266
CODECS Summer School 2013 CODECS Summer School 2013 THEORETICAL SPECTROSCOPY THEORETICAL SPECTROSCOPY INTRODUCTORY LECTURE INTRODUCTORY LECTURE on on ROTATIONAL SPECTROSCOPY ROTATIONAL SPECTROSCOPY Cristina Puzzarini Cristina Puzzarini Dip. Chimica Dip. Chimica Giacomo Ciamician Giacomo Ciamician Universit Universit à à di Bologna di Bologna

INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

CODECS Summer School 2013 CODECS Summer School 2013 THEORETICAL SPECTROSCOPY THEORETICAL SPECTROSCOPY

INTRODUCTORY LECTUREINTRODUCTORY LECTUREonon

ROTATIONAL SPECTROSCOPYROTATIONAL SPECTROSCOPY

Cristina PuzzariniCristina PuzzariniDip. Chimica Dip. Chimica ““Giacomo CiamicianGiacomo Ciamician””

UniversitUniversitàà di Bolognadi Bologna

Page 2: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ELECTRONICELECTRONIC VIBRATIONALVIBRATIONAL ROTATIONALROTATIONAL

Eel Evib ErotEE

Page 3: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

FREQUENCY REGIONFREQUENCY REGION

Page 4: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

mm/submm waves

Page 5: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Rotational Spectroscopy

Electronics Photonics

Page 6: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

“Building” the ROTATIONAL SPECTRUM“Building” the ROTATIONAL SPECTRUM

(1) Rotational energy levels(1) Rotational energy levels

(2) Selection rules: transitions (2) Selection rules: transitions allowedallowed

(3) Intensity (transitions)(3) Intensity (transitions)

0 20 40 60 80 100frequency (cm-1)

inte

nsity

(a.u

.)

Page 7: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Coordinate Coordinate SSyystemstemss

Molecule-fixed coordinate system Lab-fixed coordinate system

Page 8: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ROTATING RIGID BODYROTATING RIGID BODY

IωωT

21

T

= = angolar velocityangolar velocityI = inertia tensorI = inertia tensor

(CLASSIC VIEW)(CLASSIC VIEW)

Page 9: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Angolar Angolar VelocitVelocityy

ii rωv RIGID BODY:RIGID BODY:

ri

vi

z

y

x

ω

Page 10: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

zzzyzx

yzyyyx

xzxyxx

III

III

III

I

n

iiiixy

n

iiii

n

iiiixx

yxmI

zymxrmI

1

1

22

1

22

Inertia TensorInertia Tensor

Page 11: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

zzzyzx

yzyyyx

xzxyxx

III

III

III

I

z

y

x

I

II

00

0000

I

PrincipalPrincipalinertiainertiasystemsystem

By cBy convenonventiontion: : IIcc IIbb IIaa

INERTIA TENSOR IINERTIA TENSOR I

Page 12: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

RIGIDRIGID BBOODYDYJJ e e defindefineded in thein the rotating coordinate system (CM system)rotating coordinate system (CM system)

Angular MomentAngular Moment

Page 13: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

KINETIC ENERGY of a ROTANTING RIGID BODYKINETIC ENERGY of a ROTANTING RIGID BODY

IJIωω

2T

21

21

T

= angular velocy= angular velocyI = inertia tensorI = inertia tensor

(CLASSIC VIEW)(CLASSIC VIEW)

Page 14: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

IJIωω

2T

21

21

T

•• Potential energy?Potential energy?•• From classic mechanics to quantum mechanicsFrom classic mechanics to quantum mechanics

z

z

y

y

x

xrotrot I

JIJ

IJTE

222

21

KINETIC ENERGY of a ROTANTING RIGID BODYKINETIC ENERGY of a ROTANTING RIGID BODY

•• Potential energy?Potential energy?•• From classic mechanics to quantum mechanicsFrom classic mechanics to quantum mechanics

Page 15: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Classic view: conservation of angular momentum Classic view: conservation of angular momentum Quantum mechanics: commutation of operatorsQuantum mechanics: commutation of operators

2222222ZYXzyx JJJJJJJ

x,y,z molecule-fixed coordinate systemX,Y,Z space-fixed coordinate system

2222222ZYXzyx JJJJJJJ ˆˆˆˆˆˆˆ

Page 16: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

The spaceThe space-- and moleculeand molecule--fixed components of fixed components of ĴĴ commute!commute!

SS = matrix that relates the coordinates of the atoms in the = matrix that relates the coordinates of the atoms in the moleculemolecule--fixed system to those in the spacefixed system to those in the space--fixed systemsfixed systems

Ĵ=SF ĴF where =x,y,z and F=X,Y,Z

ĴF= F ĴThen:[ĴF,Ĵ] = ĴFSF’ĴF’ – SF’ĴF’ĴF

= [ĴF,SF’]ĴF’ + SF’(ĴFĴF’ – ĴF’ĴF)= ieFF’F”(SF”ĴF’ + SF’ĴF”) = 0 !!

where eFF’F”=permutation symbol[ĴX,SX] = 0 [ĴX,SY] = iSZ [ĴX,SZ] = –iSY [ĴX,ĴY] = –ieXYZĴZ

Page 17: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

EIGENVALUES of EIGENVALUES of ĴĴ22, , ĴĴZZ, , ĴĴzz

222

222

22 1)(

KMKJJMKJ

MMKJJMKJ

JJMKJJMKJ

z

Z

,,ˆ,,

,,ˆ,,

,,ˆ,,

M=J,J-1 … -J

K=J,J-1 … -J

J=0,1,2,3, …

022 zJJ ˆ,ˆ 022 ZJJ ˆ,ˆ 022 ZJJ ˆ,ˆz

Page 18: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ROTATIONAL ENERGY LEVELSROTATIONAL ENERGY LEVELS

rotrotrotrot EH ˆ

z

z

y

y

x

xrot I

JIJ

IJH

222

21 ˆˆˆˆ

ROTATIONAL HAMILTONIANROTATIONAL HAMILTONIAN

Page 19: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ClassificationClassification

CO COCO CO22

CHCH4 4 SFSF66

NHNH33

HH22OO

Examples

By cBy convenonventiontion: : IIcc IIbb IIaa

Page 20: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Let’s consider the simplest case

m1 m2

R

DIATOMIC/LINEAR MOLECULE:DIATOMIC/LINEAR MOLECULE:RIGID ROTOR (approx)RIGID ROTOR (approx)

Page 21: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

m1 m2

RCM

r1 r2

i

iirmI 2

2RI 21

21

mmmm

where

reduced mass

zIx = Iy = IIz = 0

Page 22: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

2231231

22332

21221

1 rrmmrmmrmmM

I

1 32rr1212 rr2323

Ix = Iy = IIz = 0

Page 23: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

222

21

21

21 J

IJ

IJ

IH y

yx

xrot

ˆˆˆˆ

Ix = Iy = I

ROTATIONAL ENERGY LEVELS:ROTATIONAL ENERGY LEVELS:Diatomic and Linear moleculesDiatomic and Linear molecules

BB = rotational constant= rotational constant

)1()1(2

2

JBJJJI

Erot

JJ = 0,1,2,3,…. = 0,1,2,3,….

Iz = 0making use of the eigenvalues of making use of the eigenvalues of ĴĴ 22

Page 24: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

)1( JBJErot

J=0

J=1

J=2

J=3

Erot=0

Erot=2B

Erot=6B

Erot=12B

ROTATIONAL ENERGY LEVELS:ROTATIONAL ENERGY LEVELS:Diatomic and Linear moleculesDiatomic and Linear molecules

Page 25: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

J=0

J=1

J=2

J=3

Erot=0

Erot=2B

Erot=6B

Erot=12B

ROTATIONAL ENERGY LEVELS:ROTATIONAL ENERGY LEVELS:Diatomic and Linear moleculesDiatomic and Linear molecules

)1(2)1( JBJJE

Page 26: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ROTATIONAL ENERGY LEVELSROTATIONAL ENERGY LEVELS

2222222ZYXzyx JJJJJJJ ˆˆˆˆˆˆˆ

x,y,z molecule-fixed coordinate systemX,Y,Z space-fixed coordinate system

022 zJJ ˆ,ˆ 022 ZJJ ˆ,ˆ

222

22 1)(

MMKJJMKJ

JJMKJJMKJ

Z

,,ˆ,,

,,ˆ,,

M=J,J-1 … -J

Rotational energy levels: Rotational energy levels: (2(2JJ+1) fold degenerate in +1) fold degenerate in MM

Page 27: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

“Building” the ROTATIONAL SPECTRUM“Building” the ROTATIONAL SPECTRUM

(1) Rotational energy levels(1) Rotational energy levels

(2) Selection rules: transitions (2) Selection rules: transitions allowedallowed

(3) Intensity (transitions)(3) Intensity (transitions)

0 20 40 60 80 100frequency (cm-1)

inte

nsity

(a.u

.)

Page 28: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

SELECTION RULESSELECTION RULES

Transition moment: Transition moment: 00

Approx BO: tot=rotvibele

elevibrotele

ivib

irot

irotf

vibf

elef ddd

dipole moment in the space-fixed coordinate system

Page 29: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

FF

FFF

cos where=x,y,z (molecule-fixed)F=X,Y,Z (space-fixed)

Xy

Xz

Xx

X

Z=direction cosines

Page 30: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

F

elevibelei

vibi

vibf

elefrot

rotiF

rotf ddd

molecular dipole moment components

F

F

where =x,y,zF=X,Y,Z

F=direction cosines

(1)(1) (2)(2)

(1)(1) Selection rulesSelection rules

(2)(2) NonNon--vanishing permanent dipole momentvanishing permanent dipole moment

SELECTION RULESSELECTION RULES

Page 31: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ifR FF

ij

(1)(1) JJ = = 11

SELECTION RULESSELECTION RULES“Rotational” transition moment Rij:

where:

The direction-cosine matrix elements are known:

'''''''' MJJMKJJKJJMKJJKM FFFF

(1)(1) (2)(2) (3)(3)

(2)(2) KK = 0= 0(3)(3) MM = 0, = 0, 11

Page 32: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

“Building” the ROTATIONAL SPECTRUM“Building” the ROTATIONAL SPECTRUM

(1) Rotational energy levels(1) Rotational energy levels

(2) Selection rules: transitions (2) Selection rules: transitions allowedallowed

(3) Intensity (transitions)(3) Intensity (transitions)

0 20 40 60 80 100frequency (cm-1)

inte

nsity

(a.u

.)

Page 33: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Rotational energy levelsRotational energy levels++

Selection rulesSelection rules

Rotational transition frequenciesRotational transition frequencies(rotational spectrum: (rotational spectrum: xx axis) axis)

Page 34: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

)1( JBJErot

1J

J=0

J=1

J=2

J=3

Erot=0

Erot=2B

Erot=6B

Erot=12B

++

)1(2)1( JBJJE

Page 35: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

)1(2 JBh rot

frequency

Inte

nsity

???

Int e

nsit y

???

2B/h 4B/h 6B/h 8B/h

2B/h 2B/h 2B/h 2B/h 2B/h

JJ=1=1--00 JJ=2=2--11 JJ=3=3--22 JJ=4=4--33 JJ=5=5--44

(B in energy units)

Page 36: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

(1) (1) BoltzmannBoltzmann distributiondistribution

LINE STRENGTHSLINE STRENGTHS

(2) (2) degeneracydegeneracy

kTE

JJrot

egg

NN

00

2J+1

kTE

Jrot

eJNN

)12(

0

Page 37: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Jmax

Nf /

N0

J

gf/g0=2J+1 exp(-Erot/kT) Nf/N0=(2J+1)exp(-Erot/kT)

Page 38: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

kTE

Jrot

eJNN

)12(

0

Page 39: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

221 mnNT

I mni μ

Intensity of Rotational TransitionsIntensity of Rotational Transitions

Page 40: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

0 1 2 3 4 5 6 7 8 9 10

NJ/N

0

I abs

J

Intensity Population

Page 41: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

“Building” the ROTATIONAL SPECTRUM“Building” the ROTATIONAL SPECTRUM

(1) Rotational energy levels(1) Rotational energy levels

(2) Selection rules: transitions (2) Selection rules: transitions allowedallowed

(3) Intensity (transitions)(3) Intensity (transitions)

0 20 40 60 80 100frequency (cm-1)

inte

nsity

(a.u

.)

Page 42: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

0 20 40 60 80 100

Rotational spectrum of CO

wavenumbers (cm-1)

Inte

nsity

( u. a

.)

Page 43: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

iMMJ

MJ ePY cos,, ||

Linear Rotor: EIGENFUNCTIONSLinear Rotor: EIGENFUNCTIONS

SPHERICAL HARMONICSSPHERICAL HARMONICS

Eigenvalues of J2: ħ2J(J+1) with J = 0, 1, 2, …

Eigenvalues of Jz : ħM with -J ≤ M ≤ J

^

^

Page 44: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

SPHERICAL HARMONICSSPHERICAL HARMONICS

J

M

Page 45: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Vector Vector RappresentaRappresentation of tion of Angular MomentumAngular Momentum

Costant length (J) - 5 orientations (M)

JJ = 2 = 2 5 values for 5 values for MM

Page 46: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

One step further …..One step further …..

Molecules are NOT rigid:Molecules are NOT rigid:centrifugal distortioncentrifugal distortion

Page 47: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

SEMISEMI--RIGID ROTOR with RIGID ROTOR with CENTRIFUGAL DISTORTIONCENTRIFUGAL DISTORTION

'ˆˆˆdistrotrot HHH 0

perturbation theory

rigidrigid--rotorrotor

44 JDH J

distˆˆ '

22 )1( JJDE Jdist'

2

34

eJ

BD > 0 !!> 0 !!

Page 48: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

J=0

J=1

J=2

J=3

Erot=0

Erot=2hB

Erot=6hB

Erot/h=12hB

J=0

J=1

J=2

J=3

centrifugal distortioncentrifugal distortion

22 )1()1( JJDJBJhE Jrot /

Page 49: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

frequency

Inte

nsity

2B 4B 6B 8B

2B 2B 2B 2B 2B

3)1(4)1(2 JDJB Jrot

JJ=1=1--00 JJ=2=2--11 JJ=3=3--22 JJ=4=4--33 JJ=5=5--44

[B, DJ in frequency units]

Page 50: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Another step further …..Another step further …..

Other types of rotorOther types of rotor

Page 51: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ClassificationClassification

CO COCO CO22

CHCH4 4 SFSF66

NHNH33

HH22OO

Examples

By cBy convenonventiontion: : IIcc IIbb IIaa thus C thus C B B AA

Page 52: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Ia = Ib = Ic = I

Erot = B J(J+1)

Each level: (2J + 1)2 fold degenerate (K,M)

= 0 !!!

