60
Material Characterization Mahendra Chaudhari

Introduction to the New EDX-7000/8000serc.eng.usm.my/images/phocadownload/2017/VOL-2...Spark Optical Emission Spectrometer (OES) ... Precision for Nickel and Chromium in Stainless

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Material Characterization

Mahendra Chaudhari

Materials Characterization

Why do we need to characterize materials ?

Quality Assurance

Failure Analysis

Trouble Shooting

Pollution and waste control

Research and Development

Forensic Application

Type of Characterization

• Physical Testing

Structural Analysis

• Elemental Analysis

• Surface Analysis

Elemental Analysis

Spark Optical Emission Spectrometer

(OES)

Inductively-Coupled Plasma Emission

Spectrometer (ICP-AES)

X-ray Fluorescence (XRF)

Optical Emission Spectrometer

Sample

Spark

PMT

detector

Grating

Ionization of sample by

electrical sparking

Optical Emission Spectrometer

PDA-5500/7000

PDA- 8000

PDA-5000 PDA-MF+

Optical Emission Spectrometer

• Vacuum Spectrometer

• High sensitive with PMT detectors

• Many options:-Fe/Al/Cu/Zn/Co/Ti bases

• From 24 to 64 elements in One minute.

• Low argon consumption

• Thermostatic control for better long

term stability.

Customized Elemental selection

ElementWavelengt

hAnalytical

Range (%)

nm Fe Cu Al Ni Co Zn Sn

C 165.8 0.005 - 0.5C 193.0 0.001 - 4.5* 0.03 - 2.5Si 212.4 0.001 - 3.5 0.01 - 7 0.05 - 2.5Si 251.6 0.001 - 5 0.001 - 1Si 390.5 1 - 30

Mn 293.3 0.001 - 2 0.0005 - 2 0.001 - 1.5 0.005 - 2 0.001 - 2 0.0005 - 0.5Mn 290.0 1 - 18 1 - 7 1 - 5P 178.3 0.001 - 0.5 0.001 - 1S 180.7 0.001 - 0.4 0.001 - 0.4

Cu 324.7 0.001 - 0.5 0.001 - 1 0.001 - 0.5 0.001 - 1 0.002 - 0.5 0.0005 - 0.1Cu 224.2 0.01 - 4 10 - 35Cu 296.1 INT.STD. 1 - 8 0.1 - 5 0.1 - 4Al 394.4 0.001 - 1.5 0.001 - 1 0.001 - 6 0.05 - 1.5 0.001 - 1 0.0002 - 0.1Al 237.2 1 - 12 INT.STD. 1 - 10Cr 267.7 0.001 - 1 0.001 - 1.5 0.001 - 0.5 0.001 - 1 0.05 - 1Cr 298.9 1 - 30 1 - 30 1 - 35

Mo 202.0 0.001 - 1 0.005 - 2 0.05 - 2Mo 277.5 0.1 - 7.5 0.1 - 30 0.1 - 10Ni 218.5 1 - 30 1 - 30 INT.STD. 1 - 3

