatorSimulation (SIS) and Sequential Gaussian Simulation (SGS)

    TGS : Combination of SGS and SIS Provide smoother distributin of discrete variable

    To honor local relationships among various attributes, co-simulation method is used

  • PEMODELAN STATIS

    42

    SEQUENTIAL SIMULATION

    PROCEDURE: Transform Variogram Analysis Random Path Determination Kriging Uncertainty Quantification Back Transform

    TransformGaussian Transform: Transform the data (may be originally as continuous or discretevariable) to become Continuous variable

    In most cases, SGS is used for continuous variable but, it may alsobe used for discrete variable (e.g., TGS)

  • PEMODELAN STATIS

    43

    Sequential Gaussian Simulation based on Simple Kriging

    4 realizations

    Sequential Gaussian Simulation based on Simple Cokriging

    4 realizations

  • PEMODELAN STATIS

    44

    Example Sequential Gaussian Cosimulation (1)

    4 realizations

    Example Sequential Gaussian Cosimulation (2)

    4 realizations

  • PEMODELAN STATIS

    45

    End of Slide Show

    STATIC MODELING

  • PEMODELAN STATIS

    46

    STATIC MODELING

    PENDAHULUAN WORKFLOW DATA YANG DIBUTUHKAN MODEL GRID MODEL FACIES MODEL PETROFISIKA PERHITUNGAN VOLUMETRIK ANALISIS SENSITIVITAS DAN KETIDAKPASTIAN UPSCALE

    PENDAHULUAN

  • PEMODELAN STATIS

    47

    DEFINISI UMUM

    STATIC RESERVOIR MODEL

    DYNAMIC RESERVOIR MODEL

    Parameters which do not change in timeie: Facies, Reservoir Rock Type (RRT), Phi, etc.

    Parameters that change in timeie: Fluid flow, Pressure, etc.

    Permeability ?Water Saturation ?

    WORKFLOW

  • PEMODELAN STATIS

    48

    WORKFLOWGeologicalIntepretationGeologicalIntepretation

    Static Model(base case)

    GeophysicalIntepretationGeophysicalIntepretation

    PetrophysicalIntepretationPetrophysicalIntepretation

    Dynamic DataValidation

    Uncertainty Analysis

    Scale Up

    Bubble MapBubble MapMaterial BalanceMaterial Balance

    Well TestWell TestDST/MDT/RFTDST/MDT/RFT

    Overall Workflow

    WORKFLOWInput Data

    IntepretasiPetrofisika

    IntepretasiGeofisika

    InterpretasiGeologi

    Analisis TeknikReservoir

    Model Grid

    Model Patahan

    Areal Gridding

    Model Horison

    Zonasi

    PembuatanLapisan

    Grid QualityControl

    Model Facies

    Scale Up WellLog

    AnalisisGeostatistik

    Trend Modeling

    DistribusiFacies

    IntegrasiKonsep Geologi

    ModelPetrofisika

    Scale Up WellLog

    AnalisisGeostatistik

    DistribusiPhi,K,Sw,NtGmengacu

    terhadap Facies/ Rocktype

    Validasi denganData Dynamic

    PerhitunganVolumetrik

    OOIP/OGIP

    AnalisisSensitivitas

    AnalisisKetidakpastian

    UPSCALING

    Design

    StructuralUpscale

    PropertiesUpscale

  • PEMODELAN STATIS

    49

    KEBUTUHAN DATA

    KEBUTUHAN DATAIntepretasiGeofisika

    IntepretasiGeologi

    IntepretasiPetrofisika

    Analisis TeknikReservoir

    Korelasi SumurKorelasi Sumur

    Fasies GeologiFasies Geologi

    Rock TypeRock TypeKonseptual Sebaran Fasies (Peta 2D)Konseptual Sebaran Fasies (Peta 2D)

    PorositasPorositasSaturasi AirSaturasi Air

    Kontak FluidaKontak Fluida

    Analisis Uji SumurAnalisis Uji SumurBubble MapBubble Map

    Atribut SeismikAtribut SeismikInterpretasi SeismikInterpretasi Seismik

    Persamaan Saturasi Diatas KontakPersamaan Saturasi Diatas Kontak

    Boi & BgBoi & BgPermeabilitasPermeabilitas

    * Tipikal data pada reservoir konvensional, dapat berbeda pada kasus reservoir unconventional* Tipikal data pada reservoir konvensional, dapat berbeda pada kasus reservoir unconventional

  • PEMODELAN STATIS

    50

    MODEL GRID

    Objektif Workflow Model Patahan Areal Gridding Model Horison dan Zone Model Lapisan Scale up Well Log Grid Quality Control Studi Kasus 1 (Lapangan Bravo) Studi Kasus 2 (Lapangan KE)