CH4, SF6 , …

SPHERICAL TOPSSPHERICAL TOPS

Page 53: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

SYMMETRIC TOPSSYMMETRIC TOPS

22 11

21

zrot

z

yx

JIII

JH

II

III

ˆˆˆ//

// (z = symmetry axis)

Page 54: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

SYMMETRIC TOPSSYMMETRIC TOPS

22 11)1(

2K

IIIJJErot

//

K=J,J-1 … -J

Page 55: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

SYMMETRIC TOPSSYMMETRIC TOPS

22 11)1(

2K

IIIJJErot

//

Prolate: Prolate: EErotrot = = BJBJ((JJ+1)+(+1)+(AA––BB))KK22 wherewhere AA>>B=CB=COblate: Oblate: EErotrot = = BJBJ((JJ+1)+(+1)+(CC––BB))KK22 wherewhere AA==BB>>CC

BClBCl33

CHCH33FF

II < < IIoblateoblate II > > II

prolateprolate

II//// = = IIaaII//// = = IIcc>0

<0

Page 56: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

SYMMETRIC TOP: rotational energy levelsSYMMETRIC TOP: rotational energy levels

PROLATE PROLATE OBLATEOBLATEAA > > BB = = CC AA < < BB = = CC

Page 57: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

SYMMETRIC TOP: rotational energy levelsSYMMETRIC TOP: rotational energy levels

PROLATE PROLATE OBLATEOBLATEAA > > BB = = CC AA < < BB = = CC

J J = 6, = 6, K K = = 44

Page 58: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

SELECTION RULESSELECTION RULES

In addition to In addition to JJ = = 11::

KK = 0= 0

Page 59: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

SYMMETRIC TOP: rotational energy levelsSYMMETRIC TOP: rotational energy levels

PROLATE PROLATE OBLATEOBLATEAA > > BB = = CC AA < < BB = = CC

Page 60: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

SELECTION RULESSELECTION RULES

In addition to In addition to JJ = = 11::

KK = 0= 0

)1(2 JBh rotRIGID ROTOR:RIGID ROTOR:

Page 61: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Rotational spectrum of a symmetric-top rotor

KK structure for each structure for each JJ value (value (JJ+1 +1 JJ))

Page 62: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

SELECTION RULESSELECTION RULES

In addition to In addition to JJ = = 11::

KK = 0= 0

)1(2 JBh rotRIGID ROTOR:RIGID ROTOR:

23 )1(2)1(4)1(2 KJDJDJBh JKJrotincluding CENTRIFUGAL DISTORTION:including CENTRIFUGAL DISTORTION:

Page 63: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Rotational spectrum of CH3CN: a small portion

1 1 1 7 2 0 0 1 1 1 7 8 0 0 1 1 1 8 4 0 0

K = 9

K = 6 K = 3

F r e q u e n c y ( M H z )

C H3C N : J = 6 1 - 6 0 K = 0

KK structurestructure

Page 64: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

5 5 4 4 0 0 5 5 4 5 0 0 5 5 4 6 0 0 5 5 4 7 0 0

K = 1 8

K = 1 5K = 1 2K = 9

K = 6

F r e q u e n c y ( M H z )

K = 3

1 4 N F 3 : J = 2 6 - 2 5

Rotational spectrum of NF3: a small portion

Page 65: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

JKM,,

Eigenfunctions: SPHERICAL HARMONICSSPHERICAL HARMONICS

Eigenvalues of J2: ħ2J(J+1) with J = 0, 1, 2, …

Eigenvalues of JZ: ħM with -J ≤ M ≤ J

Eigenvalues of Jz: ħK with -J ≤ K ≤ J

^

^

^

SymmetricSymmetric--top Rotor: EIGENFUNCTIONStop Rotor: EIGENFUNCTIONS

Page 66: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ASYMMETRIC ROTORASYMMETRIC ROTOR

z

z

y

y

x

xrot I

JIJ

IJH

222

21 ˆˆˆˆ

No longer possible to rearrange the Hamiltonian sothat it is comprised soley of and one componentof

2JJ

It is not possible to describe the rotational motionIt is not possible to describe the rotational motionin terms of a in terms of a conserved motionconserved motion about a particular about a particular axis of the molecule.axis of the molecule.

Page 67: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ASYMMETRIC ROTORASYMMETRIC ROTOR

z

z

y

y

x

xrot I

JIJ

IJH

222

21 ˆˆˆˆ

Diagonalization: EDiagonalization: Erotrot, , For the sake of convenience:For the sake of convenience:

correlation to symmetric topcorrelation to symmetric top

Pseudo quantum numbers:Pseudo quantum numbers:KKaa limiting prolate symmetric rotorlimiting prolate symmetric rotorKKcc limiting oblate symmetric rotorlimiting oblate symmetric rotor

Page 68: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ASYMMETRIC ROTORASYMMETRIC ROTOR

Page 69: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ASYMMETRIC ROTORASYMMETRIC ROTOR

+1

-101 1

1

1

00

PROLATEPROLATE OBLATEOBLATE

J Ka JKc(-J +J)

near oblatenear oblatenear prolatenear prolate

2B A C

A C

Asymmetric parameter Asymmetric parameter

= -1 = +1

= 0

2 notation scheme: JKa,Kc or J

ca KK

Page 70: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

SELECTION RULESSELECTION RULES

In addition to In addition to JJ = 0,= 0, 11::

KKa a ,, KKcc = 0, = 0, 11

Ka Kc

Page 71: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Symmetric Rotor

Asymmetric Rotor

ASYMMETRIC ROTORASYMMETRIC ROTOR

Page 72: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

5 2 4 0 0 0 5 2 4 1 0 0 5 2 4 2 0 0 5 2 4 3 0 0 5 2 4 4 0 0 5 2 4 5 0 0 5 2 4 6 0 0 5 2 4 7 0 0

F re q u e n c y (M H z)

transtrans--CHCH3535Cl=CHFCl=CHF

ASYMMETRIC ROTOR: ASYMMETRIC ROTOR: small portion of rotational spectrumsmall portion of rotational spectrum

Page 73: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Rotational HamiltonianRotational Hamiltonian

Rotational constantsRotational constants

222CBA CBA JJJ RIGID ROTORRIGID ROTOR

++CENTRIFUGAL DISTORTIONCENTRIFUGAL DISTORTION

Rotational HamiltonianRotational Hamiltonian

Page 74: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Another step further …..Another step further …..

Hyperfine InteractionsHyperfine Interactions

Page 75: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Hyperfine structureHyperfine structureRotational HamiltonianRotational Hamiltonian

Rotational constantsRotational constants

Nuclear quadrupole Nuclear quadrupole couplingcoupling

K KK

KJK

JJIIqeQ 222

233

)12()12(221 JIJIJI

222CBA CBA JJJ

Page 76: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

frequency

J=1-0

F=-1F=+1

unperturbed

F=0

nuclear quadrupole coupling

unperturbed

F = 1/2

F = 5/2

F = 3/2

F = 3/2

J = 1

J = 0

LINEAR MOLECULELINEAR MOLECULEF = J+I, J+I-1, …, |J-I |

[[IIKK 1]1] IIKK=3/2; =3/2; eQq eQq 00

Selection Rules:Selection Rules:coupling coupling II + + JJ = = F F

1;0 F

Page 77: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

frequency

J=1-0

F=-1F=+1

unperturbed

F=0

nuclear quadrupole coupling

unperturbed

F = 1/2

F = 5/2

F = 3/2

F = 3/2

J = 1

J = 0

frequency

J=1-0

F=-1F=+1

unperturbed

F=0

[[IIKK 1]1] IIKK=3/2; =3/2; eQq eQq 00

LINEAR MOLECULELINEAR MOLECULEF = J+I, J+I-1, …, |J-I |

hyperfine structurehyperfine structure

Page 78: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Hyperfine structureHyperfine structureRotational HamiltonianRotational Hamiltonian

Rotational constantsRotational constants

Nuclear quadrupole Nuclear quadrupole couplingcoupling

K KK

KJK

JJIIqeQ 222

233

)12()12(221 JIJIJI

SpinSpin--rotation interactionsrotation interactions

K

KK JCI222CBA CBA JJJ

Page 79: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

frequency

= 2 - 1

F = +1 (F=5/2-3/2)

F = +1 (F=3/2-1/2)

F = 0 (F=3/2-3/2)

unperturbed

spin-rotation interaction

unperturbed

J = 2

J = 1

F = 3/2

F = 5/2

F = 1/2

F = 3/2J = 2 - 1

F = +1 (F=5/2-3/2)

F = +1 (F=3/2-1/2)

F = 0 (F=3/2-3/2)

unperturbed

frequency

[[IIKK 1/2]1/2] IIKK=1/2; =1/2; C C 00

LINEAR MOLECULELINEAR MOLECULE

hyperfine structurehyperfine structure

Page 80: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Hyperfine structureHyperfine structureRotational HamiltonianRotational Hamiltonian

Rotational constantsRotational constants

SpinSpin--spin (direct)spin (direct)interactionsinteractions

LK

LKLK IDI

222CBA CBA JJJ

Nuclear quadrupole Nuclear quadrupole couplingcoupling

K KK

KJK

JJIIqeQ 222

233

)12()12(221 JIJIJI

SpinSpin--rotation interactionsrotation interactions

K

KK JCI

Selection Rules:Selection Rules:coupling Icoupling IK,LK,L + J = F+ J = FK,LK,L

1;0 LKF ,

Page 81: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

fre que ncy

= 0, +1 1-0,1 -1 )

F = 0 ,+1 (F=1-0,1 -1,2 -1 )

F = -1 (F=0-1)

unp erturbed

1/2

direct spin-spin interaction

unperturbed

F =F'+I2

0211

10

F' =J+I1

3/2

1/2

J

1

0

frequency

J=1-0

F = 0,+1 (F=1-0,1-1)

F = 0,+1 (F=1-0,1-1,2-1)

F = -1 (F=0-1)

unperturbed

IIKK=1/2 =1/2 andand IILL=1/2=1/2

LINEAR MOLECULELINEAR MOLECULE

Page 82: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Stark effectStark effect

Page 83: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ROTATIONAL ENERGY LEVELSROTATIONAL ENERGY LEVELS

2222222ZYXzyx JJJJJJJ ˆˆˆˆˆˆˆ

x,y,z molecule-fixed coordinate systemX,Y,Z space-fixed coordinate system 022 zJJ ˆ,ˆ 022 ZJJ ˆ,ˆ

222

22 1)(

MMKJJMKJ

JJMKJJMKJ

Z

,,ˆ,,

,,ˆ,,

Rotational energy levels: Rotational energy levels: (2(2JJ+1) fold degenerate in +1) fold degenerate in MMM=J,J-1 … -J

Degeneracy removed by applying electric field:Degeneracy removed by applying electric field:STARK EFFECTSTARK EFFECT

Page 84: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ZasseE0

1J

1JM

0JM

0J

J = 1

J = 0

MJ = 0

MJ = ±1

MJ = 0

0E0

Energy0JM

Page 85: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

STARK EFFECTSTARK EFFECT

εμ HInteraction between the applied electric field and dipole moment: perturbation theoryperturbation theoryĤ = perturbation Hamiltonian applied along Zlet’s consider a symmetric-top rotor ( along z):

By applying perturbation theory:ZzμεH ˆ

)32)(12()1()1][()1[(

)12)(12())((

2

)1(

3

2222

3

222222(2)

(1)

JJJMJKJ

JJJMJKJ

hBE

JJKME

Stark

Stark

Page 86: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

STARK EFFECT: the SYMMETRIC TOP caseSTARK EFFECT: the SYMMETRIC TOP case

NO FIELDNO FIELD

|000JKM

|100|10-1

|101

|110|11-1

|111|1-10|1-1-1

|1-11

1st ORDER1st ORDER

|000

|101 |100|10-1

|111 |1-1-1|110 |1-10|11-1 |1-11

2B2B

AA--BB

2nd ORDER2nd ORDER

|000

|111 |1-1-1|110 |1-10|11-1 |1-11

|101|100

|10-1

Page 87: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

STARK EFFECT: the SYMMETRIC TOP caseSTARK EFFECT: the SYMMETRIC TOP case

NO FIELDNO FIELD

|100|10-1

|101

|110|11-1

|111|1-10|1-1-1

|1-11

1st ORDER1st ORDER

|000

|101 |100|10-1

|111 |1-1-1|110 |1-10|11-1 |1-11

2B2B

AA--BB

2nd ORDER2nd ORDER

|000

|111 |1-1-1|110 |1-10|11-1 |1-11

|101|100

|10-1

shift Stark:shift Stark: ==’’--

((’’ > > ))

’’

|000JKM

Page 88: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

CODECS Summer School 2013 CODECS Summer School 2013 THEORETICAL SPECTROSCOPY THEORETICAL SPECTROSCOPY

ROTATIONAL SPECTROSCOPY:ROTATIONAL SPECTROSCOPY:Computational RequirementsComputational Requirements

&&

AccuracyAccuracy

Cristina PuzzariniCristina PuzzariniDip. Chimica Dip. Chimica ““Giacomo CiamicianGiacomo Ciamician””

UniversitUniversitàà di Bolognadi Bologna

Page 89: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

SpectroscopicSpectroscopic pparameterarameterss::

RotationalRotational constantsconstants

CentrifugalCentrifugal--distortion constantsdistortion constants

HyperfineHyperfine parametersparametersNuclearNuclear quadrupolequadrupole coupling constantscoupling constants

SpinSpin –– rotation rotation constantsconstants

SpinSpin –– spinspin constantsconstants

Rotational SpectroscopyRotational Spectroscopy

Page 90: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

LaboratoryLaboratory of of MillimetreMillimetre--wavewave

SpectroscopySpectroscopy of Bolognaof Bologna1071310 1071312 1071314 1071316

FREQUENCY (MHz)

HH22S: S: JJ = 8= 86,36,3 –– 885,45,4

> 4 MHz> 4 MHz

Frequency accuracy: 1 part in 107-108

Page 91: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

LaboratoryLaboratory of of MillimetreMillimetre--wavewave

SpectroscopySpectroscopy of Bolognaof Bologna1071310 1071312 1071314 1071316

FREQUENCY (MHz)

HH22S: S: JJ = 8= 86,36,3 –– 885,45,4

> 4 MHz> 4 MHz

Page 92: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

LaboratoryLaboratory of of MillimetreMillimetre--wavewave

SpectroscopySpectroscopy of Bolognaof Bologna1071313.2 1071313.4 1071313.6 1071313.8 1071314.0

FREQUENCY (MHz)

HH22S: S: JJ = 8= 86,36,3 –– 885,45,4

~100 kHz~100 kHz

Frequency accuracy: 1 kHzFrequency accuracy: 1 kHz

Frequency accuracy: better than 1 part in 109

Page 93: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

3 8 0 1 9 7 .3 0 3 8 0 1 9 7 .3 5 3 8 0 1 9 7 .4 0 3 8 0 1 9 7 .4 5

F R E Q U E N C Y (M H z)

17 kH z 46 kH z

H2

16O J = 4 1 4

- 3 2 1

F ' - F '' 5 - 4 4 - 3 3 - 2

Page 94: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

QUANTUMQUANTUM--CHEMICAL CHEMICAL CALCULATIONS of CALCULATIONS of

ROTATIONAL PARAMETERS:ROTATIONAL PARAMETERS:Methodology & AccuracyMethodology & Accuracy

Page 95: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ROTATIONAL ROTATIONAL CONSTANTSCONSTANTS

Page 96: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

QuantumQuantum--Chemical Calculation of Chemical Calculation of Spectroscopic ParametersSpectroscopic Parameters

• Rotational (equilibrium) constantsRotational (equilibrium) constants

requires equilibrium geometry: geometry optimization (nuclear forequires equilibrium geometry: geometry optimization (nuclear forces)rces)

INERTIA TENSOR

Accurate Accurate equilibrium structure equilibrium structure !!!!