Ni 341.4 0.003 - 1 0.001 - 1 0.001 - 2 (0.02 - 1) 0.0005 - 0.05 0.001 - 0.2

Trace Elements in Steel

C P S B N

N = 1 0.00206 0.00203 0.00192 0.00026 0.00105

N = 2 0.00205 0.00207 0.00201 0.00026 0.00120

N = 3 0.00198 0.00203 0.00194 0.00026 0.00132

N = 4 0.00197 0.00206 0.00204 0.00026 0.00127

N = 5 0.00201 0.00210 0.00199 0.00025 0.00141

N = 6 0.00201 0.00209 0.00188 0.00022 0.00131

N = 7 0.00208 0.00210 0.00192 0.00024 0.00139

N = 8 0.00190 0.00212 0.00197 0.00023 0.00115

N = 9 0.00201 0.00211 0.00198 0.00027 0.00125

N = 10 0.00188 0.00208 0.00193 0.00023 0.00119

Analysis

Value0.00200 0.00208 0.00196 0.00025 0.00125

0.00006 0.00003 0.00004 0.00001 0.00010

C P S B N

N = 1 0.00061 0.00186 0.00248 0.00032 0.00151

N = 2 0.00053 0.00184 0.00244 0.00032 0.00150

N = 3 0.00061 0.00184 0.00247 0.00032 0.00170

N = 4 0.00066 0.00190 0.00243 0.00031 0.00163

N = 5 0.00068 0.00190 0.00250 0.00030 0.00149

N = 6 0.00065 0.00177 0.00228 0.00030 0.00143

N = 7 0.00067 0.00186 0.00241 0.00031 0.00160

N = 8 0.00069 0.00187 0.00252 0.00032 0.00159

N = 9 0.00068 0.00185 0.00241 0.00031 0.00159

N = 10 0.00065 0.00183 0.00250 0.00032 0.00164

Analysis

Value0.00064 0.00185 0.00244 0.00031 0.00157

0.00004 0.00003 0.00006 0.000008 0.00008

Analytical Precision for 10 Measurements of Steel Samples 1 and 2

PDA-8000 Analytical Precision

Precision for Nickel and Chromium in Stainless Steel

Analytical Precision for 10 Measurements

C P S Ni Cr

N = 1 0.385 0.0178 0.0143 10.40 10.18

N = 2 0.384 0.0179 0.0132 10.40 10.17

N = 3 0.383 0.0177 0.0146 10.38 10.15

N=4 0.389 0.0181 0.0144 10.40 10.17

N=5 0.388 0.0183 0.0150 10.40 10.17

N=6 0.387 0.0182 0.0164 10.39 10.16

N=7 0.387 0.0184 0.0144 10.38 10.17

N=8 0.387 0.0185 0.0140 10.34 10.16

N=9 0.387 0.0183 0.0145 10.34 10.14

N=10 0.382 0.0175 0.0156 10.35 10.10

Ave. 0.386 0.0181 0.0146 10.38 10.16

0.0023 0.00034 0.00088 0.026 0.022

CV 0.59 1.88 6.01 0.25 0.22

PDA-8000 Analytical Precision

Analytical Precision for 10 Measurements of High Purity Aluminum Samples

Pb P

N = 1 0.57 2.35

N = 2 0.44 2.06

N = 3 0.44 2.14

N = 4 0.50 2.10

N = 5 0.44 2.26

N = 6 0.46 2.13

N = 7 0.52 2.07

N = 8 0.45 2.23

N = 9 0.38 2.19

N = 10 0.45 2.23

Ave. 0.47 2.18

0.05 0.09

PDA-8000 Analytical Precision

Analytical Precision for Current Regulative Spark

PDA-8000 Stability

11.60

11.70

11.80

11.90

12.00

12.10

12.20

1順目 1 3順目161 5順目321 7順目481 9順目641 11順目801 13順目961

Conte

nt

Number of Times Measured

Si in Aluminum Measured 1000 Times (SQ-15)

Seq. 3 Meas. 161Seq. 1 Meas. 1 Seq. 5 Meas. 321 Seq. 7 Meas. 481 Seq. 9 Meas. 641 Seq. 11 Meas. 801 Seq. 13 Meas. 961

0.125

0.130

0.135

0.140

0.145

0.150

0.155

11~20 111~121 211~220 311~320 411~420 511~520 611~620 711~720 811~820 911~920

Co

nte

nt

Number of Times Measured

C in Low-Alloy Steel Measured 1000 Times (SUS C)

11 to 20 111 to 121 211 to 220 311 to 320 411 to 420 511 to 520 611 to 620 711 to 720 811 to 820 911 to 920

