58
Introdução ao Vidro Plano e sua Produção Mauro Akerman Maio 2013 [email protected]

Introdução ao Vidro Plano e sua Produção - USP · A Figura 1 mostra peças encontradas em sítios arqueológicos, produzidas com obsidianas e utilizadas como armas e ferramentas

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Introdução ao Vidro Plano e sua Produção

    Mauro Akerman – Maio 2013

    [email protected]

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 2/58

    Índice

    1 – Objetivo pg. 3

    2 – Introdução pg. 4

    3 – História pg. 6

    4 – Estrutura pg. 14

    5 – Elaboração pg. 18

    6 – Propriedades pg. 23

    7 – Matérias Primas pg. 29

    8 – Processo produtivo industrial pg. 35

    8.1 – Usina de Composição pg. 35

    8.2 – Fornos pg. 36

    8.2.1 – Refratários pg. 39

    8.3 – Processos de Conformação pg. 41

    8.3.1- Processo Float pg. 43

    8.3.2- Principio Funcionamento Float pg. 55

    8.4 – Recozimento pg. 48

    9 – Transformação pg. 48

    10 – Revestimentos Superficiais pg. 52

    11- Bibliografia pg.57

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 3/58

    1 - Objetivo

    O objetivo deste documento é proporcionar uma noção introdutória ao material vidro, suas

    características e propriedades, seu processo de elaboração e conformação nos principais

    processos industriais vidreiros, a pessoas que não necessariamente possuam formação

    técnica.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 4/58

    2 - Introdução

    Aprendeu-se mais a respeito do vidro e de seu processamento nos últimos 40 anos do que

    durante toda a história precedente da tecnologia. Os vidros são hoje utilizados em quase todos

    os aspectos das atividades humanas; em casa, nas janelas, lâmpada e luminárias, sistemas de

    aquecimento solar, fornos e geladeiras, utensílios de mesa, decoração, etc.; na ciência, nos

    microscópios e telescópios constituindo as lentes, nos frascos dos laboratórios, etc.; na

    indústria nos reatores, visores, instrumentos, etc., e mesmo em arte, pois eles podem ter suas

    propriedades ajustadas às suas finalidades, assumindo infinitas cores e formas.

    Uma utilização muito adequada das excelentes propriedades do vidro é o seu uso como

    embalagem. Algumas embalagens podem ser seguras. Muitas podem ser recicladas. Outras

    são reutilizadas. Pureza e assepsia, transparência, versatilidade e impermeabilidade são outras

    características encontradas isoladamente nas embalagens. Entretanto, especialistas e

    designers vêm reiteradamente reconhecendo que o vidro é o único material que reúne todas

    essas qualidades. A tecnologia desenvolvida e aplicada ao vidro permitiu que ele adquirisse

    novas vantagens em relação a outros materiais. O peso das embalagens, por exemplo, foi

    sensivelmente reduzido, ao mesmo tempo em que se tornaram mais resistentes. E como

    embalagem, o vidro é o único material que corresponde plenamente a duas características

    essenciais das embalagens modernas: preserva a natureza, pois o vidro é completamente

    reciclável, uma vez que um quilo de vidro usado dá origem a um quilo de vidro novo, e protege

    o consumidor, não contaminando o produto embalado, não exigindo a adição de conservantes

    aos alimentos e bebidas e alem disso, deixando visível o seu interior.

    Alguns vidros podem ser utilizados em temperaturas extremas, enquanto outros só têm

    utilidade porque se fundem a baixas temperaturas. Algumas peças conservam suas formas

    mesmo submetidas a mudanças extremas de temperatura como entre o fogo e o gelo, outras

    podem conduzir ou bloquear a luz. Os vidros podem ter diversos graus de resistência

    mecânica, ser densos ou leves, impermeáveis ou porosos. Em suas muitas finalidades, eles

    podem filtrar, conter, transmitir ou resistir às radiações pertencentes a quase todas as faixas

    do espectro eletromagnético.

    As propriedades dos materiais são ditadas pelo tipo de ligações dos átomos que os constituem.