    OBJEKTIF

    Membangun arsitektur dari reservoir dengan membaginya menjadi gridblock dengan ukuran yang konsisten terhadap resolusi data statik

    Menggabungkan patahan dan horison hasil interpretasi seismik Membagi zona berdasarkan kombinasi data seismik dan sumur Membagi perlapisan pada tiap zona berdasarkan kondisi geologi

  • PEMODELAN STATIS

    51

    WORKFLOW

    Model PatahanModel Patahan ArealGriddingAreal

    GriddingModel HorisonModel Horison Model ZonaModel Zona

    Model LapisanModel LapisanQuality ControlQuality Control

    WORKFLOW

    Bahar, 2012

  • PEMODELAN STATIS

    52

    MODEL PATAHAN

    MODEL PATAHANTUJUAN:Memasukkan hasil Patahan interpretasi seimik kedalamModel Grid

    HAL YANG HARUS DIPERHATIKAN: Patahan yang dimodelkan sebaiknya HANYA patahan

    yang berkontribusi terhadap geometri dan propertireservoir

    Geometri Patahan: Vertikal, Miring, Listrik Hubungan antar patahan (Memotong secara

    lateral/Vertikal*) Smoothing dan editing sebaiknya melihat kembali data

    seismik (lakukan terlebih dahulu pada domain time)karena akan mempengaruhi volume reservoir

    Kaidah geologi struktur* Patahan yang memotong secara vertikal akan mempengaruhibentuk grid, biasanya memerlukan perhatian khusus. Lebih baikdihindari

  • PEMODELAN STATIS

    53

    MODEL PATAHANHAL YANG HARUS DIPERHATIKAN: Patahan yang dimodelkan sebaiknya HANYA patahan yang

    berkontribusi terhadap geometri dan properti reservoir

    Dimodelkan atau tidak?

    Man in Charge:Geologist dan Reservoir Engineer

    MODEL PATAHAN

    Fault memotong secara lateral Fault memotong secara vertikal

  • PEMODELAN STATIS

    54

    MODEL PATAHANCommon Practice:

    - Kumpulkan semua patahan hasil interpretasi, diskusikan bersama geologist dan reservoir enggineerpatahan mana saja yang akan dimodelkan.

    - Tentukan bentuk dari masing masing patahan. Untuk model skala reservoir biasanya pilar lineardengan 2 atau 3 poin sudah cukup untuk memodelkan patahan.

    - Pastikan apakah terdapat patahan yang berpotongan secara vertikal, jika ada diskusikan kembalidengan geologi dan geofisika apakah kedua patahan tersebut penting, jika ia maka diperlukanperhatian khusus.

    - Transfer patahan hasil interpretasi ke dalam model grid.- Lakukan editing dan smoothing dengan melihat kembali data Seismik.- Diskusikan apakah hasil model patahan sudah baik dari sisi geologi, geofisika dan reservoir.

    AREAL GRIDDING

  • PEMODELAN STATIS

    55

    AREAL GRIDDINGTUJUAN:Membuat grid secara lateral yang meggambarkan heterogenitassecara areal.

    HAL YANG HARUS DIPERHATIKAN: Usahakan berbentuk rectangular (segi empat) Ukuran minimum: Resolusi seismik Ukuran maksimum: Sediakan minimum 2 atau 3 grid blok diatara

    sumur Usahakan tidak ada 2 atau lebih sumur dalam satu grid, kecuali

    twin well atau beroperasi pada waktu yang berbeda Jangan berencana untuk melakukan areal upscale

    AREAL GRIDDING

    Contoh 1: Patahan tidak diberi arahmengakibatkan banyak grid tidak berbentuksegi empat

    Contoh 2: Patahan diberi arah, grid berbentuksegi empat

  • PEMODELAN STATIS

    56

    AREAL GRIDDING

    Contoh 3: Patahan kompleks tanpa diberi arah Contoh 4: Patahan kompleks setelah diberi arah

    AREAL GRIDDING

    Ukuran grid =100 * 100Total Grid = 3,928,050

    Ukuran grid =200 * 200Total Grid = 1,964,0252 sumur pada 1 grid

    Ukuran grid =50 * 50Total Grid = 15,712,200Total grid terlalu besar

  • PEMODELAN STATIS

    57

    AREAL GRID

    Common Practice:

    - Tentukan area yang ingin dimodelkan.- Buat batasan model berupa poligon, usahakan searah dengan patahan utama.- Berikan arah pada setiap patahan yang berarah sama, manfaatkan fitur

    Automatic direction assignment pada perangkat lunak pemodelan- Tentukan besaran grid yang paling sesuai pada model yang akan dibangun- Periksa hasil grid, apakah terdapat grid yang masih bisa dioptimasi

    MODEL HORISON DAN ZONE

  • PEMODELAN STATIS

    58

    MODEL HORIZONETUJUAN:Integrasi hasil korelasi sumur dan intepretasi seismik (faultdan horison) kedalam model pilar yang telah dibuat.