PDA-MF series

Analysis experts on metallic materials

Product positioning

Product features

•Perfect cost-performance ratio

•Mainly concerns on enterprises of automobile and

machinery

•Linear CCD measuring system

•Double spectrometer, Air and Argon gas purge

•Digital excitation source, free from maintenance

•Unique spark stand in humanized design

•New design software, easy to use

14

PDA-MF & PDA-MF Plus

ExcitationSource

Spark stand for double spectrometer

Digital excitation source, free from maintenance

Spectrometer

Continuous spectrum measurement by linear CCD detector

Double spectrometer, Air & Argon gaspurge

Control / Power

Linear CCD measuring system

Softwear

Calibrate wavelength and intensity with one sample ( S.Cal )

Remote maintenance

New designed interface by WPF( Microsoft system )

ApplicationCalibration database with 3000 standard samples

Softwear

CCDdetector

Control / Power

Spectrometer

ExcitationSource

15

Features of PDA-MF

• Linear Multi CCD measuring system• Twin Spectrometer –Air-Argon Purge• Digital Excitation Source Unit• Plug & Play • Humanized spark stand• Best Cost to performance ratio• Alloy Judgement• Smart Intuitive software

16

Select the alloy type from analysis result.( Indicate the rate and number of agreement elements. )

Possible to find the base material even the unknown sample.

Determine by only one analysis can rapidly and automatically.( Base element judgment →Alloy judgment →Standard judgment →Result display )

Alloy Judgement

17

Smart Intuitive software

Status management of machine diagnostic function-Room Temperature and primary pressure of Ar gas etc.-Automatic judgement in case of abnormal condition

Management on running time of each unit-Number of discharge of excitation unit etc.-Time management on running of instrument

Management of maintenance-Display timing for maintenance of cleaning ofspark table and replacement of electrode etc.

-Guidance of maintenance procedure

18

Analysis Report of PDA-MF Plus

Long-term stability of low alloy cast iron

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66

C

Si

Time / hour

Measured the low alloy castfor 4 days.

UCL and LCL are GB standard.

*Not perform Recalibration

19

Analysis Report of PDA-MF Plus

Long-term stability of low alloy cast iron

Mn

P

Time / hour

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66

0.005

0.015

0.025

0.035

0.045

0.055

0.065

0.075

0.085

0.095

0.105

0.115

0.125

0.135

0.145

0.155

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66

Measured the low alloy castfor 4 days.

UCL and LCL are GB standard.

*Not perform Recalibration

20

Analysis Report of PDA-MF Plus

Long-term stability of low alloy cast iron

S

Mg

Time / hour

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66

Measured the low alloy castfor 4 days.

UCL and LCL are GB standard.

*Not perform Recalibration

X-ray Fluorescence Spectrometer

Energy Dispersive Type

EDX-7000/8000

Wavelength Dispersive Type

XRF-1800

Applications: To determine the elemental information quantitatively & qualitatively

of bulk, powder or liquid samples at ppm ~ % level.

X-ray Fluorescence Spectrometer

EDX-7000/8000/8100

• Na to U/C to U

• High sensitive

• Powder/Solids/ Liq

• Vacuum/Air/He

• Sample turret

• RoHs/Halogen

Screening

• Fast analysis

Energy Dispersive Type

EDX-LE

X-ray Fluorescence Spectrometer

• Al to U

• Pin Diode detector

• Powder/Solids/ Liq

• Light & Easy

• RoHs Screening

• Halogen Screening

X-ray Fluorescence Spectrometer

Sequential Type

XRF-1800

Simultaneous Type

MXF-2400

Wavelength Dispersive Type

X-ray Fluorescence Spectrometer

Sequential Type XRF-1800 Simultaneous Type MXF-2400

Wavelength Dispersive Type

• Be to U

• CCD Optional

• 250micron analysis

• Sc & FP detector

• Powder/Solids/ Liq

• 4KW Power

• Vacuum/He

• Turret

• Be to U

• Many detectors

• Powder/Solids/ Liq

• 4KW Power

• Simultaneous+ scanner

• 1min max 36 elements

analysis

X-ray Fluorescence Spectrometer

Sequential Type

XRF-1800

Simultaneous Type

MXF-2400

Wavelength Dispersive Type

• Metals Oxides

• Ceramic/catalyst

• Electronics

• Thin Film

• Oil/Liq

Non-Destructive Analysis

X-ray analysis techniques are classified as non-destructive testing.