    Devido à vastíssima, quase infinita, faixa de composição química dos vidros, onde a maioria

    dos elementos da tabela periódica pode ser incorporada, eles apresentam uma ampla variação

    de propriedades mecânicas, ópticas, térmicas, elétricas e químicas. Apesar de não serem

    usualmente apresentados como tal, os vidros podem ser considerados como um subgrupo dos

    materiais cerâmicos. Entretanto, devido à sua estrutura peculiar (ausência de organização

    cristalina), e diferença na seqüência de operações de fabricação (o vidro inicialmente é fundido

    no forno e depois é conformado, enquanto que as cerâmicas primeiro são conformadas e

    depois é que passam num forno a alta temperatura), os vidros são geralmente tratados como

    um grupo à parte da cerâmica.

    O vidro, que no passado era invariavelmente considerado de pouca resistência mecânica, pode

    hoje ser usado em novas aplicações, nunca imaginadas poucas décadas atrás. As técnicas de

    têmpera térmica e química são responsáveis pelas excelentes propriedades das janelas de

    meios de transporte, vidros à prova de balas e lentes de óculos.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 5/58

    Os vidros ópticos são nossos conhecidos nos microscópios, binóculos e máquinas fotográficas.

    Outras espécies de vidros ópticos são sensíveis à luz ultravioleta e podem ser usados para

    tomadas fotográficas, desenvolvendo a imagem por tratamento térmico posterior.

    Outra maravilha tecnológica dos nossos dias são as fibras ópticas, utilizadas tanto pela

    engenharia, para telecomunicações, como na medicina, para realização de procedimentos

    minimamente invasivos. Nesse caso aparentemente paradoxal, onde a luz parece acompanhar

    as curvaturas das fibras, a luz pode seguir as mais tortuosas curvas levando imagens e

    informações, com extrema eficiência e rendimento.

    A fibra de vidro é empregada na produção de lã extremamente isolante, térmica e acústica,

    utilizada em construção civil, geladeiras, fogões e também como reforço de plásticos utilizados

    na confecção de carrocerias de automóveis, botes, piscinas, etc. Também se presta como

    reforço de cimento utilizado em caixas de água e telhas.

    Na área da saúde e da biologia os vidros modernos encontram aplicação, além das funções

    clássicas, “passivas”, a que estamos acostumados (ou seja, frascos, placas e outras vidrarias e

    acessórios estéreis, para manipulação de microorganismos e uso em análises clínicas). Vidros

    antibacterianos são usados em hospitais em revestimento de paredes reduzindo os riscos de

    infecções hospitalares.

    Recentemente, foram desenvolvidos os vidros de dissolução controlada ou vidros

    biodegradáveis. Tais vidros podem liberar certos elementos químicos na terra, na água, na

    corrente sangüínea ou no sistema digestivo, em quantidades constantes e predeterminadas,

    ao longo de períodos que podem variar desde minutos até anos. A utilização desses materiais

    em agricultura, biologia e medicina apresentam um potencial vastíssimo. Uma das mais

    impressionantes aplicações biológicas dos vidros são implantes ortopédicos, dentes artificiais e

    pequenas partes ósseas dos chamados "bio-vidros", isto é, vidros compatíveis com o

    crescimento de tecidos vivos.

    Uma das propriedades tecnologicamente mais importantes dos vidros é a alta durabilidade

    química de certas composições. Vidros milenares são conhecidos sem apresentarem sinais de

    deterioração. Seu uso como recipientes de reagentes químicos e produtos farmacêuticos, em

    vidraria de laboratórios e tubulações de indústrias químicas está diretamente relacionado a

    essa característica. Seu emprego para a imobilização de resíduos radioativos, provenientes das

    usinas nucleares, é devido basicamente à sua alta durabilidade química por longos períodos de

    tempo.

    Numa lista indicando as 10 maiores inovações tecnológicas para o futuro, lista preparada em

    1983, através de uma consulta às 100 maiores empresas do Japão, e onde convivem

    desenvolvimentos fantásticos como biotecnologia e supercomputadores, três itens são

    diretamente relacionados a vidros e cerâmicas: fibras ópticas, cerâmicas especiais e novos

    materiais. Para orientação, vale a pena lembrar que o preço médio de venda de recipientes de

    vidro é R$0.30/Kg, enquanto que fibras ópticas para telecomunicação podem custar

    R$100,00/Kg.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 6/58

    3 - História

    O vidro começou a ser empregado pelo homem desde a pré-história há cerca de 75.000 anos.