Page 97: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

1) 1) Principal error sourcesPrincipal error sources in in ab initio calculationsab initio calculations::

-- wf wf model model truncation truncation (N(N--ee-- errorerror))-- basisbasis--set set truncation truncation (1(1--ee-- errorerror))

2) 2) “Minor” “Minor” error sourceserror sources in in ab initio calculationsab initio calculations::

-- corecore--valencevalence (CV) (CV) correlationcorrelation

-- …………-- scalar scalar relativityrelativity (SR)(SR)

COMPOSITE APPROACHCOMPOSITE APPROACH

Page 98: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

-- Coupled cluster method with Coupled cluster method with singlesingleand and double excitations with double excitations with aapertubativepertubative treatment of treatment of connectedconnectedtriplestriples: : CCSD(T)CCSD(T)

-- HigherHigher excitationsexcitations: : fullfull--T, Q, … …T, Q, … …

1) 1) Principal error sourcesPrincipal error sources in in ab initio calculationsab initio calculations::

-- wf wf model model truncation truncation (N(N--ee-- errorerror))

Page 99: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

exponential ansatz for wavefunctionexponential ansatz for wavefunction

with cluster operatorwith cluster operator

(excitations)

CoupledCoupled--Cluster TheoryCluster Theory

...! ,..,, ,...,,

...... jibat

mT

kji cba

abcijkm

2)(1

...!!

32

31

211)exp( TTTT

HFCC T )exp(

.... 321 TTTT

Page 100: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

energyenergy

amplitudesamplitudes

coupledcoupled--cluster equationscluster equations

CoupledCoupled--Cluster TheoryCluster Theory

very efficient treatment of electronvery efficient treatment of electron--correlation effectscorrelation effects

HFHFCC TETHH )exp()exp(ˆˆ

Schrödinger equationSchrödinger equation

Page 101: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

•• CoupledCoupled--Cluster Singles and DoublesCluster Singles and Doublesrestrict T to single and double excitations restrict T to single and double excitations (T=T(T=T11+T+T22))

CCSDCCSD

•• CoupledCoupled--Cluster Singles, Doubles, and TriplesCluster Singles, Doubles, and Triplesrestrict T to S, D, triple excitations restrict T to S, D, triple excitations (T=T(T=T1 1 +T+T2 2 +T+T33))

CCSDTCCSDT

•• approximate treatment of triple excitationsapproximate treatment of triple excitationsadd perturbative triples correctionadd perturbative triples correction CCSD(T)CCSD(T)

•• CoupledCoupled--Cluster Singles, Doubles, Triples, QuadruplesCluster Singles, Doubles, Triples, Quadruplesrestrict T to S, D, T, quadruple excitations restrict T to S, D, T, quadruple excitations (T=T(T=T1 1 +T+T2 2 +T+T3 3 +T+T44))

CCSDTQCCSDTQ

CoupledCoupled--Cluster TheoryCluster Theory

Page 102: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

CoupledCoupled--Cluster TheoryCluster Theory

CCSD(T) T=T1 + T2 + (T) N6 + N7 (no iter)

Page 103: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

....)(

dx

Eddx

Eddx

dEdx

dE CCSDTQCCSDTTCCSDtot

large basis set:large basis set:cccc--pV5Z/ccpV5Z/cc--pV6ZpV6Z

smallsmall--medium basis set:medium basis set:cccc--pVTZpVTZ small basis set:small basis set:

cccc--pVDZpVDZ

Heckert, Kallay, Gauss, Mol. Phys. 103, 2109 (2005) Heckert, Kallay, Gauss, Mol. Phys. 103, 2109 (2005)

Page 104: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

-- HirarchicalHirarchical seriesseries of of basesbases: : cccc--pVpVnnZZ, , augaug--cccc--pVpVnnZZ, , cccc--pVpVnnZZ--PPPP

nn=D,T,Q,5,6=D,T,Q,5,6

-- Extrapolation toExtrapolation to the CBS the CBS limitlimit::

E(E(nn))[[SCFSCF]] = E= ECBSCBS[[SCFSCF]] + A+ Aexpexp((--BBnn))+ + E(E(nn))[CORR][CORR] = E= ECBSCBS[CORR][CORR] + + CCnn--33

1) 1) Principal error sourcesPrincipal error sources in in ab initio calculationsab initio calculations::

-- basisbasis--set set truncation truncation (1(1--ee-- errorerror))

Page 105: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

1) at ENERGY level:1) at ENERGY level:

>> >> E(E(nn))[[SCFSCF]] = E= ECBSCBS[[SCFSCF]] + A+ Aexpexp((--BBnn))+ + E(E(nn))[CORR][CORR] = E= ECBSCBS[CORR][CORR] + + CCnn--33

>> >> E(E(nn) = E) = ECBSCBS + + BeBe--((nn--1)1) + Ce+ Ce--((nn--1)1)

>> ………>> ………

22

Extrapolation to CBS limitExtrapolation to CBS limit

Feller, JCP Feller, JCP 9898, 7059 (1993) , 7059 (1993)

Helgaker et al., JCP Helgaker et al., JCP 106106, 9639 (1997) , 9639 (1997)

Peterson et al., JCP Peterson et al., JCP 100100, 7410 (1994) , 7410 (1994)

Page 106: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

33--pt extrapol:pt extrapol:cccc--pVnZ, n=QpVnZ, n=Q--66

22--pt extrapol:pt extrapol:cccc--pVnZ, n=5,6pVnZ, n=5,6

Heckert, Kallay, Tew, Klopper, Gauss, JCP 125, 044108 (2006) Heckert, Kallay, Tew, Klopper, Gauss, JCP 125, 044108 (2006)

dxTCCSDEd

dxSCFHFdE

dxdEtot ))(()(

Page 107: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

1) 1) Principal error sourcesPrincipal error sources in in ab initio calculationsab initio calculations::

-- wf wf model model truncation truncation (N(N--ee-- errorerror))-- basisbasis--set set truncation truncation (1(1--ee-- errorerror))

COMPOSITE APPROACHCOMPOSITE APPROACH

2) 2) “Minor” “Minor” error sourceserror sources in in ab initio calculationsab initio calculations::

-- corecore--valencevalence (CV) (CV) correlationcorrelation

-- …………-- scalar scalar relativityrelativity (SR)(SR)

Page 108: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

… … CV CORRELATION:… … CV CORRELATION:

-- SuitableSuitable basisbasis setssets: : cccc--pCVpCVnnZZ, , cccc--pwCVpwCVnnZZ, , cccc--pwCVpwCVnnZZ--PPPP

nn=T,Q,5=T,Q,5

-- AdditivityAdditivity approximationapproximation::EECV CV = = E E ((allall) ) –– E E ((fcfc))

2) “2) “Minor” Minor” error sourceserror sources in in ab initio calculationsab initio calculations::

Page 109: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

dxcoreEd

dxTCCSDEd

dxSCFHFdE

dxdEtot )())(()(

mediummedium--large basis set:large basis set:cccc--p(w)CVQZ, ccp(w)CVQZ, cc--p(w)CV5Zp(w)CV5Z

Heckert, Kallay, Gauss, Mol. Phys. 103, 2109 (2005) Heckert, Kallay, Gauss, Mol. Phys. 103, 2109 (2005)

Page 110: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

… … SCALAR RELATIVITY:… … SCALAR RELATIVITY:

-- SuitableSuitable basisbasis setssets and/or and/or approachapproach: : smallsmall--core core relativistic PPsrelativistic PPs

cccc--pVnZpVnZ--PP, PP, augaug--cccc--pVnZpVnZ--PP, PP, cccc--pwCVnZpwCVnZ--PPPP DK DK hamiltonian hamiltonian

cccc--pVnZpVnZ--DK, DK, ……. . 2nd 2nd order order direct PT direct PT

cccc--pVnZpVnZ, , cccc--pCVnZpCVnZ, , ……..

-- AdditivityAdditivity approximationapproximation

2) “2) “Minor” Minor” error sourceserror sources in in ab initio calculationsab initio calculations::

Page 111: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

dxrelEd

dxTCCSDEd

dxSCFHFdE

dxdEtot )())(()(

DPT2:DPT2:uncontracteduncontracted--cccc--p(w)CVQZp(w)CVQZ

Michauk and Gauss, JCP 127, 044106 (2007) Michauk and Gauss, JCP 127, 044106 (2007) Heckert, Kallay, Gauss, Mol. Phys. 103, 2109 (2005) Heckert, Kallay, Gauss, Mol. Phys. 103, 2109 (2005)

Page 112: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Accuracy of Accuracy of Theoretical Rotational ConstantsTheoretical Rotational Constants

STATISTICAL ANALYSISSTATISTICAL ANALYSIS for for

•• 1616 molecules (molecules (9797 isotopologues)isotopologues)

•• 180180 rotational constantsrotational constants

Reference values: BReference values: Bee ,, BB00 from experiment from experiment

HF, N2, CO, F2, HCN, HNC, O=C=O, H2O, NH3,

CH4, HCCH, HOF, HNO, NH=NH, CH2=CH2, H2C=O

C. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

Page 113: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Normal Distribution of Relative ErrorsNormal Distribution of Relative Errors

Nc = normalization constant

Mean error: refi

calcii

n

ii BB

n

1

1

Standard deviation:

n

iistd n 1

2

11

2

21exp)(

stdcN

Page 114: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Accuracy of Theoretical Rotational Constants:Accuracy of Theoretical Rotational Constants:StatisticsStatistics

-3 -2 -1 0 1 2 3

[MHz]

CCSD(T)/TZ

normal distributions of relative errorsnormal distributions of relative errors

C. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

BBeecalccalc vs Bvs Bee

expexp

Page 115: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Accuracy of Theoretical Rotational Constants:Accuracy of Theoretical Rotational Constants:StatisticsStatistics

-3 -2 -1 0 1 2 3

[MHz]

CCSD(T)/TZCCSD(T)/QZ

normal distributions of relative errorsnormal distributions of relative errors

C. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

BBeecalccalc vs Bvs Bee

expexp

Page 116: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Accuracy of Theoretical Rotational Constants:Accuracy of Theoretical Rotational Constants:StatisticsStatistics

-3 -2 -1 0 1 2 3

[MHz]

CCSD(T)/TZCCSD(T)/QZCCSD(T)/5Z

normal distributions of relative errorsnormal distributions of relative errors

C. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

BBeecalccalc vs Bvs Bee

expexp

Page 117: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Accuracy of Theoretical Rotational Constants:Accuracy of Theoretical Rotational Constants:StatisticsStatistics

-3 -2 -1 0 1 2 3

[MHz]

CCSD(T)/TZCCSD(T)/QZCCSD(T)/5ZCCSD(T)/6Z

normal distributions of relative errorsnormal distributions of relative errors

C. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

BBeecalccalc vs Bvs Bee

expexp

Page 118: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Accuracy of Theoretical Rotational Constants:Accuracy of Theoretical Rotational Constants:StatisticsStatistics

-3 -2 -1 0 1 2 3

[MHz]

CCSD(T)/TZCCSD(T)/QZCCSD(T)/5ZCCSD(T)/6ZCCSD(T)/6Z+ core

normal distributions of relative errorsnormal distributions of relative errors

C. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

BBeecalccalc vs Bvs Bee

expexp

Page 119: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Accuracy of Theoretical Rotational Constants:Accuracy of Theoretical Rotational Constants:StatisticsStatistics

-3 -2 -1 0 1 2 3

[MHz]

CCSD(T)/TZCCSD(T)/QZCCSD(T)/5ZCCSD(T)/6ZCCSD(T)/6Z+ core

CCSD(T)/6Z+ core

+T

normal distributions of relative errorsnormal distributions of relative errors

C. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

BBeecalccalc vs Bvs Bee

expexp

Page 120: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Accuracy of Theoretical Rotational Constants:Accuracy of Theoretical Rotational Constants:StatisticsStatistics

-3 -2 -1 0 1 2 3

[MHz]

CCSD(T)/TZCCSD(T)/QZCCSD(T)/5ZCCSD(T)/6ZCCSD(T)/6Z+ core

CCSD(T)/6Z+ core

+T

CCSD(T)/6Z+ core

+T+Q

normal distributions of relative errorsnormal distributions of relative errors

C. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

BBeecalccalc vs Bvs Bee

expexp

Page 121: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Accuracy of Theoretical Rotational Constants:Accuracy of Theoretical Rotational Constants:StatisticsStatistics

-3 -2 -1 0 1 2 3

[MHz]

CCSD(T)/TZCCSD(T)/QZCCSD(T)/5ZCCSD(T)/6ZCCSD(T)/6Z+ core

CCSD(T)/6Z+ core

+T

CCSD(T)/6Z+ core

+T+Q

CCSD(T)/Z+ core

+T+Q

normal distributions of relative errorsnormal distributions of relative errors

C. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

BBeecalccalc vs Bvs Bee

expexp

Page 122: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

1) 1) Principal error sourcesPrincipal error sources in in ab initio calculationsab initio calculations::

-- wf wf model model truncation truncation (N(N--ee-- errorerror))-- basisbasis--set set truncation truncation (1(1--ee-- errorerror))

COMPOSITE APPROACH: COMPOSITE APPROACH: the “geometry scheme”the “geometry scheme”

2) 2) “Minor” “Minor” error sourceserror sources in in ab initio calculationsab initio calculations::

-- corecore--valencevalence (CV) (CV) correlationcorrelation

-- …………-- scalar scalar relativityrelativity (SR)(SR)

Page 123: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

2) at “PARAMETERS” level:2) at “PARAMETERS” level:

>> >> rr ((nn))[[SCFSCF]] = = rr CBSCBS[[SCFSCF]] + A+ Aexpexp((--BBnn))+ + rr ((nn))[CORR][CORR] = = rr CBSCBS[CORR][CORR] + + CCnn--33

>> >> rr ((nn) = ) = rr CBSCBS + + BeBe--((nn--1)1) + Ce+ Ce--((nn--1)1)

>> ………>> ………

22

Extrapolation to CBS limitExtrapolation to CBS limit

Feller, JCP Feller, JCP 9898, 7059 (1993) , 7059 (1993)

Helgaker et al., JCP Helgaker et al., JCP 106106, 9639 (1997) , 9639 (1997)

Peterson et al., JCP Peterson et al., JCP 100100, 7410 (1994) , 7410 (1994)

Page 124: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

2) at “PARAMETERS” level:2) at “PARAMETERS” level:

rr = = rrCBSCBS + + rrCVCV

wherewhererrCV CV = = r r ((((ww))CVnZCVnZ, , all all ee--) ) –– r r (((w)(w)CVnZCVnZ, , fcfc))

all electrons correlatedall electrons correlatedonly valence electrons correlatedonly valence electrons correlated