    HAL YANG HARUS DIPERHATIKAN: Horison yang dimodelkan sebaiknya berasal dari hasil

    intepretasi seismik Residual marker dan horison telah diminimalisir agar

    hasil model tidak terdapat bull eyes Jarak pengaruh dari masing masing patahan Jarak displacement maksimum dan minimum patahan

    MODEL HORISON

    Input horison Hasil model Jarak pengaruh patahan

    Input data yang terkena pengaruh patahan akan dihilangkan, kemudianinterpolasi dari data yang berada diluar pengaruh patahan

  • PEMODELAN STATIS

    59

    MODEL ZONE

    TUJUAN:Membagi lapisan didalam horison yang tidakdapat didapatkan melalui intepretasi seismik.

    HAL YANG HARUS DIPERHATIKAN: Zonasi dibagi berdasarkan konsep geologi

    (Chrono / Lito)

    MODEL LAPISAN

  • PEMODELAN STATIS

    60

    MODEL LAPISANTUJUAN:Membagi setiap lapisan reservoir menjadilapisan tipis sesuai dengan resolusi data(fine layer)

    HAL YANG HARUS DIPERHATIKAN: Ukuran lapisan harus dapat

    mencapture tingkat heterogenitasvertikal reservoir

    Tipe Layering Jumlah total grid cell

    PHI SW NTG

    MODEL LAPISAN

    Yerus dan Chambers, 2006

  • PEMODELAN STATIS

    61

    SCALE UP WELL LOG

    SCALE UP WELL LOG

    TUJUAN:Memasukkan nilaisumuran kedalam gridblock

    HAL YANG HARUSDIPERHATIKAN: Metode scale up

    Data log sumur Hasil Upscale

  • PEMODELAN STATIS

    62

    GRID QUALITY CONTROL

    GRID QUALITY CONTROL

    Evaluasi histogram data log sumur dan hasil scale up. Jika perbedaan cukup

    signifikan, perbanyak jumlah layer pada zona yang bermasalah

  • PEMODELAN STATIS

    63

    GRID QUALITY CONTROL

    Periksa nilai volumedari tiap grid. Nilaiminus menunjukkanbahwa ada grid yangterlipat, periksatahapan areal grid.

    FACIES MODELING

  • PEMODELAN STATIS

    64

    TOPICS

    What is Facies, Rock Type, and Facies Modeling ? Why do we need to do Facies Modeling ? How do we do Facies Modeling ?

    Facies at Well Location 3D Facies Distribution

    Case Study Example of Facies Modeling.

    GEOLOGICAL FACIESDefinition :

    Facies are a body of rock with specified characteristics. Ideally, a facies is a distinctive rock unit that forms under certain conditions of sedimentation,

    reflecting a particular process or environment

    Facies are distinguished by what type of the rock is being studied (e.g., Lithofacies (based onpetrological) , Biofacies (based on fossil),

    Lithofacies classifications are a purely geological grouping of reservoir rocks, which have similartexture, grain size, sorting etc.

    Each lithofacies indicates a certain depositional environment with a distribution trend and dimension. Knowledge in Facies is important as it provides information on how the rock is ditributed in the

    reservoir

  • PEMODELAN STATIS

    65

    RESERVOIR ROCK TYPE

    Definition : RRT is grouping of geological rock based on both geological facies andpetrophysical grouping (porosity, permeability, capillary pressure and

    saturation).

    The objective of generating RRT is to link property with geology Facies distribution may be interpreted by geological knowledge butnot necessarily the property due to diagenesis

  • PEMODELAN STATIS

    66

    FACIES MODELING TECHNIQUES

    FACIES MODELINGTGS SIS

    Well log

    Trend Property

    Gaussian Simulation

  • PEMODELAN STATIS

    67

    ROCK TYPE MODELINGTGSWell log Gaussian Simulation

    Constraint toFacies model

    Facies Modelling

    Reflection strength attribute Facies model Rocktype Model

  • PEMODELAN STATIS

    68

    KEY ISSUE IN FACIES MODELING Conceptual Geological Model is needed in order to QC the resultand/or used as the trend.

    Integration with other information, other than well data, in the formof 2D or 3D distribution is critical in order to obtain reliable result.

    Possible trend for Facies Modeling : Seismic Data Probability Map of Facies Distribution Diagenesis Model

    PETROPHYSICAL MODELING

  • PEMODELAN STATIS

    69

    WHY DO WE DO PETROPHYSICAL MODELING?