    O material empregado se constituía de um vidro natural, existente na natureza como mineral,

    e era empregado por uma característica que muitas vezes atribuímos como defeito que é o seu

    poder de corte.

    Este mineral denomina-se obsidiana e era esculpido para produzir ferramentas e armas com

    grande capacidade de corte. Lembre-se que o homem ainda não dominava a técnica de

    produzir metais naquela época.

    As obsidianas pela sua capacidade de gerar lâminas finíssimas são empregadas em

    ferramentas de corte de precisão, como por exemplo, nos bisturis que até recentemente eram

    empregados em cirurgias do globo ocular.

    A Figura 1 mostra peças encontradas em sítios arqueológicos, produzidas com obsidianas e

    utilizadas como armas e ferramentas.

    Figura 1: Artigos em obsidianas, vidro natural, produzidos na pré-história.

    Apesar de empregar o vidro há muito tempo o homem só começou a produzir este material

    em torno de 4.500 anos atrás. Há varias teorias de como tenha se iniciado. Uma delas é que

    seria a partir da escória da produção de metais e outra dos “vidrados” que já se empregavam

    em cerâmicas para que as mesmas tivessem uma superfície lisa e livre de porosidade.

    Porem a história preferida dos vidreiros é que naquela época mercadores atravessavam o

    deserto da região do oriente médio onde hoje se encontra o Iraque com uma carga de natrão.

    O natrão é um mineral constituído de carbonato de sódio, e mais adiante vamos ver que é uma

    das matérias-primas empregadas na elaboração de vidro. O natrão era empregado por suas

    características antissépticas nas mumificações.

    Estes mercadores pararam para montar o acampamento durante a noite e se viram com

    dificuldade de encontrar onde apoiar a panela para cozinhar o jantar. A solução encontrada foi

    de empregar pedaços do natrão que transportavam, sobre a areia do deserto. A união do calor

    do fogo com as principais matérias primas produtoras de vidro fez surgir um material viscoso

    que escorreu e ao esfriar assumiu um aspecto brilhante que encantou aos mercadores. Estava

    descoberto como fazer vidro. A Figura 2 representa a descoberta.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 7/58

    Figura 2: Descoberta acidental do vidro

    Nos primeiros mil anos após a descoberta de como elaborar vidro este só foi empregado com

    finalidade estética na confecção de jóias e artigos de decoração. Somente por volta de 1500

    AC, no Egito, foi que se iniciou o emprego do vidro em artigos utilitários, na forma de

    embalagens.

    Para fazer essas primeiras embalagens o vidreiro colocava na ponta de uma haste metálica

    uma porção de argila que viria a se constituir a parte interna da embalagem. Em seguida

    mergulhava este núcleo em uma panela cerâmica onde estava o vidro fundido. O vidro se

    esfriava em torno do núcleo de argila que depois era retirada permanecendo a embalagem de

    vidro. Este processo esta ilustrado na Figura 3. Notar que a produção do vidro só foi possível

    por já existir o conhecimento da cerâmica.

    Figura 3: Fabricação da primeira embalagem de vidro – Egito 1500 AC

    Na figura 4 se encontram algumas peças expostas em museus que foram produzidas naquela

    época. Notar que o vidro era muito colorido e não transparente.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 8/58

    Figura 4: Primeiras peças de vidro fabricadas pelo homem – Egito 1500 AC

    Esta era uma maneira muito trabalhosa de produzir embalagens e, por essa razão, elas eram

    pouco empregadas e apenas pessoas muito ricas podiam se dar ao luxo de utilizá-las. Eram

    empregadas para armazenar cosméticos e medicamentos.

    Descoberta do sopro

    O grande advento que popularizou o vidro foi a invenção do sopro que ocorreu há cerca de

    2000 anos na Síria. Trata-se de colher uma gota de vidro na ponta de um tubo metálico

    denominado “cana” e soprar uma bolha no seu interior para constituir a parte oca de um

    artigo de vidro. Assim começaram a se produzir embalagens com menor custo e maior

    produtividade, tornando-o acessível inclusive para cidadãos comuns.