Additivity of CV effectsAdditivity of CV effects

Page 125: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

2) at “PARAMETERS” level:2) at “PARAMETERS” level:

rr = = rrtottot + + rrSRSR

wherewhere

rrSRSR = = rr ((relrel) ) –– rr ((nonnon--relrel))

relativistic optgrelativistic optgnonnon--relativistic optgrelativistic optg

Additivity of SR effectsAdditivity of SR effects

Page 126: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Validation: GEOM. vs GRAD.Validation: GEOM. vs GRAD.MoleculeMolecule ParameterParameter CBS/Geom. schemeCBS/Geom. scheme CBS/Grad. schemeCBS/Grad. scheme

HH22OO OO--HH 0.958390.95839 0.958360.95836OOHOOH 104.484104.484 104.478104.478

NHNH33 NN--HH 1.012101.01210 1.012061.01206HNHHNH 106.631106.631 106.641106.641

PHPH33 PP--HH 1.414351.41435 1.414641.41464HPHHPH 93.55593.555 93.55393.553

NHNH22 NN--HH 1.024761.02476 1.024741.02474HNHHNH 103.071103.071 103.060103.060

PHPH22 PP--HH 1.418251.41825 1.418461.41846HPHHPH 91.88291.882 91.87791.877

ClSiPClSiP ClCl--SiSi 2.014392.01439 2.014402.01440SiSi--PP 1.963541.96354 1.963401.96340

HCSHCS++ HH--CC 1.082001.08200 1.082141.08214CC--SS 1.478951.47895 1.479071.47907

Differences:Differences: 0.001 Å for distances 0.001 Å for distances 0.01 deg. for angles0.01 deg. for angles

VALIDATED!!VALIDATED!!Puzzarini , JPC A 113, 14530 (2009) Puzzarini , JPC A 113, 14530 (2009)

Page 127: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

PuzzariniPuzzarini, , CazzoliCazzoli, Gauss , Gauss JMS 262, 37 (2010) JMS 262, 37 (2010)

CV correctionsCV corrections

SiHSiH33FF SiSi--F / F / ÅÅ SiSi--H / H / ÅÅ FSiH / deg.FSiH / deg.

gradient gradient schemescheme

--0.00520.0052 --0.00450.0045 0.000.00

geometry geometry schemescheme

--0.00530.0053 --0.00450.0045 0.000.00

basis = ccbasis = cc--pwCV5ZpwCV5Z

Page 128: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

fullfull--T correctionsT corrections

ClPO: in progress ClPO: in progress SiHSiH33F: F: PuzzariniPuzzarini, , CazzoliCazzoli, Gauss , Gauss JMS 262, 37 (2010) JMS 262, 37 (2010)

SiHSiH33FF SiSi--F / F / ÅÅ SiSi--H / H / ÅÅ FSiH / deg.FSiH / deg.

gradient schemegradient scheme +0.0001+0.0001 +0.0002+0.0002 +0.00+0.00

geom. schemegeom. scheme +0.0002+0.0002 +0.0002+0.0002 +0.00+0.00

ClPOClPO ClCl--P / P / ÅÅ PP--O / O / ÅÅ ClPO/ deg.ClPO/ deg.

gradient schemegradient scheme +0.0009+0.0009 --0.00020.0002 --0.020.02

geom. schemegeom. scheme +0.0009+0.0009 --0.00020.0002 --0.020.02

basis = ccbasis = cc--pVTZpVTZ

Page 129: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

fullfull--Q correctionsQ corrections

ClPO: in progress ClPO: in progress SiHSiH33F: F: PuzzariniPuzzarini, , CazzoliCazzoli, Gauss , Gauss JMS 262, 37 (2010) JMS 262, 37 (2010)

SiHSiH33FF SiSi--F / F / ÅÅ SiSi--H / H / ÅÅ FSiH / deg.FSiH / deg.

gradient schemegradient scheme +0.0004+0.0004 +0.0001+0.0001 +0.00+0.00

geom. schemegeom. scheme +0.0004+0.0004 --0.00000.0000 +0.01+0.01

ClPOClPO ClCl--P / P / ÅÅ PP--O / O / ÅÅ ClPO/ deg.ClPO/ deg.

gradient schemegradient scheme +0.0014+0.0014 +0.0013+0.0013 +0.03+0.03

geom. schemegeom. scheme +0.0018+0.0018 +0.0017+0.0017 +0.04+0.04

basis = ccbasis = cc--pVDZpVDZ

Page 130: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Which level for Which level for ““BIOMOLECULESBIOMOLECULES””??

COMPOSITE APPROACH extended to large moleculeCOMPOSITE APPROACH extended to large molecule

(T)(diff)(CV)(CBS)T)diffCV(CBS rrrrr

MP2/cc-pV(T,Q)Z

MP2/cc-pCVTZ

MP2/aug-cc-pVTZ

CCSD(T)/cc-pVTZ

RELIABLE? ACCURATE?RELIABLE? ACCURATE?

Page 131: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

The challenge of the conformational The challenge of the conformational equilibrium in glycineequilibrium in glycine: :

can composite schemes shed light on the can composite schemes shed light on the observation of elusive conformers?observation of elusive conformers?

V. Barone, M. Biczysko, J. Bloino, C. Puzzarini, PCCP 15, 1358 (2013) V. Barone, M. Biczysko, J. Bloino, C. Puzzarini, JCTC 9, 1533 (2013) V. Barone, M. Biczysko, J. Bloino, C. Puzzarini, PCCP, in press (2013)

Page 132: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

(T)(diff)(CV)(CBS)T)diffCV(CBS rrrrr

MP2/cc-pV(T,Q)Z

MP2/cc-pCVTZ

MP2/aug-cc-pVTZ

CCSD(T)/cc-pVTZ

COMPOSITE APPROACHCOMPOSITE APPROACH

1) 1) “cheap” geom scheme“cheap” geom scheme

2) 2) “accurate” grad scheme“accurate” grad scheme

dxCEd

dxTCCSDEd

dxSCFHFdE

dxdEtot V)())(()(

cc-pV(T,Q)Zcc-pV(T,Q,5)Z cc-pCVTZ

Page 133: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

The two most stable conformers ……The two most stable conformers ……

Page 134: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

The two most stable conformers ……The two most stable conformers ……

Page 135: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

The following four stable conformers ……The following four stable conformers ……

“cheap” best “cheap” best vsvs “accurate” best: perfect match“accurate” best: perfect match

Page 136: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

COMPOSITE APPROACH extended to large moleculeCOMPOSITE APPROACH extended to large molecule

(T)(diff)(CV)(CBS)T)diffCV(CBS rrrrr

MP2/cc-pV(T,Q)Z

MP2/cc-pCVTZ

MP2/aug-cc-pVTZ

CCSD(T)/cc-pVTZ

RELIABLE? ACCURATE?RELIABLE? ACCURATE?

Which level for Which level for ““BIOMOLECULESBIOMOLECULES””??

Page 137: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Rotational constant Rotational constant

Inertia tensor Inertia tensor

More unknown parameters than data More unknown parameters than data ????

Page 138: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

More unknown parameters than data More unknown parameters than data ????ISOTOPIC SUBSTITUTIONISOTOPIC SUBSTITUTION

16O 12C 32S

17O, 18O 33S, 34S13C

- NATURAL ABUNDANCE- ISOTOPICALLY ENRICHED

Page 139: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Equilibrium structureEquilibrium structure::need of need of BBee for various isotopic speciesfor various isotopic species

r

Bre BB

21

0

Rotational constant ofRotational constant ofvibrational ground statevibrational ground state Vibrational correctionVibrational correction

EXPERIMENTEXPERIMENT THEORYTHEORYP. Pulay, W. Meyer, J.E. Boggs, P. Pulay, W. Meyer, J.E. Boggs, J. Chem. Phys.J. Chem. Phys. 6868, 5077 (1978)., 5077 (1978).

Page 140: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

“Semi“Semi--exp.” equilibrium structure exp.” equilibrium structure

r

Bre BB

21

0

fromfrom EEXXPERIMENTPERIMENT((various isotopic speciesvarious isotopic species)) from from TTHHEOREORY Y

((cubic force fieldcubic force field))

Accuracy: experimental qualityAccuracy: experimental qualityPawłowskiPawłowski, , JørgensenJørgensen, , OlsenOlsen, , HegelundHegelund, , HelgakerHelgaker, Gauss, , Gauss, BakBak, , StantonStanton JCPJCP 116116 6482 (2002)6482 (2002)

FITFIT

Page 141: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

C2C4

C5C6

N1

N3O7O8

H11H12

H9

bb

aa

H10

SemiSemi--exp equilibrium structure of large moleculeexp equilibrium structure of large molecule

URACIL: 21 independent geometrical parametersURACIL: 21 independent geometrical parameters

Isotopic substitution:Isotopic substitution:-- 1616O O 1818OO-- 1414N N 1515NN-- 1212C C 1313CC

10 isotopic species10 isotopic species

20 rotational constants20 rotational constants

Puzzarini & Barone, PCCP 13, 7158 (2011)

Vaquero, Sanz, López, Alonso, J. Phys. Chem. Lett. 111A, 3443 (2007).

Page 142: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

(T)(diff)(CV)(CBS)T)diffCV(CBS rrrrr

MP2/cc-pV(T,Q)Z

MP2/cc-pCVTZ

MP2/aug-cc-pVTZ

CCSD(T)/cc-pVTZ

COMPOSITE APPROACHCOMPOSITE APPROACH

1) 1) “cheap” geom scheme“cheap” geom scheme

2) 2) “accurate” grad scheme“accurate” grad scheme

dxCEd

dxTCCSDEd

dxSCFHFdE

dxdEtot V)())(()(

cc-pV(T,Q)Zcc-pV(T,Q,5)Z cc-pCVTZ

Page 143: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Best est. rea Semi-exp. re

b Exp. rsc

Fit 1 Fit 2 Fit 3DistancesN1-C2 1.3785 1.38175(53) 1.38163(65) 1.38161(51) 1.386(5)C2-N3 1.3756 1.3763 1.3763 1.3762N3-C4 1.3974 1.39793(40) 1.39823(47) 1.39835(45) 1.38(2)C4-C5 1.4539 1.45500(57) 1.45485(99) 1.45481(57) 1.451(4)C5-C6 1.3433 1.34496(59) 1.34576(107) 1.34473(58) 1.379(4)C6-N1 1.3723 1.37196(55) 1.37160(100) 1.37258(66) 1.352(14)C2-O7 1.2112 1.21025(21) 1.21015(26) 1.21015(21) 1.219(4)C4-O8 1.2138 1.21278(24) 1.21268(34) 1.21269(24) 1.22(2)N1-H9 1.0046 1.0004(70) N3-H10 1.0090 1.0110(96) C5-H11 1.0766 1.0695(52)C6-H12 1.0793 1.0856(32)

AnglesC2-N1-C6 123.38 123.374(19) 123.394(35) 123.370(21) 123.0(11)N1-C6-C5 121.91 121.924(10) 121.920(10) 121.9237(97) 122.3(6)C6-C5-C4 119.49 119.516(16) 119.501(20) 119.523(16) 118.8(12)C5-C4-N3 113.97 113.860(22) 113.859(33) 113.858(22) 115.4(16)C4-N3-C2 127.75 127.942 127.947 127.945N3-C2-N1 113.51 113.383 113.379 113.380N1-C2-O7 123.62 123.883(44) 123.878(54) 123.874(42) 122.3(8)C5-C4-O8 125.83 125.768(48) 125.765(75) 125.767(45) 118.8(7)C2-N1-H9 115.22 C2-N3-H10 115.70 115.52(40) C6-C5-H11 122.11 N1-C6-H12 115.34

Non-determinable Parameters: fixed at the corresponding theo values

Page 144: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

COMPOSITE APPROACH extended to large moleculeCOMPOSITE APPROACH extended to large molecule Equilibrium Rotational ConstantsEquilibrium Rotational Constants

(T)(diff)(CV)(CBS)T)diffCV(CBS rrrrr

MP2/cc-pV(T,Q)Z

MP2/cc-pCVTZ

MP2/aug-cc-pVTZ

CCSD(T)/cc-pVTZ

Vibrational Corrections to Rotational ConstantsVibrational Corrections to Rotational Constants

Vibrational corrections to rotational constants:Vibrational corrections to rotational constants:

r

BreBB

21

0

Page 145: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

How to get vibrational corrections to How to get vibrational corrections to BB??SecondSecond--order vibrational perturbation theoryorder vibrational perturbation theory

(VPT2)(VPT2)

wheredimensionless normal coordinate

vibrational angular momentum

inverse inertia tensor

potential

WATSON WATSON HamiltonianHamiltonian

, = (x,y,z) r {normal coord}

Page 146: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

unperturbed Hamiltonian:unperturbed Hamiltonian:

perturbations:perturbations:

Coriolis couplingCoriolis coupling

anharmonic anharmonic correctionscorrections

Harmonic ffHarmonic ff

How to get vibrational corrections to How to get vibrational corrections to BB??SecondSecond--order vibrational perturbation theoryorder vibrational perturbation theory

(VPT2)(VPT2)

Page 147: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

vibrationvibration--rotation interaction constants:rotation interaction constants:

vibrational corrections to rotational constants:vibrational corrections to rotational constants:

Beyond the RigidBeyond the Rigid--Rotator Rotator ApproximationApproximation

Page 148: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Computation of Cubic and Quartic Force Computation of Cubic and Quartic Force FieldsFields

•• cubic force fields:cubic force fields:

single numerical differentiation along qr

•• quartic force fields:quartic force fields:

double numerical differentiation along qr

Schneider Schneider && Thiel, Thiel, Chem. Phys. LettChem. Phys. Lett.. 157157, 367 (1989), 367 (1989)Stanton et al., Stanton et al., J. Chem. PhysJ. Chem. Phys. . 108108, 7190 (1998), 7190 (1998)

Page 149: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Accurate force Accurate force fieldfield

>>>> >>>> Main requirementsMain requirements::-- ““correlatedcorrelated”” methodmethod-- cc basis cc basis setset

-- harmonic ffharmonic ff: : analytic analytic 2nd 2nd derivderiv. of E. of E

Schneider Schneider && Thiel, Thiel, Chem. Phys. LettChem. Phys. Lett.. 157157, 367 (1989), 367 (1989)Stanton et al., Stanton et al., J. Chem. PhysJ. Chem. Phys. . 108108, 7190 (1998), 7190 (1998)

-- harmonic ffharmonic ff: : analytic analytic 2nd 2nd derivderiv. of E. of E

-- anharmonic partanharmonic part: : numerical differnumerical differ..