    To obtain 3D distribution of porosity consistent with its geological (facies) distribution. It is one of the most important component for quantifying the volumetric of the reservoir.

    Primary Data : Attribute at Well Locations, obtained from :

    Petrophysical Analysis / Well Log Interpretation (PHIE). Theanalysis should consider core-log correlation.

    Secondary Data : 3D Facies Model 2D or 3D Seismic Attributes (e.g., AI, Amplitude)

    Spatial Information Calculated from well data (at least vertical variogram), if sufficient

    well data exists, or Inferred from Seismic Attributes (Correlation Length and direction)

    PROPERTIES MODEL

    Vsh Constraint To

    Rocktype Guided bySeismic Attribute

    SIS

    Constraint ToRocktype

    Guided bySeismic Attribute

    SIS Poro

    sity Constraint To

    Rocktype Guided bySeismic Attribute

    SIS

    Constraint ToRocktype

    Guided bySeismic Attribute

    SIS

    Perm

    eabil

    ity Constraint ToRocktype Linearrelationships /Simulation

    Constraint ToRocktype

    Linearrelationships /Simulation

    Water S

    aturat

    ion Constrain toRocktype Saturationheight functioni.e.J-Function

    Constrain toRocktype

    Saturationheight functioni.e.J-Function

    Key Issues:Good 3D Facies Model and/or good correlation with Seismic Attribute (e.g.,

    Acoustic Impedance) is essential for the success of Porosity Modeling

  • PEMODELAN STATIS

    70

    VOLUMETRIC CALCULATION

    VOULUMETRIC CALCULATION

    Each cells have its own values

    STOIIP = Bv * NtG * Porosity * (1-Sw) *(1/Boi)

  • PEMODELAN STATIS

    71

    UNCERTAINTY IN THE MODELING

    More is the hard data we have , less is the uncertainty in the modelCalculating the uncertainty in the model, tells us how realistic is theModel made with the available data

    Its is better to have uncertaintyrather than illusion of realityAndre G. Journel

    Uncertainty in the Modeling

    What adds to uncertainty in the model Errors/uncertainty in seismic interpretation Errors/Uncertainty in Velocity Modeling if time to depth

    conversion was involved Errors/uncertainty in the log data processing Errors/uncertainty in data analysis Errors/Uncertainty in 3D interpolationUncertainty in the Model is a Cumulative Result of all the abovementioned factors

  • PEMODELAN STATIS

    72

    SENSITIVITY AND UNCERTAINTY

    SENSITIVITY AND UNCERTAINTY

  • PEMODELAN STATIS

    73

    SENSITIVITY AND UNCERTAINTYContact

    Variogram

    Permeability

    Sw

    CutoffBoi

    SENSITIVITY AND UNCERTAINTY

  • PEMODELAN STATIS

    74

    SENSITIVITY AND UNCERTAINTY

    End of Slide Show

  • Experience

    SOP Petrophysical Multimin Dual Water Saturation Shally Sand and Dual Porosity Carbonate. UTC

    Pertamina. October 2012 April 2013.

    G&G Study MAC and MDK Field. Husky-Cnooc Madura Ltd. April June 2013.

    Petrophysical analysis of MMC Parigi. ETTI Pertamina EP. July Augustus 2013.

    G&G Basic Training. Pusat Survey Geologi. Augustus September 2013.

    G&G Study of Kenali Asam Dangkal Field. EOR Pertamina. October December 2013.

    Provision of Basin Study and Petroleum System of West Galagah kambuna Block, North Sumatra Basin.

    Petronas Carigali (West Galagah kambuna) Ltd. December 2013 May 2014.

    GGRPFE Study of South jambi B Field. Pertamina Hulu Energy. Maret Oktober 2014.

    SOP Rock Typing and Static Model Carbonate and Silisiclastic. UTC Pertamina. January October 2014.

    Studi Karakterisasi Reservoir Gas Metana Batubara (CBM) Cekungan Sumatra

    Selatan, Barito, dan Kutai. Pertamina Hulu Energy. On Going.

    G& G Betun Selo Field . PT Petroenim Betun Selo, February 2012

    Petrophysical Training , PT. Tropic Energy, 2013

    Resertifikasi Cadangan Struktur Donggi, matindok, Maleoraja, dan Minahaki, Sulawesi tengah, MGDP

    Pertamina EP

    GGR Study of Badik Structure , PHE Nunukan, on going

    What we do

    Study of oil and gas

    area related to

    Formation Evaluation

    research field, Join

    Discussion Group,

    Training, Seminar, and

    Project.

    History

    Start in 2012 this

    research group

    dedicated to educate

    young researcher to

    develop the country

    especially in energy

    resources.

    Pemodelan Statis rev.2.pdf (p.1-74)FERG Profile.pdf (p.75)