37
Introduction to the Electromagnetic Theory Andrea Latina (CERN) [email protected] Basics of Accelerator Physics and Technology 7-11 October 2019, Archamps, France

IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Introduction to the Electromagnetic Theory

Andrea Latina (CERN)[email protected]

Basics of Accelerator Physics and Technology

7-11 October 2019, Archamps, France

Page 2: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Table of contents

I Introduction

I ElectrostaticsI E.g. Space-charge forces

I MagnetostaticsI E.g. Accelerator magnets

I Non-static caseI E.g. RF acceleration and wave guides

2/37 A. Latina - Electromagnetic Theory

Page 3: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Part 1.

Introduction:

Maxwell’s Equations

3/37 A. Latina - Electromagnetic Theory

Page 4: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Motivation: control of charged particle beamsTo control a charged particle beam we use electromagnetic fields. Recall theLorentz force:

~F = q ·(~E + ~v × ~B

)where, in high energy machines, |~v | ≈ c ≈ 3 · 108 m/s. In particle accelerators,transverse deflection is usually given by magnetic fields, whereas acceleration canonly be given by electric fields.

Comparison of electric and magnetic force:∣∣∣~E ∣∣∣ = 1 MV/m∣∣∣~B∣∣∣ = 1 T

Fmagnetic

Felectric=

evBeE

=βcBE

' β3 · 108

106= 300β

⇒ the magnetic force is much stronger then the electric one: in an accelerator, usemagnetic fields whenever possible.

4/37 A. Latina - Electromagnetic Theory

Page 5: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Some references

1. Richard P. Feynman, Lectures on Physics, 1963, on-line

2. J. D. Jackson, Classical Electrodynamics, Wiley, 1998

3. David J. Griffiths, Introduction to Electrodynamics, Cambridge University Press, 2017

4. Thomas P. Wangler, RF Linear Accelerators, Wiley, 2008

5/37 A. Latina - Electromagnetic Theory

Page 6: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Variables and units

E electric field [V/m]B magnetic field [T]D electric displacement [C/m2]H magnetizing field [A/m]

q electric charge [C]ρ electric charge density [C/m3]j = ρv current density [A/m2]

ε0 permittivity of vacuum, 8.854 · 10−12 [F/m]µ0 = 1

ε0c2permeability of vacuum, 4π · 10−7 [H/m or N/A2]

c speed of light in vacuum, 2.99792458 · 108 [m/s]

6/37 A. Latina - Electromagnetic Theory

Page 7: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Differentiation with vectors

I We define the operator “nabla”:

∇ def=

(∂∂x ,

∂∂y ,

∂∂z

)which we treat as a special vector.

I Examples:

∇ · F =∂Fx

∂x+∂Fy

∂y+∂Fz

∂zdivergence

∇× F =(∂Fz∂y −

∂Fy∂z ,

∂Fx∂z −

∂Fz∂x ,

∂Fy∂x −

∂Fx∂y

)curl

∇φ =(∂φ∂x ,

∂φ∂y ,

∂φ∂z

)gradient

7/37 A. Latina - Electromagnetic Theory

Page 8: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Maxwell’s equations: integral form

1. Maxwell’s equations can be written in integral or in differential form (SIunits convention):

(1) Gauss’ law;(2) Gauss’ law for magnetism;(3) Maxwell–Faraday equation (Faraday’s law of induction);(4) Ampère’s circuital law

8/37 A. Latina - Electromagnetic Theory

Page 9: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Maxwell’s equations: differential form

1. Maxwell’s equations can be written in integral or in differential form (SIunits convention):

(1) Gauss’ law;(2) Gauss’ law for magnetism;(3) Maxwell–Faraday equation (Faraday’s law of induction);(4) Ampère’s circuital law

9/37 A. Latina - Electromagnetic Theory

Page 10: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Part 2.