Page 150: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

COMPOSITE APPROACH extended to large moleculeCOMPOSITE APPROACH extended to large molecule Equilibrium Rotational ConstantsEquilibrium Rotational Constants

(T)(diff)(CV)(CBS)T)diffCV(CBS rrrrr

MP2/cc-pV(T,Q)Z

MP2/cc-pCVTZ

MP2/aug-cc-pVTZ

CCSD(T)/cc-pVTZ

Vibrational Corrections to Rotational ConstantsVibrational Corrections to Rotational ConstantsB3LYP/N07D MP2/cc-pVTZ

Page 151: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

CalculatedCalculated Experiment Experiment AA00 MHzMHz 3885.4753885.475 3883.873021(60)3883.873021(60)

BB00 MHzMHz 2027.7632027.763 2023.732581(45)2023.732581(45)

CC00 MHzMHz 1332.7611332.761 1330.928108(33)1330.928108(33)

DDJ J kHzkHz 0.0610.061 0.06336(44)0.06336(44)

DDJKJK kHzkHz 0.1070.107 0.1055(23)0.1055(23)

DDKK kHzkHz 0.4470.447 0.4530(32)0.4530(32)

dd11 kHzkHz --0.0260.026 --0.02623(18)0.02623(18)

dd22 kHzkHz --0.0060.006 --0.00680(13)0.00680(13)

aaaa MHzMHz 1.7391.739 1.7600 (25)1.7600 (25)

bbbb MHzMHz 1.9521.952 1.9811(29)1.9811(29)

aaaa MHzMHz 1.8711.871 1.9255(24)1.9255(24)

bbbb MHzMHz 1.4911.491 1.5273(32)1.5273(32)

Puzzarini & Barone, PCCP 13, 7158 (2011)

URACILURACIL

<0.2<0.2%%

Page 152: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Accuracy of Accuracy of Theoretical Rotational ConstantsTheoretical Rotational Constants

STATISTICAL ANALYSISSTATISTICAL ANALYSIS for for

•• 1616 molecules (molecules (9797 isotopologues)isotopologues)

•• 180180 rotational constantsrotational constants

Reference values: BReference values: Bee ,, BB00 from experiment from experiment

HF, N2, CO, F2, HCN, HNC, O=C=O, H2O, NH3,

CH4, HCCH, HOF, HNO, NH=NH, CH2=CH2, H2C=O

C. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

Page 153: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

-4 -3 -2 -1 0 1 2 3 4

CCSD(T)/VTZCCSD(T)/VTZBBcalccalc vs vs BB00expexp

normal distributions of relative errorsC. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

Page 154: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

-4 -3 -2 -1 0 1 2 3 4

CCSD(T)/VTZCCSD(T)/VTZCCSD(T)/VQZCCSD(T)/VQZBBcalccalc vs vs BB00expexp

normal distributions of relative errorsC. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

Page 155: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

-4 -3 -2 -1 0 1 2 3 4

CCSD(T)/VTZCCSD(T)/VTZCCSD(T)/VQZCCSD(T)/VQZCCSD(T)/V5ZCCSD(T)/V5ZBBcalccalc vs vs BB00expexp

normal distributions of relative errorsC. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

Page 156: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

-4 -3 -2 -1 0 1 2 3 4

CCSD(T)/VTZCCSD(T)/VTZCCSD(T)/VQZCCSD(T)/VQZCCSD(T)/V5ZCCSD(T)/V5ZCCSD(T)/V6ZCCSD(T)/V6ZBBcalccalc vs vs BB00expexp

normal distributions of relative errorsC. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

Page 157: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

-4 -3 -2 -1 0 1 2 3 4

CCSD(T)/VTZCCSD(T)/VTZCCSD(T)/VQZCCSD(T)/VQZCCSD(T)/V5ZCCSD(T)/V5ZCCSD(T)/V6ZCCSD(T)/V6ZCCSD(T)/V6Z + CVCCSD(T)/V6Z + CVBBcalccalc vs vs BB00expexp

normal distributions of relative errorsC. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

Page 158: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

-4 -3 -2 -1 0 1 2 3 4

CCSD(T)/VTZCCSD(T)/VTZCCSD(T)/VQZCCSD(T)/VQZCCSD(T)/V5ZCCSD(T)/V5ZCCSD(T)/V6ZCCSD(T)/V6ZCCSD(T)/V6Z + CVCCSD(T)/V6Z + CVCCSD(T)/V6Z + CV + fTCCSD(T)/V6Z + CV + fTBBcalccalc vs vs BB00expexp

normal distributions of relative errorsC. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

Page 159: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

-4 -3 -2 -1 0 1 2 3 4

CCSD(T)/VTZCCSD(T)/VTZCCSD(T)/VQZCCSD(T)/VQZCCSD(T)/V5ZCCSD(T)/V5ZCCSD(T)/V6ZCCSD(T)/V6ZCCSD(T)/V6Z + CVCCSD(T)/V6Z + CVCCSD(T)/V6Z + CV + fTCCSD(T)/V6Z + CV + fTCCSD(T)/V6Z + CV + fTCCSD(T)/V6Z + CV + fT+ + fQfQ

BBcalccalc vs vs BB00expexp

normal distributions of relative errorsC. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

Page 160: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

-4 -3 -2 -1 0 1 2 3 4

CCSD(T)/VTZCCSD(T)/VTZCCSD(T)/VQZCCSD(T)/VQZCCSD(T)/V5ZCCSD(T)/V5ZCCSD(T)/V6ZCCSD(T)/V6ZCCSD(T)/V6Z + CVCCSD(T)/V6Z + CVCCSD(T)/V6Z + CV + fTCCSD(T)/V6Z + CV + fTCCSD(T)/V6Z + CV + fTCCSD(T)/V6Z + CV + fT+ + fQfQ

CCSD(T)/VCCSD(T)/VZ + CV + fTZ + CV + fT+ + fQfQ

BBcalccalc vs vs BB00expexp

normal distributions of relative errorsC. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

Page 161: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

-4 -3 -2 -1 0 1 2 3 4

CCSD(T)/VTZCCSD(T)/VTZCCSD(T)/VQZCCSD(T)/VQZCCSD(T)/V5ZCCSD(T)/V5ZCCSD(T)/V6ZCCSD(T)/V6ZCCSD(T)/V6Z + CVCCSD(T)/V6Z + CVCCSD(T)/V6Z + CV + fTCCSD(T)/V6Z + CV + fTCCSD(T)/V6Z + CV + fTCCSD(T)/V6Z + CV + fT+ + fQfQ

CCSD(T)/VCCSD(T)/VZ + CV + fTZ + CV + fT+ + fQfQ

CCSD(T)/VCCSD(T)/VZ + CV + fTZ + CV + fT+ + fQ fQ + + vibvib

BBcalccalc vs vs BB00expexp

normal distributions of relative errorsC. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

Page 162: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

-4 -3 -2 -1 0 1 2 3 4

CCSD(T)/VTZCCSD(T)/VTZCCSD(T)/VQZCCSD(T)/VQZCCSD(T)/V5ZCCSD(T)/V5ZCCSD(T)/V6ZCCSD(T)/V6ZCCSD(T)/V6Z + CVCCSD(T)/V6Z + CVCCSD(T)/V6Z + CV + fTCCSD(T)/V6Z + CV + fTCCSD(T)/V6Z + CV + fTCCSD(T)/V6Z + CV + fT+ + fQfQ

CCSD(T)/VCCSD(T)/VZ + CV + fTZ + CV + fT+ + fQfQ

CCSD(T)/VCCSD(T)/VZ + CV + fTZ + CV + fT+ + fQ fQ + + vibvib

CCSD(T)/VCCSD(T)/VZ + CV + fTZ + CV + fT+ + fQ fQ + + vib vib + + eleele

BBcalccalc vs vs BB00expexp

normal distributions of relative errorsC. C. PuzzariniPuzzarini, M. , M. HeckertHeckert, J. Gauss , J. Gauss JCP JCP 128128, 194108, 194108 (2008)(2008)

Page 163: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Electronic contribution to Electronic contribution to BBelvibe BBBB 0

e

p

eel Bg

mmB

g = rotational g tensorme = mass of the electronmp = mass of the proton

=x,y,zprinc. inertia system

CCSD(T) calc: Gauss, Ruud, Kallay, JCP 127, 074101 (2007)CCSD(T) calc: Gauss, Ruud, Kallay, JCP 127, 074101 (2007)

Page 164: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

FREQUENCY (MHz)

1 12 00 11 25 0 113 00 1 135 0 11 40 0 114 5051 50 5 200 77 50 780 0 7 850

Predictio n using Be

Experiment

1515NN22--URACIL: rotational spectrum in the 5URACIL: rotational spectrum in the 5--12 GHz range 12 GHz range

Experimental data from: Experimental data from: V. Vaquero, M. E.V. Vaquero, M. E. SanzSanz, J. C. Lo, J. C. Lopezpez and J. L.and J. L. AlonsoAlonso, , JJPCPCAA 111, 3443111, 3443 (2007)(2007)..Simulation from: Puzzarini, Simulation from: Puzzarini, PCCPPCCP 15, 6595 (2013) 15, 6595 (2013)

Page 165: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

FREQUENCY (MHz)

5150 5200 7750 7800 7850

Prediction using Be

Prediction using B0

Exp erime nt

1120 0 1125 0 113 00 11 350 1 1400 11450

1515NN22--URACIL: rotational spectrum in the 5URACIL: rotational spectrum in the 5--12 GHz range 12 GHz range

Experimental data from: Experimental data from: V. Vaquero, M. E.V. Vaquero, M. E. SanzSanz, J. C. Lo, J. C. Lopezpez and J. L.and J. L. AlonsoAlonso, , JJPCPCAA 111, 3443111, 3443 (2007)(2007)..Simulation from: Puzzarini, Simulation from: Puzzarini, PCCPPCCP 15, 6595 (2013) 15, 6595 (2013)

Page 166: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

CENTRIFUGALCENTRIFUGAL--DISTORTIONDISTORTIONCONSTANTSCONSTANTS

Page 167: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

HarmonicHarmonic force force fieldfield: : quartic quartic centrifugalcentrifugal--distortion constantsdistortion constants

CubicCubic force force fieldfield: : sexticsextic centrifugalcentrifugal--distortiondistortion constantsconstants

CentrifugalCentrifugal--distortion constants distortion constants requires requires force force field calculationsfield calculations

… … … … … …

Page 168: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Quartic centrifugalQuartic centrifugal--distortion constants:distortion constants:combinations of combinations of ’’ss

r

rr

r 1

21

4xxxx

JD

Linear MoleculesLinear Molecules

Page 169: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Quartic centrifugalQuartic centrifugal--distortion constants:distortion constants:effect on rotational spectrumeffect on rotational spectrum

Page 170: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Sextic centrifugalSextic centrifugal--distortion constants:distortion constants:combinations of combinations of ’’ss

Aliev Aliev && Watson, J. Mol. Spectrosc. 61, 29 (1976) Watson, J. Mol. Spectrosc. 61, 29 (1976)

Sextic centrifugalSextic centrifugal--distortion constants:distortion constants:combinations ofcombinations of ’’ss

Page 171: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

56.737 56.737 --1.673 1.673 0.854 0.854

359.120 359.120 --42.871 42.871 --10.734 10.734 1.728 1.728 4.807 4.807 3.467 3.467

231.368 231.368 --40.959 40.959 8.818 8.818

CCSD(T)/CCSD(T)/aaugugCV5ZCV5Z

95.31(73) 95.31(73) 56.253 56.253 55.113 55.113 55.733 55.733 60.687 60.687 KK / kHz/ kHz--4.05(13) 4.05(13) --1.681 1.681 --1.699 1.699 --1.631 1.631 --1.233 1.233 JKJK / kHz/ kHz0.9938(40) 0.9938(40) 0.856 0.856 0.864 0.864 0.845 0.845 0.715 0.715 JJ / kHz/ kHz

535.07(44) 535.07(44) 354.604 354.604 338.834 338.834 347.717 347.717 414.678 414.678 KK / kHz/ kHz--71.02(38) 71.02(38) --42.413 42.413 --39.905 39.905 --40.950 40.950 --47.771 47.771 KJKJ / kHz/ kHz--10.89(30) 10.89(30) --10.740 10.740 --10.880 10.880 --10.633 10.633 --9.069 9.069 JKJK / kHz/ kHz2.445(53) 2.445(53) 1.731 1.731 1.747 1.747 1.708 1.708 1.451 1.451 JJ / kHz/ kHz9.9004(51) 9.9004(51) 4.781 4.781 4.722 4.722 4.820 4.820 5.486 5.486 KK / MHz/ MHz3.69282(21)3.69282(21)3.472 3.472 3.470 3.470 3.431 3.431 3.155 3.155 JJ / MHz/ MHz

271.0554(57) 271.0554(57) 229.674 229.674 224.317 224.317 227.951 227.951 255.112 255.112 KK / MHz/ MHz--45.2241(51) 45.2241(51) --40.872 40.872 --40.303 40.303 --40.374 40.374 --40.525 40.525 JKJK / MHz/ MHz9.2889(14) 9.2889(14) 8.826 8.826 8.818 8.818 8.730 8.730 8.127 8.127 JJ / MHz/ MHz

ExperimentExperimentCCSD(T)/CCSD(T)/aaugugCVQZCVQZ

CCSD(T)/CCSD(T)/aaugugCVTZCVTZ

CCSD/CCSD/aaugugCVTZCVTZ

HFHF--SCF/SCF/aaugugCVTZ CVTZ DD22

1717OO

Quartic & sextic centrifugalQuartic & sextic centrifugal--distortion constantsdistortion constants

Puzzarini, Cazzoli, Gauss, Puzzarini, Cazzoli, Gauss, J. Chem. Phys.J. Chem. Phys. 137137, 154311 (2012), 154311 (2012)

Page 172: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

COMPOSITE APPROACH extended to large moleculeCOMPOSITE APPROACH extended to large molecule Equilibrium Rotational ConstantsEquilibrium Rotational Constants

(T)(diff)(CV)(CBS)T)diffCV(CBS rrrrr

MP2/cc-pV(T,Q)Z

MP2/cc-pCVTZ

MP2/aug-cc-pVTZ

CCSD(T)/cc-pVTZ

Vibrational Corrections to Rotational ConstantsVibrational Corrections to Rotational ConstantsB3LYP/N07D MP2/cc-pVTZ

CentrifugalCentrifugal--Distortion ConstantsDistortion Constants(MP2/VTZ)(MP2/aVTZ)fc)(MP2/CVTZ,all)(MP2/CVTZ,Z)(CCSD(T)/T(best) DDDDDD

CV diffuse

Puzzarini & Barone, PCCP 13, 7158 (2011)

Page 173: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

CalculatedCalculated Experiment Experiment AA00 MHzMHz 3885.4753885.475 3883.873021(60)3883.873021(60)

BB00 MHzMHz 2027.7632027.763 2023.732581(45)2023.732581(45)

CC00 MHzMHz 1332.7611332.761 1330.928108(33)1330.928108(33)

DDJ J kHzkHz 0.0610.061 0.06336(44)0.06336(44)

DDJKJK kHzkHz 0.1070.107 0.1055(23)0.1055(23)

DDKK kHzkHz 0.4470.447 0.4530(32)0.4530(32)

dd11 kHzkHz --0.0260.026 --0.02623(18)0.02623(18)

dd22 kHzkHz --0.0060.006 --0.00680(13)0.00680(13)

aaaa MHzMHz 1.7391.739 1.7600 (25)1.7600 (25)

bbbb MHzMHz 1.9521.952 1.9811(29)1.9811(29)

aaaa MHzMHz 1.8711.871 1.9255(24)1.9255(24)

bbbb MHzMHz 1.4911.491 1.5273(32)1.5273(32)

~1~1%%

URACILURACIL

Puzzarini & Barone, PCCP 13, 7158 (2011)

Page 174: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

HYPERFINE HYPERFINE STRUCTURESTRUCTURE

Page 175: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Accurate Accurate hyperfine parametershyperfine parameters

>>>> >>>> MainMain requirementsrequirements::

-- accurate accurate method method [CCSD(T)][CCSD(T)]-- cc basiscc basis set [nset [nQ]Q]

-- CV CV correction correction [[additivityadditivity]]

-- vibrational correction vibrational correction [[ffff:: correlcorrel methmeth..]]