• Samples are generally difficult to digest into

liquid form for AAS, IPCS, ICPMS.

• Samples can be conductive or non-

conductive bulk samples.

Structural Analysis

Crystal Studies

Phase Analysis

Texture-stress analysis

Lattice strain

Lattice parameters

What is Crystal?

Crystal structure of NaCl

The crystal consists of by arranging the atoms or molecules in the

smallest 3-D structure (a parallel hexahedron). This smallest

parallelism hexahedron is called “unit cell”.

Crystal and Amorphous

CrystalIt has a structure that is regularly arranged

atoms and molecules is shown on the left in

the solid material.

AmorphousIt is a solid material that does not have a

regular arrangement of atoms and molecules.

(Example; glass)

Crystal System

Crystal Structure are classified in

seven crystal systems as follows

• Cubic• Tetragonal• Orthorhombic• Rhombohedral• Hexagonal• Monoclinic• Triclinic

It is possible to classify the crystal lattice of the 14 types (Bravais lattice) in consideration of the symmetry of the crystal.

X-ray Diffractometer

Crystal Determination

Samples can be in bulk form

(eg Steel, Stones) or powder

form (eg catalyst, geological

powder)

Applications: To determine qualitatively and

quantitatively of crystals in a compound sample.

XRD-6100/7000

XRD6100 & XRD7000

32

XRD-6100

XRD-7000

Scintillation detector1-D semiconductor detector

New Analysis Software for OneSight

34

Ribbon type interface

Window of each

condition file

Status display of XRD

main body

Status display for the

measurement

Detail information display window of

measurement condition

Windows for scheduling

Profile display window for

on going

Comparison between OneSight and SC detector

Pro

file

s b

y O

ne

Sig

ht

Scintillation detector (50 min)

High speed mode

High resolution mode

Standard mode

1/10

1/15

1/25

Measurement time

Measurement time

Only 2 min!

List price:266,000yen

List price:4,500,000Yen

OneSight

sample:Si powder

35

Measurement time

Example of Analysis (zeolite, low angle )

1/5

1/10

1/25

36

Scintillation detector (2deg/min)

High speed mode

(50deg/min)

High resolution mode

(10deg/min)

Standard mode

(20deg/min)

Pro

file

s b

y O

ne

Sig

ht

Measurement time

Measurement time

Measurement time

Surface Analysis

MICRO ANALYSIS

MACRO ANALYSIS

SURFACE IMAGING

TOPOGRAPHIC ANALYSIS

38

Materials & Surface Analysis

• Materials characterisation

o what elements / chemical states are present, the physical properties etc.

• QA/QC of manufacturing processes

o is the product to standard?

• Failure Analysis

o is contamination present?

• Process/product development / optimisation

o multivariate analysis – identification of key parameters

Why characterise?

Materials Analysis

Bulk vs. Surface

• Cohesion

• Density

• Morphologies

• Homogeneity

• Young’s Modulus

• Hardness

• Composition

• Surface Composition

• Surface Roughness

• Homogeneity

• Surface charge

• Adhesion

Bulk vs. Surface: Techniques

SurfaceUHVToF-SIMS(<1nm)

ATR-IR(0.2-2μm)

UHVXPS(1-12nm)

UHVAES(1-5nm)

Raman(1-5μm)

SEM-EDX(0.3-3μm)

Sub-SurfaceDepth Profiling

→Etching

Mono – sources

Cluster Ions

Bulk

FT-IR(0.5-2μm)