Electromagnetism:

Static case

10/37 A. Latina - Electromagnetic Theory

Page 11: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Static case

I We will consider relatively simple situations.I The easiest circumstance is one in which nothing depends on the time—this is

called the static case:I All charges are permanently fixed in space, or if they do move, they move as

a steady flow in a circuit (so ρ and j are constant in time).I In these circumstances, all of the terms in the Maxwell equations which are time

derivatives of the field are zero. In this case, the Maxwell equations become:

11/37 A. Latina - Electromagnetic Theory

Page 12: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Electrostatics: principle of superposition

I Coulomb’s Law: Electric field due to a stationary point charge q, located in r1:

E (r) =q

4πε0r − r1|r − r1|3

I Principle of superposition, tells that a distribution of charges qi generates anelectric field:

E (r) =1

4πε0

∑qi

r − ri|r − ri |3

I Continuous distribution of charges, ρ (r)

E (r) =1

4πε0

˚Vρ(r′) r − r′

|r − r′|3dr

with Q =˝

V ρ (r′) dr as the total charge, and where ρ is the charge density.

12/37 A. Latina - Electromagnetic Theory

Page 13: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Recall: Gauss’ theorem

13/37 A. Latina - Electromagnetic Theory

Page 14: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Electrostatics: Gauss’ lawGauss’ law states that the flux of ~E is:

¨A

~E ·d~A=ˆ

any closedsurface A

En da=sum of charges inside A

ε0

We know that

E (r) =1

4πε0

˚Vρ(r′) r − r′

|r − r′|3dr

In differential form, using the Gauss’ theorem (diver-gence theorem):¨

~E · d~A =

˚∇ · ~E dr

which gives the first Maxwell’s equation in differentialform:

∇ · ~E=ρ

ε0

Example: case of a single point charge

¨~E · d~A =

{qε0

if q lies inside A

0 if q lies outside A14/37 A. Latina - Electromagnetic Theory

Page 15: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Electrostatics: Gauss’ law

The flux of E out of the surface S is zero.

15/37 A. Latina - Electromagnetic Theory

Page 16: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Electrostatics: scalar potential and Poisson equationThe equations for electrostatics are:

∇ · ~E =ρ

ε0

∇× ~E = 0

The two can be combined into a single equation:

~E=-∇φ

which leads to the Poisson’s equation:

∇ · ∇φ = ∇2φ=-ρ

ε0

Where the operator ∇2 is called Laplacian:

∇ · ∇ = ∇2 =∂2

∂x2+

∂2

∂y2+

∂2

∂z2

The Poisson’s equation allows to compute the electric field generated by arbitrarycharge distributions.

16/37 A. Latina - Electromagnetic Theory

Page 17: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Electrostatics: Poisson’s equation∇2φ = −

ρ

ε0(∂2

∂x2+

∂2

∂y2+

∂2

∂z2

)φ = −

ρ

ε0

17/37 A. Latina - Electromagnetic Theory

Page 18: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Recall: Stokes’ theorem

18/37 A. Latina - Electromagnetic Theory

Page 19: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Magnetostatics: Ampère’s and Biot-Savart laws

The equations for electrostatics are:

∇ · ~B = 0

∇× ~B =~jε0c2

The Stokes’ theorem tells that:˛C

~B · d~r =

¨A

(∇× ~B

)· d~A

This equation gives the Ampère’s law:˛C

~B · d~r =1ε0c2

¨A

~j · ~n dA

From which one can derive the Biot-Savart law, stating that, along a current j :

~B (~r) =1

4πε0c2 =

˛C

j d~r ′ × (~r −~r ′)|~r −~r ′|3

This provides a practical way to compute ~B from current distributions.