    Esta foi uma invenção tão marcante que ainda hoje, vinte séculos depois, os produtores de

    vidro manual ainda a empregam e mesmo nas modernas máquinas de conformação as

    embalagens são conformadas por sopro, ainda que por meio de máquinas sofisticadas. A

    Figura 5 mostra a colheita do vidro e o sopro realizado de forma artesanal.

    Figura 5: Colheita do vidro e o sopro

    Cerca de 200 anos depois se começou a fazer vidros planos para vidraças empregando o sopro.

    Os vidreiros produziam uma grande garrafa usando o sopro e a gravidade. Cortavam as

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 9/58

    extremidades e ficavam só com o corpo que formava um tubo. Em seguida faziam um corte

    longitudinal neste tubo e reaquecendo-o abriam e faziam uma chapa.

    A Figura 6 mostra este processo que ainda hoje é empregado na produção de vidros artísticos

    aplicados em vitrais.

    Figura 6: Processo de produção de vidro plano pelo sopro

    O problema apresentado por estas chapas é que quando as estendiam no forno, elas estavam

    moles e ficavam marcadas em sua superfície as imperfeições que havia na sola do forno.

    Por essa razão, no século seguinte, passou-se a produzir chapas de vidro a partir de um

    recipiente soprado, mas na forma de um disco que se obtia por centrifugação pelo giro da

    peça. Primeiramente se produzia um recipiente, como uma garrafa, se transferia ele para uma

    ponteira que ficava fixada ao fundo desta garrafa que era girada e por meio da força centrífuga

    se obtinha um disco de vidro. Este vidro chamado de “crown” tinha melhor qualidade óptica

    porem tinha limitação de tamanho. Não se conseguia círculo maior que 1,5m de diâmetro e o

    centro, onde se localizava a ponteira de apoio, ficava marcado e deveria ser desprezado.

    A Figura 7 mostra o princípio da produção do vidro crown e a Figura 8 uma foto de um artesão

    produzindo este tipo de vidro.

    Figura 7: Processo de fabricação de vidro plano tipo “crown”

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 10/58

    Figura 8: Artesão produzindo vidro “crown” e peça produzida marcada para recorte.

    Nesta época também se começou a soprar o vidro destinado a embalagens e artigos

    domésticos dentro de moldes que imprimiam padrões à superfície. Na figura 9 o desenho da

    esquerda representa este processo que perdurou como o principal na produção de

    embalagens até o final do século XIX como se pode observar na foto da direita, de uma fábrica

    de embalagens deste período.

    Figura 9: Sopro de embalagens de vidro dentro de um molde

    Os fornos empregados para fundir o vidro eram aquecidos a lenha e o consumo chegava a dois

    quilos de madeira por quilo de vidro produzido.

    Uma representação artística dos primeiros fornos se encontra na figura 10. Nesta figura

    também há um corte de um modelo didático deste forno para melhor compreender seu

    funcionamento. Em seu interior há diversos potes de cerâmica onde se colocavam as matérias

    primas. Na parte inferior existia uma câmara onde a madeira era queimada e na parte superior

    havia saída para a fumaça.

    O forno era aquecido para que a composição se fundisse e depois os artesões retiravam o

    vidro para trabalhá-lo. Estas operações se repetiam ciclicamente (carregamento das matérias-

    primas, fusão das mesmas, trabalho do vidro) em períodos de 24 horas.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 11/58

    Figura 10: primeiros fornos empregados na elaboração do vidro

    Na idade média, por volta do ano de 1200, os vidreiros foram confinados na ilha de Murano ao

    lado de Veneza, na Itália. Uma explicação para esse confinamento seria para reduzir os

    incêndios que acabavam ocorrendo devido ao intenso uso de combustão. Outra explicação

    seria para que não se espalhassem suas técnicas que eram passada de pai para filho.

    Em Murano ocorreu uma nova descoberta revolucionária: a produção de um vidro muito claro

    e transparente que foi denominado de “cristallo” por ter a transparência de um cristal. Ainda

    hoje se chamam “cristais” os vidros mais finos de mesa. Até então os vidros produzidos tinham

    coloração intensa e baixa transparência.

    A partir desse vidro claro e límpido puderam ser criadas lentes e a partir delas, foram

    inventados os binóculos (1590), microscópios (1595) e os telescópios (1611), com os quais o

    homem começou a desvendar os segredos do universo. Também nessa época, graças à

    produção dos recipientes especiais e do desenvolvimento dos termômetros de laboratório,

    houve um grande desenvolvimento da Química.