Page 176: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

QuantumQuantum--Chemical CalculationChemical Calculationof Hyperfine Parametersof Hyperfine Parameters

• Nuclear quadrupole couplingNuclear quadrupole coupling

firstfirst--order propertyorder property

ELECTRIC FIELD GRADIENT

qK

RK = position of the K-th nucleus r = position of the electron

-- first derivative of first derivative of EE wrt wrt QQKK computed at computed at QQ=0=0-- expectation value of the corresponding operatorexpectation value of the corresponding operator

Page 177: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Nuclear quadrupoleNuclear quadrupole--coupling constants:coupling constants:from electric field gradientsfrom electric field gradients

KijKij qeQ

ij-th element of the nuclear quadrupole-coupling tensor of the K-th nucleus:

-eQK = quadrupole momentqij = ij-th element of the electric field-gradient tensorIK 1

(known!!)

Page 178: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

462980 462990 463000 463010

trans-CH35Cl=CHF: portion of the J=0; K-1=+1; K-1 = 4 band

CALC.(without Cl quadrupole coupling)

CALC.

EXP.

FREQUENCY (MHz)462980 462990 463000 463010

trans-CH35Cl=CHF: portion of the J=0; K-1=+1; K-1 = 4 band

CALC.(without Cl quadrupole coupling)

CALC.

EXP.

FREQUENCY (MHz)

(~2 GHz freq. Shift!)(~2 GHz freq. Shift!)

Nuclear quadrupoleNuclear quadrupole--coupling constants:coupling constants:effect on rotational spectrumeffect on rotational spectrum

Page 179: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

COMPOSITE APPROACH extended to large moleculeCOMPOSITE APPROACH extended to large molecule Equilibrium Rotational ConstantsEquilibrium Rotational Constants

(T)(diff)(CV)(CBS)T)diffCV(CBS rrrrr

MP2/cc-pV(T,Q)Z

MP2/cc-pCVTZ

MP2/aug-cc-pVTZ

CCSD(T)/cc-pVTZ

Vibrational Corrections to Rotational ConstantsVibrational Corrections to Rotational ConstantsB3LYP/N07D MP2/cc-pVTZ

Nitrogen qudrupoleNitrogen qudrupole--coupling Constantscoupling Constants

Puzzarini & Barone, PCCP 13, 7158 (2011)

(diff)QZ)(TZVTZ)(CCSD(T)/Cest)( b

MP2/cc-pCV(T,Q)Z

MP2/aug-cc-pVTZ

Page 180: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

CalculatedCalculated Experiment Experiment AA00 MHzMHz 3885.4753885.475 3883.873021(60)3883.873021(60)

BB00 MHzMHz 2027.7632027.763 2023.732581(45)2023.732581(45)

CC00 MHzMHz 1332.7611332.761 1330.928108(33)1330.928108(33)

DDJ J kHzkHz 0.0610.061 0.06336(44)0.06336(44)

DDJKJK kHzkHz 0.1070.107 0.1055(23)0.1055(23)

DDKK kHzkHz 0.4470.447 0.4530(32)0.4530(32)

dd11 kHzkHz --0.0260.026 --0.02623(18)0.02623(18)

dd22 kHzkHz --0.0060.006 --0.00680(13)0.00680(13)

aaaa MHzMHz 1.7391.739 1.7600 (25)1.7600 (25)

bbbb MHzMHz 1.9521.952 1.9811(29)1.9811(29)

aaaa MHzMHz 1.8711.871 1.9255(24)1.9255(24)

bbbb MHzMHz 1.4911.491 1.5273(32)1.5273(32)

11--22%%

URACILURACIL

Puzzarini & Barone, PCCP 13, 7158 (2011)

Page 181: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

QuantumQuantum--Chemical CalculationChemical Calculationof Hyperfine Parametersof Hyperfine Parameters

• SpinSpin--rotation interactionrotation interaction

secondsecond--order propertyorder property

Page 182: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Nuclear spinNuclear spin--rotation tensorrotation tensor

Electronic contributionElectronic contribution Nuclear contributionNuclear contribution

++

K = gyromagnetic ratio of the K-th nucleus

lK = electronic angular momentum defined wrt RK

l = electronic angular momentumJ = rotational angular momentumI = nuclear spin angular momentum

Page 183: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

requires equilibrium geometry: no „electronic property“requires equilibrium geometry: no „electronic property“

addditional contribution due to: addditional contribution due to:

vibrational correctionsvibrational corrections (anharmonic force field)(anharmonic force field)

QuantumQuantum--Chemical CalculationChemical Calculationof Spectroscopic Parametersof Spectroscopic Parameters

• SpinSpin--spin couplingspin couplingDIPOLAR SPIN-SPIN COUPLING TENSOR

Page 184: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

VIBRATIONAL VIBRATIONAL CORRECTIONCORRECTION

eqavevib PPP

Difference between vibrationally averaged Difference between vibrationally averaged value and equilibrium values (same level: i.e., value and equilibrium values (same level: i.e., same method same method and and same basis setsame basis set))

Page 185: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

VIBRATIONAL AVERAGINGVIBRATIONAL AVERAGING

r sr

sreqsr

reqr

eq QQQQPQ

QPPP

,...

2

21

s s

rss

rrQ

24

wherewhere

rrssrQQ

2

ExpansionExpansion of the of the expectation valueexpectation value over the over the vib wf vib wf aroundaround the the equil wrt normalequil wrt normal--coordinate coordinate displacementsdisplacements

A.A.A.A. AuerAuer, J. Gauss , J. Gauss && J.F.J.F. StantonStanton, JCP , JCP 118118, 10407 (2003), 10407 (2003)

Page 186: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Cazzoli, Puzzarini, Stopkowicz, Gauss, Astrophys. J. Suppl. 196, 10 (2011)

188308.35 188308.40 188308.45 188308.50

F1 = 28,26F1 = 27

F1 = 0 J = 273,24 - 273,25

transtrans--HCOOD: hyperfine structure due to DHCOOD: hyperfine structure due to D

Page 187: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Cazzoli, Puzzarini, Stopkowicz, Gauss, Astrophys. J. Suppl. 196, 10 (2011)

188308.35 188308.40 188308.45 188308.50

F1,F = 28,57/2 26,53/2F1,F = 28,55/2

26,51/2

F1,F = 27,55/2F1,F = 27,53/2

F1, F = 0 J = 273,24 - 273,25

transtrans--HCOOD: hyperfine structure due to D and HHCOOD: hyperfine structure due to D and H

Page 188: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Cazzoli, Puzzarini, Stopkowicz, Gauss, Astrophys. J. Suppl. 196, 10 (2011)

188308.35 188308.40 188308.45 188308.50

F1,F = 28,57/2 26,53/2F1,F = 28,55/2

26,51/2

F1,F = 27,55/2F1,F = 27,53/2

F1, F = 0 J = 273,24 - 273,25

transtrans--HCOOD: hyperfine structure due to D and HHCOOD: hyperfine structure due to D and H

Page 189: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

CODECS Summer School 2013 CODECS Summer School 2013 THEORETICAL SPECTROSCOPY THEORETICAL SPECTROSCOPY

ROTATIONAL SPECTROSCOPY:ROTATIONAL SPECTROSCOPY:Interplay Interplay ofof

Experiment Experiment andand TheoryTheory

Cristina PuzzariniCristina PuzzariniDip. Chimica Dip. Chimica ““Giacomo CiamicianGiacomo Ciamician””

UniversitUniversitàà di Bolognadi Bologna

Page 190: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

PREDICTING PREDICTING ROTATIONAL SPECTRAROTATIONAL SPECTRA

Page 191: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Puzzarini , Biczysko, Barone, Pena, Cabezas,Puzzarini , Biczysko, Barone, Pena, Cabezas, Alonso, Alonso, PCCPPCCP accepted accepted

Page 192: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Observation of the rotational spectrum Observation of the rotational spectrum of thiouracilof thiouracil: :

Can composite schemes provide the spectroscopic Can composite schemes provide the spectroscopic parameters with the proper accuracy?parameters with the proper accuracy?

Page 193: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

COMPOSITE APPROACHCOMPOSITE APPROACH

1) 1) rree (B(Bee), D’s, q’s), D’s, q’s: : “cheap” geom scheme“cheap” geom scheme

2) 2) alphasalphas: : DFTDFT

Best = CBS(MP2/TZBest = CBS(MP2/TZ--QZ) QZ) + CV(MP2/CVTZ)+ CV(MP2/CVTZ)+ diff(MP2/AVTZ)+ diff(MP2/AVTZ)+ pertT(CCSD(T)/VTZ)+ pertT(CCSD(T)/VTZ)

r

BreBB

21

0 DFT = B3LYP/SNSDDFT = B3LYP/SNSD

Page 194: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Parameter

A0 [MHz] 3555.18805(64) 3555.458 3545.6594(11) 3545.945B0 [MHz] 1314.86002(27) 1315.287 1276.1741(51) 1276.569C0 [MHz] 960.03086(16) 960.200 938.57117(54) 938.732

14N(1)

χaa [MHz] 1.634(10) 1.609 1.616(13) 1.614χbb [MHz] 1.777(12) 1.813 1.755(17) 1.807χcc [MHz] -3.411(12) -3.422 -3.371(17) -3.422χab [MHz] - 0.314 - 0.316

14N(3)

χaa [MHz] 1.726(10) 1.739 1.732(13) 1.733χbb [MHz] 1.399(13) 1.384 1.429(19) 1.390χcc [MHz] -3.125(13) -3.123 -3.161(19) -3.123χab [MHz] - -0.336 - -0.339

Main 34SExp Theo Exp Theo

0.1%0.1%

Page 195: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

6000 7000 8000 9000 10000 11000 12000

FREQUENCY (MHz)

EXPERIMENT THEORY

32S

Page 196: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

9500 9600 9700 9800 9900 10000 10100

52,4 - 51,5 41,4 - 30,3

50,5 - 41,4

FREQUENCY (MHz)

EXPERIMENT THEORY

Page 197: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

9500 9600 9700 9800 9900 10000 10100

52,4 - 51,5 41,4 - 30,3

50,5 - 41,4

FREQUENCY (MHz)

EXPERIMENT THEORY (only B's) THEORY (B's + D's)

Page 198: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

9601.0 9601.5 9602.0 9602.5 9603.0 9603.5 9604.0 9604.5

50,5 - 41,4

FREQUENCY (MHz)

EXPERIMENT THEORY (only B's) THEORY (B's + D's)

~3 MHz~3 MHz

Page 199: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Parameter

A0 [MHz] 3555.18805(64) 3555.458 3545.6594(11) 3545.945B0 [MHz] 1314.86002(27) 1315.287 1276.1741(51) 1276.569C0 [MHz] 960.03086(16) 960.200 938.57117(54) 938.732

14N(1)

χaa [MHz] 1.634(10) 1.609 1.616(13) 1.614χbb [MHz] 1.777(12) 1.813 1.755(17) 1.807χcc [MHz] -3.411(12) -3.422 -3.371(17) -3.421χab [MHz] - 0.314 - 0.316

14N(3)

χaa [MHz] 1.726(10) 1.739 1.732(13) 1.733χbb [MHz] 1.399(13) 1.384 1.429(19) 1.390χcc [MHz] -3.125(13) -3.123 -3.161(19) -3.123χab [MHz] - -0.336 - -0.339

Main 34SExp Theo Exp Theo

~~1%1%

Page 200: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

4514.5 4515.0 4515.5 4516.0

FREQUENCY (MHz)

theory experiment

~0.4 MHz2,1 0,02,1 1,12,1 2,2

1,1 0,01,1 1,11,1 2,2

2,3 2,2

1,2 1,11,2 2,2

0,1 0,00,1 1,10,1 2,2

2,2 1,12,2 2,2

1,0 1,1

Page 201: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Cazzoli, Puzzarini, Stopkowicz, Gauss, Cazzoli, Puzzarini, Stopkowicz, Gauss, A A &&AA 520520, A64 (2010), A64 (2010)

Page 202: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

LaboratoryLaboratory of of MillimetreMillimetre--wavewave

SpectroscopySpectroscopy of Bolognaof Bologna107638 .20 107638 .25 107638 .30 107638 .35

H CO O H : J = 182 ,16

- 182 ,17

R F da ta : on ly S R

E xpe rim en t: Lam b-d ip

F R E Q U E N C Y (M H z)

J.-C. Chardon, C. Genty, D. Guichon, & J.-G. Theobald, J. Chem. Phys. 64, 1434 (1976) “rf spectrum and hyperfine structure of formic acid”

Page 203: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

LaboratoryLaboratory of of MillimetreMillimetre--wavewave

SpectroscopySpectroscopy of Bolognaof Bologna107638 .20 107638 .25 107638 .30 107638 .35

H CO O H : J = 182 ,16

- 182 ,17

R F da ta : on ly S R

E xpe rim en t: Lam b-d ip

F R E Q U E N C Y (M H z)

J.-C. Chardon, C. Genty, D. Guichon, & J.-G. Theobald, J. Chem. Phys. 64, 1434 (1976)

Page 204: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

LaboratoryLaboratory of of MillimetreMillimetre--wavewave

SpectroscopySpectroscopy of Bolognaof Bologna107638 .20 107638 .25 107638 .30 107638 .35

H CO O H : J = 182 ,16

- 182 ,17

R F da ta : on ly S R

T heo ry:on ly S R

T heo ry: S R and S S

E xpe rim en t

F R E Q U E N C Y (M H z)

Page 205: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

LaboratoryLaboratory of of MillimetreMillimetre--wavewave

SpectroscopySpectroscopy of Bolognaof Bologna107638 .20 107638 .25 107638 .30 107638 .35

H CO O H : J = 182 ,16

- 182 ,17

R F da ta : on ly S R

T heo ry:on ly S R

T heo ry: S R and S S

E xpe rim en t

F R E Q U E N C Y (M H z)

Page 206: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ExperimentExperiment TheoryTheory RFRF resultsresults

CCaaaa [H(C)][H(C)] --6.835(46)6.835(46) --7.027.02 --7.50(20)7.50(20)

CCbbbb [H(C)][H(C)] 1.0371.037 1.041.04

CCcccc [H(C)][H(C)] --0.8014(96)0.8014(96) --0.820.82

CCaaaa [H(O)][H(O)] --6.868(45)6.868(45) --6.946.94 --6.55(20)6.55(20)