XRF(1-10μm)

XRD(10nm-10μm)

Atomic Scale

TEM-EDX(2-100nm)

TEM-EELS(2-100nm)

XRR (0.001-1μm)

Buried LayerAFM(0.1nm-20μm)

Interferometry(500μm)

Tensile Testing

Physical

Properties

UHVISS(top atomic layer)

STM(0.01 nm)

Surface Profile

10 nm

300 nm

900 nm

Surface Analysis: Industrial Examples

• Semi-conductors

• Bio technology

• Self assembled monolayers (SAMs)

• Thin films / coatings & adhesion

• Plasma / flame treated surfaces

Journal of Biomaterials and Nanobiotechnology, 2012, 3, 87-91

Polymer, 2010, 51, 3591-3605

GOLD

Before Flame After Flame

XPS’s place in Surface Analytics

Features/ Advantages:• Quantitative chemical analysis ~0.1 atom% detection limit• Able to detect all elements except H and He • Non-destructive analysis• Chemical state information• Depth profiling – accessing buried layers• Angle resolved – enables thin film analysis < 10nm• Imaging

Can be complimentary to:• ToF-SIMS (Quantitative vs qualitative, surface sensitivity)• XRF (Surface vs bulk)

44

The Photoelectron Process

X-rays in photoelectrons out

Sample Surface Layer

binding energy (eV) = photon energy - kinetic energy - work function

BE (eV) = hn - KE - f

fEv

Ef

KE

BEValence

band

core

levels

photon

Fermi level

Vacuum level

In vacuum final state

1200 1000 800 600 400 200 0

45

3d5/2

3d3/2

• Photoemission Peaks

• Auger Peaks

• Satellites/ shake-up

• Ghosts

• Plasmons

• Valence band structure

• Background =

inelastically scattered

photoelectrons

The Photoelectron Spectrum

Binding Energy / eV

Ag MN1

Ag 3s

Ag 3p1/2

Ag 3p3/2

Ag 3d3/2

Ag 3d5/2

Ag 4sAg 4p1/2

Ag 4p3/2

Valence

420 400 380 360 340 320Binding Energy (eV)

x104

8

16

24

32

40

x104

Inte

nsity (

cp

s)

8

16

24

32

40

Inte

nsity (

cp

s)

400 600 800 1000 1200 1400 Kinetic Energy / eV

46

What information do we get from XPS?

Surface sensitivity - photoelectron signal from first 1-10 layers of atoms and molecules.

Element identification (except H & He) at concentrations from 0.1 atomic %

Quantitative determination of the elemental composition

Chemical state information - molecular environment of the element

Non-destructive analysis, including depth profiles, from the top 10 nm (angle resolved XPS)

Destructive depth profiles of inorganic materials or organic materials (e.g. using a gas cluster source for sputtering the surface)

Imaging - lateral variations in surface composition

‘Finger printing’ of materials using valance band

Resolution & Sensitivity

• Tailor experiments for sensitivity & resolution (full width half maximum, FWHM)

47

Log

10

[Se

nsitiv

ity (

cp

s)]

FWHM

• Full width half maximum (FWHM) is a measure of resolution in

XPS = full width at half of the maximum value (i.e. half of the cps

recorded at the peak height)

• High FWHM → low resolution

• Low FWHM → high resolution

• Counts per second (cps) is the number of signals detected

• High cps → greater sensitivity

• Low cps → lower sensitivity

• Use high pass energy for low concentration elements

→ max sensitivity, but lower resolution

• Use low pass energy for chemical state information

→ lower sensitivity, but high resolution

cpsmax

½ .cps

cps

FWHM

BE1 BE2 BE

48

Chemical State Information

The binding energy of an electron is dependent on the atomic orbital the electron occupies &

the chemical environment of the atom

XPS therefore provides information on the chemical state of the atom or ionCore level electron, high binding energy