    Em 1665, durante o reinado de Luís XIV, foi fundada na França a companhia que viria a ser, nos

    dias de hoje, a Saint Gobain, com a finalidade de produzir vidros para espelhos, evitando assim

    a dependência que os franceses tinham de Veneza. No início foi utilizada a tecnologia

    veneziana de sopro, mas a partir de 1685, através de um método novo, que consistia na

    deposição da massa líquida de vidro sobre uma grande mesa metálica sendo passado por cima

    um rolo, da mesma maneira como se abre massa de pastel. A figura 11 mostra uma

    representação artística deste processo. O vidro assim obtido devia ser polido para a produção

    de espelhos, pois suas superfícies eram muito irregulares.

    Figura 11: Processo de produção de vidro plano por laminação

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 12/58

    Com a revolução industrial no século XIX a demanda de vidro aumentou muito e processos

    mais produtivos foram procurados. Em 1902 um engenheiro belga chamado Fourcault lançou

    um método revolucionário de produção em massa de vidro plano através da estiragem do

    mesmo na vertical – Figura 12. Outros processos evoluíram a partir do Fourcault no século XX,

    processo Pittsburg de estiragem na vertical e processo Libbey Owens estirado na horizontal.

    Figura 12: Esquema e foto do processo Fourcault, primeiro a existir de vidro estirado

    Para se compreender o princípio da estiragem imagine colocar uma faca dentro do mel e

    erguê-la em seguida. O mel que ficou preso à lâmina escoa na forma de uma fita. Imagine

    agora que esfriemos esta fita e ela se torna rígida e continuamos a erguê-la. Mais mel será

    arrastado e esfriado formando uma lâmina de vidro contínua. O vidro era depois destacado em

    chapas.

    Em 1880, se inicia a produção mecânica de garrafas e em 1915 é lançada a primeira máquina IS

    automática até hoje empregada.

    Em 1932 se iniciou a produção de vidro plano laminado através da passagem do mesmo entre

    dois rolos. Mesmo princípio da produção do macarrão. Este processo até hoje é empregado

    para produzir vidros impressos ou “fantasia” que apresentam figuras em relevo em uma das

    faces e desta maneira são translúcidos, isto é, deixam passar a luz, mas impedem a visão

    através deles. A Figura 13 mostra o princípio deste processo.

    Figura 13: processo de produção do vidro impresso ou “fantasia”

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 13/58

    Porem a grande revolução na produção de vidro plano se deu com a invenção de Alister

    Pilkinghton em 1959 de produzir vidro flotado sobre um banho de estanho.

    Conta a história que ele teve a idéia enquanto lavava louça. A água estava presa na cuba da pia

    e a gordura sobrenadava não se misturando com a água criando uma fina lâmina de faces

    perfeitamente paralelas.

    Então ele pensou: será que não há um líquido sobre o qual possa se verter vidro fundido para

    que ele forme uma lâmina da mesma maneira que a gordura na água da pia? Este líquido não

    poderia nem se solidificar nem se evaporar na faixa de enrijecimento do vidro em torno de

    600oC e deveria ser bem mais denso do que o vidro para que este não afundasse. O estanho

    serviu a este propósito e continua sendo utilizado em todo o mundo para a produção massiva

    de vidro plano.

    Em 1965 iniciou a operação da primeira fábrica float em Saint Helens na Inglaterra e hoje há

    centenas de fornos deste tipo no mundo que aposentou definitivamente os processos de vidro

    estirado.

    No Brasil a primeira fábrica de vidro float iniciou sua produção em 1982 e hoje é o único

    processo empregado na produção de vidros planos (com exceção do impresso ou “fantasia”). A

    Figura 14 mostra o principio de funcionamento do processo “float”. O Vidro fluido é vertido

    sobre um banho de estanho fundido e vai se esfriando até ficar rígido. Este processo é

    contínuo e uma série de rolos extrai a fita de vidro.

    Figura 14: Principio de formação da chapa de vidro plano flotado.