CCbbbb [H(O)][H(O)] 0.781(20)0.781(20) 0.770.77

CCcccc [H(O)][H(O)] --1.290(15)1.290(15) --1.321.32

1.51.5DDaaaa 4.49(12)4.49(12) 4.624.62 ----

((DDbbbb –– DDcccc)/4)/4 --3.53(35)3.53(35) --3.473.47 ----Equil: CCSD(T)/CV5Z +Equil: CCSD(T)/CV5Z +

Vib. Corr: CCSD(T)/CVTZVib. Corr: CCSD(T)/CVTZ

Hyperfine parameters of transHyperfine parameters of trans--HCOOHHCOOH

Page 207: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ExperimentExperiment TheoryTheory RFRF resultsresults

CCaaaa [H(C)][H(C)] --6.835(46)6.835(46) --7.027.02 --7.50(20)7.50(20)

CCbbbb [H(C)][H(C)] 1.0371.037 1.041.04 --7.2(40)7.2(40)

CCcccc [H(C)][H(C)] --0.8014(96)0.8014(96) --0.820.82 7.5(40)7.5(40)

CCaaaa [H(O)][H(O)] --6.868(45)6.868(45) --6.946.94 --6.55(20)6.55(20)

CCbbbb [H(O)][H(O)] 0.781(20)0.781(20) 0.770.77 8.2(40)8.2(40)

CCcccc [H(O)][H(O)] --1.290(15)1.290(15) --1.321.32 --8.6(40)8.6(40)

1.51.5DDaaaa 4.49(12)4.49(12) 4.624.62 ----

((DDbbbb –– DDcccc)/4)/4 --3.53(35)3.53(35) --3.473.47 ----

Hyperfine parameters of transHyperfine parameters of trans--HCOOHHCOOH

Cazzoli, Puzzarini, Stopkowicz, Gauss, A &A 520, A64 (2010)

Page 208: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

MOLECULAR PROPERTIESMOLECULAR PROPERTIES

Page 209: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

-- ELECTRIC:ELECTRIC:

-- MAGNETIC:MAGNETIC:

• Dipole moment

ElectricElectric and and magneticmagnetic properties properties fromfrom RotationalRotational SpectroscopySpectroscopy

• Nuclear quadrupole coupling

• Spin-rotation interaction• Spin-spin interaction

Page 210: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ELECTRIC PROPERTIESELECTRIC PROPERTIES

Page 211: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Electric dipole momentElectric dipole moment

Page 212: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Analysis of the spectra completed:Analysis of the spectra completed:1. Transitions assigned 1. Transitions assigned (transition frequencies retrieved)(transition frequencies retrieved)

2. Frequecies fitted 2. Frequecies fitted (with the proper Hamiltonian)(with the proper Hamiltonian)

3. Spectroscopic parameters:3. Spectroscopic parameters:

-- rotational constants rotational constants BB-- centrifugalcentrifugal--distortion constants distortion constants D, H, D, H, ……-- hyperfine parameters hyperfine parameters (if the case)(if the case)

-- dipole moment dipole moment (if Stark spectroscopy)(if Stark spectroscopy)

Page 213: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

1 0 6 7 8 0 1 0 6 7 9 0 1 0 6 8 0 0 1 0 6 8 1 0

F = 1 1 - 1 1

F re q u e n c y (M H z )

6 4 .8 V 7 4 .0 V 8 2 .2 V 9 1 .1 V 1 0 6 .6 V

J = 52 ,3

- 51 ,4

F = 9 - 9

CHCH22FBrFBr

UnknownUnknown molecularmolecular dipoledipole moment …moment …ExperimentExperiment: : StarkStark spectroscopyspectroscopy ……UnknownUnknown molecularmolecular dipoledipole momentmoment ……

Page 214: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

1 0 6 7 8 0 1 0 6 7 9 0 1 0 6 8 0 0 1 0 6 8 1 0

F = 1 1 - 1 1

F re q u e n c y (M H z )

6 4 .8 V 7 4 .0 V 8 2 .2 V 9 1 .1 V 1 0 6 .6 V

J = 52 ,3

- 51 ,4

F = 9 - 9

CHCH22FBrFBr

UnknownUnknown molecularmolecular dipoledipole moment …moment …ExperimentExperiment: : StarkStark spectroscopyspectroscopy ……UnknownUnknown molecularmolecular dipoledipole momentmoment ……

-- POSITIVE PEAKS: unperturbed transitionsPOSITIVE PEAKS: unperturbed transitions-- NEGATIVE PEAKS: Stark componentsNEGATIVE PEAKS: Stark components

Page 215: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

1 0 6 7 8 0 1 0 6 7 9 0 1 0 6 8 0 0 1 0 6 8 1 0

F = 1 1 - 1 1

F re q u e n c y (M H z )

6 4 .8 V 7 4 .0 V 8 2 .2 V 9 1 .1 V 1 0 6 .6 V

J = 52 ,3

- 51 ,4

F = 9 - 9

CHCH22FBrFBr

aa bb

aVQZaVQZ -0.341 -1.696

aV5ZaV5Z -0.346 -1.700

CBSCBS -0.350 -1.702

CBS+CVCBS+CV -0.355 -1.710

Expt.Expt. -0.3466(11) -1.704(26)

CBS+CV+ZPVCBS+CV+ZPV --0.339 -1.701

CazzoliCazzoli, , PuzzariniPuzzarini, , BaldacciBaldacci && BaldanBaldan JMSJMS 241241 115 (2007)115 (2007)

ValuesValues in in debyedebye

Page 216: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

DIPOLE MOMENT of CHDIPOLE MOMENT of CH22FIFI

2nd-order Direct Perturbation Theory

spin-free Dirac Coulomb approach

importance of relativistic effects importance of relativistic effects for heavy elementsfor heavy elements

-0.022

Values in debye

Page 217: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Analysis of the spectra completed:Analysis of the spectra completed:1. Transitions assigned 1. Transitions assigned (transition frequencies retrieved)(transition frequencies retrieved)

2. Frequecies fitted 2. Frequecies fitted (with the proper Hamiltonian)(with the proper Hamiltonian)

3. Spectroscopic parameters:3. Spectroscopic parameters:

-- rotational constants rotational constants BB-- centrifugalcentrifugal--distortion constants distortion constants D, H, D, H, ……-- hyperfine parameters hyperfine parameters (if the case)(if the case)

-- dipole moment dipole moment (if Stark spectroscopy)(if Stark spectroscopy)

Page 218: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Nuclear QuadrupoleNuclear QuadrupoleCouplingCoupling

DETERMINATIONDETERMINATIONof the of the

NUCLEAR QUADRUPOLENUCLEAR QUADRUPOLEMOMENTMOMENT

Page 219: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Bromine Nuclear Quadrupole MomentBromine Nuclear Quadrupole Moment

yearyear eQ eQ Lederer, ShirleyLederer, Shirley 1978 293TaqquTaqqu 1978 331(4)Kellö, SadlejKellö, Sadlej 1990 304.5Kellö, SadlejKellö, Sadlej 1996 298.9Hass, PetrilliHass, Petrilli 2000 305(5); 308.7Van Lenthe, BaerendsVan Lenthe, Baerends 2000 300(10)Bieron et al.Bieron et al. 2001 313(3)

values in mbarn for values in mbarn for 7979BrBr

Page 220: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Revision of the Revision of the 7979Br Quadrupole MomentBr Quadrupole Moment

nuclear quadrupole moment computed

electric field gradient

experimentalquadrupole coupling

Stopkowicz, Cheng, Harding, Puzzarini, Gauss, Mol. Phys. Stopkowicz, Cheng, Harding, Puzzarini, Gauss, Mol. Phys. 111111, 1382 (2013) , 1382 (2013)

HBrHBr

Page 221: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Bromine Quadrupole Coupling in CH2FBr

good agreement between theory and experimentgood agreement between theory and experiment

Theory:

χijexp χij

rel+vib Δ/%

χaa 443.431(8) 441.4 0.45

χbb-χcc 153.556(26) 154.1 0.35

χab -278.56(19) -278.4 0.06

including relativistic effects including relativistic effects && using new Q:using new Q:

Stopkowicz, Cheng, Harding, Puzzarini, Gauss, Mol. Phys. Stopkowicz, Cheng, Harding, Puzzarini, Gauss, Mol. Phys. 111111, 1382 (2013) , 1382 (2013)

Page 222: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

MAGNETIC PROPERTIESMAGNETIC PROPERTIES

Page 223: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

NMRNMR MWMW

Bryce Bryce & & WasylishenWasylishen, , AccAcc. . ChemChem. Res.. Res. 3636, 327 (2003), 327 (2003)

connectionconnection

nuclear magneticnuclear magneticshieldingshielding

absolute shieldingabsolute shieldingscalesscales

RamseyRamsey--FlygareFlygareequationsequations

formform of of HamiltoniansHamiltonians::coupling mechanismcoupling mechanism

vsvstensor ranktensor rank

nuclear quadrupole nuclear quadrupole couplingcoupling

nuclear quadrupole nuclear quadrupole couplingcoupling CCQQ

nuclear nuclear spinspin--rotationrotation

CC

chemical chemical shiftshift

tensor spintensor spin--spinspincouplingcoupling ((rank rank 2)2)

CC33

scalar scalar spinspin--spinspincouplingcoupling ((rank rank 0)0)

CC44

direct direct dipolardipolarcouplingcoupling

DD

indirect spinindirect spin--spinspincouplingcoupling

JJ

Page 224: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

nuclear magnetic shielding nuclear magnetic shielding

DIATOMIC or LINEAR MOLECULESDIATOMIC or LINEAR MOLECULES

r

Zme

Bc

gmm

e

I

Ne

ppp

3423

223 2

0

= = dd ++ pp

DIAMAGNETIC PARTDIAMAGNETIC PART PARAMAGNETIC PARTPARAMAGNETIC PART

Page 225: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

nuclear magnetic shielding nuclear magnetic shielding

DIATOMIC or LINEAR MOLECULESDIATOMIC or LINEAR MOLECULES

r

Zme

Bc

gmm

e

I

Ne

ppp

3423

223 2

0

= = dd ++ pp

DIAMAGNETIC PARTDIAMAGNETIC PART PARAMAGNETIC PARTPARAMAGNETIC PART

Page 226: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

nuclear magnetic shielding nuclear magnetic shielding

ASYMMETRICASYMMETRIC--TOPTOP MOLECULESMOLECULES

= = dd ++ pp

DIAMAGNETIC PARTDIAMAGNETIC PART PARAMAGNETIC PARTPARAMAGNETIC PART

Page 227: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

1717 & & 221717

Puzzarini, Cazzoli, Harding, Vázquez, Gauss, Puzzarini, Cazzoli, Harding, Vázquez, Gauss, work in progress work in progress …………

Absolute NMR shielding scaleAbsolute NMR shielding scale

Page 228: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

LaboratoryLaboratory of of MillimetreMillimetre--wavewave

SpectroscopySpectroscopy of Bolognaof Bologna

The beginning of the story ….The beginning of the story ….

Page 229: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

385784 385786 385788 385790

J = 41,4

- 32,1

Experiment

Real+Ghost

Real

Ghost

FREQUENCY (MHz)

PuzzariniPuzzarini, , Cazzoli, Harding , Cazzoli, Harding , Vázquez Vázquez && GausGauss, s, JCP JCP 131131, 234304 , 234304 (2009) (2009)

HH221717OO::

Page 230: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

1717OO ExperimentExperiment TheoryTheory

CCaaaa --28.477(88)28.477(88) --28.1828.18--28.6128.61

CCbbbb --28.504(71)28.504(71) --27.9427.94--27.9927.99

CCcccc --18.382(47)18.382(47) --18.4618.46--18.4918.49

results in kHzresults in kHz

Results ……. SR of Results ……. SR of 1717O O

Page 231: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Method:Method:CCSD(T)CCSD(T)

Equil.Equil.(exp r(exp ree))

Vib. Vib. Corr.Corr.(VPT2)(VPT2)

Vib. Vib. Corr.Corr.(DVR)(DVR)

TotalTotal(Eq+Vib)(Eq+Vib)

basisbasis augCV6ZaugCV6Z augCV5ZaugCV5Z augCV5ZaugCV5Z

CCaaaa --22.25122.251 --5.9335.933 --6.3616.361 --28.18428.184--28.61228.612

CCbbbb --25.19625.196 --2.7412.741 --2.7942.794 --27.93727.937--27.99027.990

CCcccc --17.47617.476 --0.9880.988 --1.0151.015 --18.46418.464--18.49118.491

Page 232: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Absolute Absolute 1717O NMR scaleO NMR scale[ppm][ppm] isotropicisotropic

(dia) (dia) calculatedcalculated

416.4416.4

(para) (para) from expfrom exp

--78.578.5

(equil)(equil)

(vib)(vib)

(T)(T)

338.1(3)338.1(3)

--11.711.7

--0.40.4

(300K)(300K) 326.2(3)326.2(3)

Best theoretical estimate Best theoretical estimate 325.6325.6 ppmppm

Page 233: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

In search of confirmation ….In search of confirmation ….