19/37 A. Latina - Electromagnetic Theory

Page 20: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Magnetostatics: vector potential

The equations for electrostatics are:

∇ · ~B = 0

∇× ~B =~jε0c2

They can be unified into one, introducing the vector potential ~A:

~B = ∇× ~A

Using the Stokes’ theorem

~B (~r) =1

4πε0c2 =

˛C

j d~r ′ × (~r −~r ′)|~r −~r ′|3

one can derive the expression of the vector potential ~A from of the current ~j :

~A (r) =µ04π

˚ ~j (~r ′)|~r −~r ′|d

3~r ′

20/37 A. Latina - Electromagnetic Theory

Page 21: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Summary of electro- and magneto- statics

One can compute the electric and the magnetic fields from the scalar and the vectorpotentials

~E = −∇φ~B = ∇× ~A

with

φ (r) =1

4πε0

˚ρ (~r ′)|~r −~r ′|d

3~r ′

~A (r) =µ04π

˚ ~j (~r ′)|~r −~r ′|d

3~r ′

being ρ the charge density, and ~j the current density.

21/37 A. Latina - Electromagnetic Theory

Page 22: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Motion of a charged particle in an electric field

~F = q ·(~E + ~v ×��SS~B

)

22/37 A. Latina - Electromagnetic Theory

Page 23: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Motion of a charged particle in a magnetic field

~F = q ·(��SS~E + ~v × ~B

)

23/37 A. Latina - Electromagnetic Theory

Page 24: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Part 3.

Electromagnetism:

Non-static case

24/37 A. Latina - Electromagnetic Theory

Page 25: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Magnetostatics: Faraday’s law of induction

“The electromotive force around a closed path is equal to the negative of the time rateof change of the magnetic flux enclosed by the path.”

25/37 A. Latina - Electromagnetic Theory

Page 26: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Non-static case: electromagnetic wavesElectromagnetic wave equation:

~E (~r , t) = ~E0e i(ωt−~k·~r)

~B (~r , t) = ~B0e i(ωt−~k·~r)

Important quantities:

∣∣∣~k∣∣∣ = 2πλ

cwave-number vector

λ =cf

wave length

f frequency

ω = 2πf angular frequency

Magnetic and electric fields are transverse to direction of propagation:

~E ⊥ ~B ⊥ ~k

Short wave length →high frequency → high energy26/37 A. Latina - Electromagnetic Theory

Page 27: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Spectrum of electromagnetic waves

Examples:I yellow light ≈ 5 · 1014 Hz (i.e. ≈ 2 eV !)I LEP (SR) ≤ 2 · 1020 Hz (i.e. ≈ 0.8 MeV !)I gamma rays ≤ 3 · 1021 Hz (i.e. ≤ 12 MeV !)

(For estimates using temperature: 3 K ≈ 0.00025 eV )

27/37 A. Latina - Electromagnetic Theory

Page 28: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Electromagnetic waves impacting highly conductivematerials

Highly conductive materials: RF cavities, wave guides.

I In an ideal conductor:~E‖ = 0, ~B⊥ = 0

I This implies:I All energy of an electromagnetic wave is reflected from the surface of an

ideal conductor.

I Fields at any point in the ideal conductor are zero.

I Only some field patterns are allowed in waveguides and RF cavities.

28/37 A. Latina - Electromagnetic Theory

Page 29: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Example: RF cavities and wave guides

29/37 A. Latina - Electromagnetic Theory

Page 30: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Example: Fields in RF cavities

30/37 A. Latina - Electromagnetic Theory

Page 31: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

31/37 A. Latina - Electromagnetic Theory

Page 32: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Example: Consequences for RF cavities

32/37 A. Latina - Electromagnetic Theory

Page 33: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Example: Consequences for wave guides

33/37 A. Latina - Electromagnetic Theory

Page 34: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

34/37 A. Latina - Electromagnetic Theory

Page 35: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Classification of modes

35/37 A. Latina - Electromagnetic Theory

Page 36: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

Classification of modes

36/37 A. Latina - Electromagnetic Theory

Page 37: IntroductiontotheElectromagneticTheory · q electriccharge[C] ˆ electricchargedensity[C/m3] j = ˆv currentdensity[A/m2] 0 permittivityofvacuum,8:85410 12 [F/m] 0 = 1 0c2 permeabilityofvacuum,4ˇ10

...The End!

Thank you

for your attention!

Special thanks to Werner Herr, for the pictures I took from his slides.37/37 A. Latina - Electromagnetic Theory