    Durante o século XX muitas outras aplicações surgiram para o vidro: as fibras que tanto servem

    para isolamento térmico e acústico, como para reforço de outros materiais; as fibras ópticas,

    que substituem com enormes vantagens os tradicionais cabos de cobre e alumínio utilizados

    em comunicações; lâmpadas; isoladores, etc.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 14/58

    4 - Estrutura do Vidro

    Mas o que é o vidro? Para responder a esta pergunta vamos recordar alguns conceitos que

    todos já vimos na escola.

    Toda substância é constituída de átomos. Eles são muito pequenos e impossíveis de se ver,

    mesmo com os mais poderosos microscópios, e todas as características e propriedades dos

    materiais dependem de como estes átomos se ligam entre si.

    Um exemplo que mostra claramente isto são três materiais: o carvão, o grafite e o diamante,

    que são constituídos do mesmo elemento químico, o carbono, cujos átomos em cada um deles

    se encontram unidos por diferentes tipos de ligação. Como resultado estes três materiais tem

    comportamento e aspecto totalmente distintos

    Outro conhecimento básico são os três estados em que as substâncias podem se encontrar:

    sólido; líquido e gasoso. Cada substância tem uma temperatura característica de fusão e

    evaporação. Abaixo da temperatura de fusão será sempre sólida. Entre a temperatura de fusão

    e de evaporação será líquida e acima da temperatura de evaporação passará a ser um gás.

    Um exemplo clássico é a água: abaixo de 0oC ela é sólida (gelo) entre 0oC e 100oC está líquida e

    acima de 100oC se transforma em vapor, que é um gás.

    Quando a substância esta no estado sólido há uma grande força de atração entre os átomos

    que ficam presos uns aos outros e esta força faz com que eles de disponham de forma

    organizada, como soldados numa parada militar.

    No estado líquido a força que os une é muito fraca e os átomos ficam soltos e o material pode

    fluir. Imagine uma lata cheia de bolinhas de gude e cada bolinha seja um átomo. Quando o

    material está no estado líquido as bolinhas ao serem jogadas ao chão correm soltas e se

    espalham, assim como ocorre quando jogamos a água. As bolinhas soltas rolam umas sobre as

    outras sem organização. No estado sólido é como se colássemos cada bolinha com a sua

    vizinha, formando um arranjo ordenado que se repete ao longo de todo o material. Este

    arranjo de átomos organizados é denominado “cristal” e, portanto, um sólido cristalino é

    aquele em que seus átomos estão dispostos de forma organizada. A Figura 15 esquematiza o

    arranjo atômico nesses dois estados

    Figura 15: Arranjos atômicos no estado sólido e líquido

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 15/58

    Um exemplo de sólido cristalino é o cloreto de sódio que é o sal que empregamos para

    temperar alimentos. Ele é constituído de dois elementos: o sódio e o cloro que quando no

    estado sólido apresentam a estrutura representada na figura 16.

    Figura 16: Arranjo cristalino dos átomos no sal de cozinha.

    Portanto quando se esfria um material abaixo de seu ponto de fusão os átomos que antes

    estavam desorganizados devem se movimentar entre si para poderem ocupar os lugares

    determinados por uma situação de organização.

    Esta movimentação esta representada na figura 17.

    Figura 17: Movimentação dos átomos na passagem do estado líquido para o sólido

    Um material que gera o vidro em alta temperatura também se torna um líquido, porem

    apresenta alta viscosidade. A viscosidade é a dificuldade dos átomos se moverem uns em

    relação aos outros e quanto maior ela for mais dificuldade tem o líquido de escoar. Um

    exemplo de líquido viscoso é o mel. Se jogarmos água e mel sobre uma superfície plana, a água

    que apresenta baixa viscosidade vai escorrer com facilidade, mas o mel que é muito viscoso vai

    escoar bem de vagar e também não vai conseguir se espalhar como a água.

    Um material fundido que vai gerar vidro é viscoso e se comporta como o mel e à medida em

    que se esfria sua viscosidade aumenta cada vez mais dificultando ainda mais a movimentação

    livre dos átomos que não conseguem se organizar como no estado sólido de outros materiais.

    Chega um momento, em uma determinada temperatura, em que a viscosidade é tão alta que

    os átomos não conseguem mais se movimentar de forma alguma e a estrutura de líquido com

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 16/58

    os átomos desorganizados fica congelada em um material que tem todas as características de

    um sólido.

    Todas as características e propriedades do vidro são devido a esta estrutura desordenada de

    suas moléculas.