Determination of the Determination of the 1717O spinO spin--rotation constants rotation constants

for for DD221717OO and and HDHD1717OO

Page 234: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

221717

Page 235: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

--1.611.61----SSaaaa (D(D--D) / kHzD) / kHz2.42.4442.11(65)2.11(65)SSaaaa (D(D--1717O) / kHzO) / kHz--2.612.61----CCcc cc (D) / kHz(D) / kHz--2.42.411----CCbb bb (D) / kHz(D) / kHz--2.92.944----CCaa aa (D) / kHz(D) / kHz--0.10.188--0.189(11)0.189(11)eQqeQqcccc (D) / MHz(D) / MHz0.020.020.041(11)0.041(11)eQqeQqbbbb (D) / MHz(D) / MHz0.150.150.1479(26)0.1479(26)eQqeQqaaaa (D) / MHz(D) / MHz--9.49.411--9.669.66((2828))CCcc cc ((1717O) / kHzO) / kHz--13.6113.61--113.343.34(2(255))CCbb bb ((1717O) / kHzO) / kHz--14.6714.67--114.574.57(2(211))CCaa aa ((1717O) / kHzO) / kHz10.010.04410.1433(68)10.1433(68)eQqeQqcccc ((1717O) / MHzO) / MHz--1.21.233--1.2716(68)1.2716(68)eQqeQqbbbb ((1717O) / MHz O) / MHz --8.88.811--8.8717(28)8.8717(28)eQqeQqaaaa ((1717O) / MHzO) / MHz

THEORYTHEORYEXPERIMENTEXPERIMENT

--14.8014.80--13.13.6060--9.419.41

Equilibrium: CCSD(T)/augCV6ZEquilibrium: CCSD(T)/augCV6ZVibrat. Corr.: CCSD(T)/augCV5ZVibrat. Corr.: CCSD(T)/augCV5Z

VPT2VPT2 DVRDVR

Page 236: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Absolute Absolute 1717O NMR scaleO NMR scale[ppm][ppm] HH22

1717OO

(dia) (dia) calculatedcalculated

416.4 416.4

(para) (para) from expfrom exp

--79.0(3)79.0(3)

(equil)(equil)

(vib)(vib)

(T)(T)

337.4(3)337.4(3)

--11.711.7

--0.40.4

(300K)(300K) 325.3(3)325.3(3)

DD221717OO

416.4416.4

--78.6(9)78.6(9)

337.8(9)337.8(9)

--8.48.4

--0.40.4

329.0(9)329.0(9)

Page 237: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

MOLECULAR STRUCTUREMOLECULAR STRUCTUREDETERMINATIONDETERMINATION

Page 238: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Rotational constant Rotational constant

Inertia tensor Inertia tensor

Isotopic substitution Isotopic substitution

Page 239: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

TYPES of MOLECULAR STRUCTURETYPES of MOLECULAR STRUCTURE

EFFECTIVE STRUCTURE: EFFECTIVE STRUCTURE: rr00

SUBSTITUTION STRUCTURE: SUBSTITUTION STRUCTURE: rrss

MASSMASS--DEPENDENCE STRUCTURE: DEPENDENCE STRUCTURE: rrmm

EQUILIBRIUM STRUCTURE: EQUILIBRIUM STRUCTURE: rree

Page 240: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

EFFECTIVE STRUCTURE EFFECTIVE STRUCTURE rr00

Structure calculated directly from Structure calculated directly from BB00::leastleast--squares fit squares fit of theof the molecular structural molecular structural parameters toparameters to the the momentsmoments ofof inertia inertia II00

j

jj

calcicalc

ii pp

III exp

i runs over inertial moments (isotopic substitution)j runs over structural parameters

Page 241: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

rr00 > r> ree

Accuracy: limitedAccuracy: limitedApproximation = zero-point vibrational effects are the same for different isotopic species

SO2: r(S–O)rree = 1.4308 Årr00 = 1.4336 Å

Morino et al. J. Mol. Spectrosc. 13, 95 (1964)

FCPr(F–C) r(C–P)

rree (Å) 1.27547 1.54476rr00 (Å) 1.28456 1.54097

Bizzocchi, Degli Esposti, Puzzarini Mol. Phys. 104, 2627 (2006)

Page 242: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

SUBSTITUTION STRUCTURE SUBSTITUTION STRUCTURE rrss

Make use of isotopic substitution for deriving the Make use of isotopic substitution for deriving the position (coordinates) of the substitued atom:position (coordinates) of the substitued atom:

Kraitchman’s equationsKraitchman’s equations

mMmM

yzI

xzI

xyI

yxII

zxII

zyII

yz

xz

xy

zzz

yyy

xxx

'

'

'

'

'

'

)(

)(

)(

22

22

22

[C.C. Costain, [C.C. Costain, J. Chem. Phys.J. Chem. Phys. 2929, 864 (1958)], 864 (1958)]

Page 243: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

1) Accuracy: 1) Accuracy: rree rrss rr00Approximation = zero-point vibrational effects tend to cancel using Kraitchman’s equation2) Each non2) Each non--equivalent atoms be equivalent atoms be substitutedsubstitutedWhen not feasible:

firstfirst--moment equationsmoment equationsm

zmz sii

Page 244: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ClCl BB SS

1.604923(90)1.680567(89)rree

1.6040(10)1.6815(10)rrss

1.6063(22)1.6819(22)rr00

B=SCl–B(Å)

Bizzocchi, Degli Esposti, Puzzarini J. Mol. Spectrosc. 216, 177 (2002)

Page 245: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

zzPy

yPx

xPPP xxxcalc

xx

000

exp

- similar equations for Py and Pz- (x0 ,y0 ,z0) coordinate of the atom in the parent molecule

leastleast--squares treatment to obtain squares treatment to obtain rrss structures:structures:Planar moment of inertiaPlanar moment of inertia

iiiiyz

iiiixz

iiiixy

iiiz

iiiy

iiix

zymPzxmPyxmP

zmPymPxmP

222

[Mostly used for asymmetric[Mostly used for asymmetric--top molecules]top molecules]

Page 246: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

MASSMASS--DEPENDENCE STRUCTURE DEPENDENCE STRUCTURE rrmm

Extension of the substitution method:Extension of the substitution method:to firstto first--order, the mass dependence of the order, the mass dependence of the vibrational contributions are determinedvibrational contributions are determined

ss

bs

e

eb

ii

i

eb

mb

dBI

mmM

MII

2

12

2

Linear molecule case

mass-dependence moment of inertiambI

first-order approx

Page 247: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

AccuracyAccuracyValidity of the first-order approximation

Major problems:Major problems:- light atoms (as H)

- missing isotopic substitution (as F)

em II

ImprovementsImprovementsL)2(L)1()2()1(

mmmm rrrr

Page 248: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

cbaIcII mm ,,/

210

rrmm(1)(1) modelmodel

It can be used for molecules that contains atoms such as F

cbaMmmdIcII NN

mm ,,/ //

)22(11

210

rrmm(2)(2) modelmodel

Suitable correction function based on appropriate reduced masses

Page 249: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Molecular structure of OCSMolecular structure of OCS

1.562021(17)1.155386(21)re

1.56120(5) 1.15619(12)rm(2)

1.56045(116)1.15764(66)rm(1)

1.56150(93)1.15842(76)rs

1.56488(92)1.15638(113)r0

r(C–S)r(C–O)OCS

Watson et al. J. Mol. Spectrosc. 196, 102 (1999)Foord et al. Mol. Phys. 29, 1685 (1975)

Page 250: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

21

(XH)(XH)/

HH

Hmeff

m mMmMrr

rrmm(1L)(1L) andand rrmm

(2L)(2L) modelsmodels

Laurie-type correction: introduced by using an effective bond length

To solve anomalies due to light atoms …

1.15310(24)1.06531(92)1.15404(15)1.06163(24)rm(2)

1.15324(2)1.06501(8)re

1.15338(11)1.06423(33)1.15392(20)1.06220(4)rm(1)

r(C-N)r(H-C)r(C-N)r(H-C)with corr.without corr.HCNHCN Watson et al. J. Mol. Spectrosc. 196, 102 (1999)

Page 251: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Comparison & AccuracyEXAMPLESEXAMPLES

Page 252: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

1.04571.04651.0651

1.21931.21651.2075

r0rsre

H C C

H C C C C F

1.05731.05581.0614

1.20791.20781.2080

1.35251.37131.3731

1.22211.20311.2013

1.28541.27291.2735

rs

r0

re

The failure of the The failure of the rrss structurestructure

M. Bogey, C. Demuynck, and J. L. Destombes, Mol. Phys. 66, 955 (1989).P. Botschwina and C. Puzzarini, J. Mol. Spectrosc. 208, 292 (2001).

L. Dore, L. Cludi, A. Mazzavillani, G. Cazzoli, and C. Puzzarini, Phys. Chem. Chem. Phys. 9, 2275 (1999).

Page 253: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

C H

HF

Br

1.35757(13)1.3641(19)1.3674(15)

1.92854(12)1.9274(10)1.9286(8)

1.08302(8)1.0854(4)1.0699(37)

110.151(32)110.36(16)110.24(20)

107.233(8)107.36(5)107.19(5)

109.552(10)109.13(7)109.28(7)

The failure of the The failure of the rrmm structuresstructures

re in blackrm

(1) in redrm

(1L) in blue

C. Puzzarini, G. Cazzoli, A. Baldacci, A. Baldan, C. Michauk, and J. Gauss, J. Chem. Phys. 127, 164302 (2007)

Page 254: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

ciscis--11

--chlor

och

loro--2

2--flu

oroe

thyle

ne

fluor

oeth

ylene

H H

ClF

C C

1.0764

1.0776(4)

1.0787

1.0802(6)

1.3317(3) 1.3310

1.3249

1.3240(14)

7128(6)7107 123.10

123.07(1)

122.53

122.61(6)

120.74(9) 120.43

123.50(2)123.43

cis

21

rree (emp) rrmm(2)(2) rrss rr00

C1–Cl 1.7128(6) 1.715(4) 1.721(5) 1.729(2)

C1–H 1.0776(4) 1.077(6) 1.108(5) 1.110(2)

C1–C2 1.3240(14) 1.330(7) 1.323(4) 1.314(2)

C2–F 1.3317(3) 1.327(8) 1.330(5) 1.345(3)

C2–H 1.0802(6) 1.081(5) 1.088(6) 1.083(2)

ClC1C2 123.07(1) 123.1(2) 122.9(6) 123.2(2)

HC1C2 120.74(9) 121.9(8) 126.4(6) 126.7(3)

FC2C1 122.61(6) 122.8(4) 122.8(5) 122.1(2)

HC2C1 123.50(2) 123.8(2) 124.0(6) 124.6(3)

C. Puzzarini, G. Cazzoli, L. Dore, A. Gambi PCCP 3, 4189 (2001) // C. Puzzarini, G. Cazzoli, A. Gambi, J. Gauss, JCP 125, 054307 (2006)

Page 255: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

EQUILIBRIUM STRUCTURE EQUILIBRIUM STRUCTURE rree

-- Structure calculated from Structure calculated from BBee::leastleast--squares fit squares fit of theof the molecular structural molecular structural parameters toparameters to the the momentsmoments ofof inertia inertia IIee-- Clear physical meaning:Clear physical meaning:minimum of the Bornminimum of the Born--Oppenheimer PES, Oppenheimer PES, truly isotopic independenttruly isotopic independent

cbadBBr

rre ,,

2vrv

r runs over vibrational normal modes

Page 256: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Main limitation:Main limitation:AAvv, B, Bvv, C, Cvv for each vibrational state v

Investigation of either pureInvestigation of either pure--rotational or vibrorotational or vibro--rotational spectra of each fundamental moderotational spectra of each fundamental mode

Approach limited to small (2Approach limited to small (2--4 atoms) molecules4 atoms) molecules

Page 257: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

IMPOSSIBILITY OF GETTING ALL IMPOSSIBILITY OF GETTING ALL VIBRATIONVIBRATION--ROTATION INTERACTION ROTATION INTERACTION

CONSTANTS NEEDED:CONSTANTS NEEDED:HOW TO SOLVE THE PROBLEM?HOW TO SOLVE THE PROBLEM?

THE SEMITHE SEMI--EXPERIMENTAL APPROACHEXPERIMENTAL APPROACHP. Pulay, W. Meyer, J.E. Boggs, P. Pulay, W. Meyer, J.E. Boggs, J. Chem. Phys.J. Chem. Phys. 68, 5077 (1978)68, 5077 (1978)

Page 258: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Equilibrium structureEquilibrium structure::need of need of BBee for various isotopic speciesfor various isotopic species

r

Bre BB

21

0

Rotational constant ofRotational constant ofvibrational ground statevibrational ground state Vibrational correctionVibrational correction

EXPERIMENTEXPERIMENT THEORYTHEORYP. Pulay, W. Meyer, J.E. Boggs, J. Chem. Phys. 68, 5077 (1978).

Page 259: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

BB0 0 fromfrom EXPERIMENTEXPERIMENT((variousvarious isotopicisotopic speciesspecies))

Vibrational Corrections fVibrational Corrections from rom THEORYTHEORY((cubiccubic force force fieldfield))

Actual FIT:Actual FIT:moments of inertiamoments of inertia

Page 260: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

Requirements for accurate structure:Requirements for accurate structure: computed from computed from force field obtained with force field obtained with correlated methodcorrelated method and, at least, and, at least, tripletriple--zeta basis setzeta basis set

TypicalTypical accuracyaccuracy: : betterbetter thanthan 0.001 Å0.001 Å

Page 261: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

1122

33

4455

66

77

88

99

10101111

1212

1.37851.3785

1.38175(53)1.38175(53)

1.386(5)1.386(5)

1.39741.39741.39793(40)

1.39793(40)1.38(2)1.38(2)

1.34

331.

3433

1.34

496(

59)

1.34

496(

59)

1.37

9(4)

1.37

9(4)

125.83125.83125.768(48)125.768(48)118.8(7)118.8(7)

121.91121.91

121.924(10)

121.924(10)

122.3(6)122.3(6)

SS

CCNN NN

HH11 HH11

HH22 HH22

II

FFCC

HHHH

Page 262: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

b) b) ExpExp data: data: spinspin--spinspin constantsconstants

a) a) ExpExp data: data: rotationalrotational constantsconstants

EquilibriumEquilibrium structurestructure determinationdetermination: : reviewreview

1) 1) ExperimentallyExperimentally: r: r00, , rrss, , rrmm, … r, … ree(?)(?)

2) 2) ComputationallyComputationally: r: ree

3) 3) MixedMixed expexp--calccalc: r: ree ((empiricalempirical))

Page 263: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

DIRECTDIRECT spinspin--spinspin interaction interaction constantconstant::DDHHSSSS = + I= + ILL DD IIKK

INDIRECTINDIRECT spinspin--spinspin interaction interaction constantconstant::JJHHSSSS = + I= + ILL JJ IIKK

SPINSPIN--SPIN INTERACTIONSPIN INTERACTION

5LK

2KLijjKLiKLN

0

KLKLij

3cε4

ggR

RRRD

)()(2

Page 264: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

1)1) SubtractionSubtraction of the of the computedcomputed vibrationalvibrational correctioncorrection in in orderorder to getto get equilibriumequilibrium DDKLKL::

PROCEDUREPROCEDURE

KLvib

KLKLeq DDD exp

2) 2) DeterminationDetermination of the of the molecularmolecular structurestructure byby invertinginverting

5LK

2KLijjKLiKLN

0

KLKLij

3cε4

ggR

RRRD

)()(2

PuzzariniPuzzarini, , Metzroth Metzroth && Gauss Gauss unpublished unpublished

Page 265: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

EquilEquil. . structurestructure fromfrom onlyonly 1 1 isotopologueisotopologue

1414NHNH33

rree [DC][DC] rree [semi[semi--exp exp BB]]

r(N-H) HNH r(N-H) HNH

Dzz (N-H)

1.0121(11) 107.05(9) 1.01139(60) 107.17(18)[Dxx-Dyy] (N-H)

Dzz (H-H)

PuzzariniPuzzarini, , Metzroth Metzroth && Gauss Gauss unpublished unpublished semisemi--exp exp BB: Pawlowski et al. : Pawlowski et al. JCPJCP 116116, 6482 (2002) , 6482 (2002)

Page 266: INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

abiabi=(=(allall)CCSD(T)/)CCSD(T)/cccc--pwCVQZpwCVQZ

Partial equilibrium structurePartial equilibrium structure

PuzzariniPuzzarini, , Metzroth Metzroth && Gauss Gauss unpublished unpublished

rree[DC][DC] rree[exp][exp] rree[abi][abi]

HH1313CNCN

HH--CC 1.064(52)1.064(52) 1.06501(8)1.06501(8) 1.06551.0655

XBO XBO (X=F,Cl)(X=F,Cl)

FF--BB 1.252(14)1.252(14) 1.2833(7)1.2833(7) 1.28091.2809

ClCl--BB 1.678(127)1.678(127) 1.68274(19)1.68274(19) 1.68361.6836

FBSFBS

FF--BB 1.282(2)1.282(2) 1.2762(2)1.2762(2) 1.27701.2770