Valence electron, low binding energy

C 1s photoemission peaks from organic materials

Functional group B.E (eV)

hydrocarbon C-H, C-C 285.0

amine C-N 286.0

alcohol, ether C-O-H, C-O-C 286.5

fluorocarbon C-F 287.8

carbonyl C=O 288.0

2F bound to a carbon -CH2CF2- 290.6

3F bound to a carbon -CF3 293-294

O 1s photoemission peaks from organic materials

Functional group B.E. (eV)

carbonyl -C=O, O-C=O 532.2

alcohol, ether -O-H, O-C-O 532.8

ester C-O-C=O 533.7

• Two samples:

1. Thick film SiO2 film on Si

2. Thin film SiO2 film on Si

49

Chemical State: Si

Si oxide

Si elemental

d d

Si elemental

Si oxide

→Large chemical shift between

elemental Si & silicon dioxide peaks

1 2

108 106 104 102 100 98

Binding Energy (eV)

8

16

24

32

40

Inte

nsity (

cp

s)

x102

12

50

Quantitative Surface Analysis

Poly(ethylene terephthalate) - PET → Large Area Survey

O KLL

C 1s

O 1s

60

50

40

30

20

10

Inte

nsity (

cp

s)

1000 800 600 400 200 0

Binding Energy (eV)

x104

Peak Position B.E. (eV) Atomic Conc. (%)

C 1s 282 74.54

O 1s 530 25.46

51

Beyond Large Area Spectroscopy

Thin film

<10 nm

Thicker layer or multilayers Heterogeneous surface

Angle resolved XPS Depth profileSelected area

spectroscopySurface imaging

Angle Resolved XPS

d*

X-rays

photoelectrons

d = 3 – 10 nm

d > d*d

photoelectronsX-rays

θ

d

Depth Profiling

53

Multi-layered Structure:

Layer 1

Layer 2

Layer 1

Layer 2

Layer 1

Layer 2

Layer 1

Layer 2

Depth Profiling

54

• Depth profiling allows the identification of the chemical

nature buried beneath the surface layers

o The rate of etching depends on material properties

o Organic and inorganic materials is possible

X-raysX-raysX-raysX-rays

DetectorDetectorDetectorDetectorDetector

Ion gun

X-rays

Distance into sampleIn

tensity

Depth Profiling

55

TiN

SiO2

Si substrate

• Full chemical state concentration depth profile through TiN film:

• Can determine film thickness

Imaging

56

F 1s

• Imaging allows the identification of inhomogeneity

• 1µm lateral resolution achievable on Supra

• Stitching of images allows larger area analysis

PTFE substrate

metal mesh mask

57

3x3 stitched

3x3 stitched

parallel image

1x3 stitched

parallel image

Stitched imaging

• Stitching of images allows larger area analysis:

100 µm

Si 2p

Si 2p

300 µm

300 µm

ES-100 launched 1969

XSAM series 1980-90

Axis series launched 1990

AXIS HS 3 detectors

AXIS HSi 5 detectors

AXIS 165 8 detectors

AXIS Ultra

AXIS UltraDLD

AXIS Nova

AXIS Supra

1969

ES-100 ES-200ES-300

XSAM

series HS1984

2004

AXIS Nova

AXIS UltraDLD

2003

AXIS Ultra

1997

AXIS 165

1994

AXIS HSi

1991

Building on 45 years of XPS at Kratos

AXIS Supra

2014

Kratos Analytical launched the first

commercially available photoelectron

spectrometer in 1969 and since then has

continuously lead the field of surface

analysis with innovations such as the

magnetic immersion lens, spherical mirror

analyser for parallel imaging and more

recently the delay-line detector for imaging

and spectroscopy.

Axis Supra Axis Nova

Amicus

Kratos-XPS Lineup

Amicus

Du-pont Analyzer

Powerful with 10

sample caraosol

High Sensitivity

Cost effective

Low maintenance

Max 8mm diameter

sample