    Muitas vezes devido a isso o vidro é chamado de líquido porem isso não é verdade. O vidro é

    um sólido que apresenta a estrutura semelhante à de um líquido, isto é, seus átomos não

    estão organizados na forma de cristais como acontece com a maioria de substâncias sólidas

    que conhecemos.

    Estrutura do vidro e Processo produtivo

    Uma conseqüência da estrutura desordenada do vidro é que uma mesma massa deste

    material ocupa um volume maior do que se seus átomos estivessem na forma cristalina.

    E na prática quando produzimos o vidro a partir do esfriamento de um líquido viscoso

    dependendo da velocidade em que se dá o resfriamento pode se ter uma pequena

    organização.

    Falando de outra maneira, quanto mais rápido se esfria maior é a desordenação dos átomos e,

    portanto maior o volume ocupado.

    Podemos fazer um paralelo quando saímos para viajar de férias. Ao preparar a mala

    escolhemos com cuidado todas as roupas que pretendemos levar que estão no armário bem

    passadas e dobradas e as colocamos com cuidado na mala. Desta maneira a mala fecha sem

    dificuldade.

    No retorno das férias as roupas já foram todas usadas, foram deixadas em algum lugar sem o

    cuidado de serem dobradas e como estamos tristes porque as férias acabaram fazemos a mala

    rapidamente, sem paciência, apenas com a intenção de levar tudo de volta que, afinal, terá

    mesmo que ser lavado.

    Resultado: a mala da volta, mesmo contendo as mesmas roupas da ida, fica mais volumosa e

    eventualmente até difícil de fechar.

    Com o vidro acontece algo semelhante: se ele é esfriado rapidamente seus átomos ficam mais

    “bagunçados” do que se ele for esfriado lentamente e, portanto, ocupa um volume maior.

    Quando fazemos a conformação de qualquer vidro, por exemplo, uma chapa sendo laminada

    entre dois rolos metálicos, partes deste vidro se esfriará mais rápido que outra, neste caso a

    pele em contato com os rolos, do que o vidro do centro da chapa que vai se esfriar mais

    lentamente e, portanto seus átomos poderão ter uma maior organização que no final ocupara

    volume menor. Porem tudo isso será uma chapa única e estas diferenças de volumes gerarão

    tensões que podem quebrar o vidro ou pelo menos fragilizá-lo. A Figura 18 mostra a evolução

    de tensões surgidas na laminação.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 17/58

    Figura 18: Desenvolvimento de tensões durante a laminação de uma chapa de vidro

    Na produção de garrafas e outros artigos conformados em moldes metálicos o mesmo

    fenômeno acontece exigindo que todo produto de vidro após a sua conformação sofra um

    processo de aliviamento de tensões denominado de recozimento.

    Portanto, após a conformação, sempre é necessário se efetuar um recozimento do vidro, isto

    é, se aquece até a viscosidade diminuir e permitir a acomodação destas tensões seguida de

    esfriamento lento, por igual em todo o corpo da peça, para evitar tensões residuais.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 18/58

    5 - Elaboração do Vidro

    Para se ter vidro, portanto, é necessário um material que quando fundido tenha uma alta

    viscosidade e que esta viscosidade aumente muito antes de chegar ao ponto de solidificação

    impedindo a ordenação dos átomos (que se chama cristalização).

    Não são todos os materiais que se prestam para gerar vidros. A água, por exemplo, é uma

    delas, pois sua viscosidade é praticamente a mesma, e muito baixa, ente a sua temperatura de

    fusão (0oC) e sua temperatura de evaporação (100oC). Portanto não importa quão rápido se

    esfrie a água, sempre seus átomos poderão se movimentar entre si para gerar um cristal

    (átomos ordenados)

    Porem várias substâncias não são assim. Por exemplo: o açúcar. Na temperatura ambiente ele

    é um cristal. Cada grão é um pequeno cristal. Se o aquecermos eles se fundem, tornam-se um

    líquido, formando o caramelo. Se jogarmos este caramelo na superfície fria da pia ele se

    solidifica sem se cristalizar formando, portanto um vidro. (Sim bala de açúcar é um vidro!)

    Alias, vidro de açúcar é empregado no cinema para que nas cenas de quebra de vidraças não

    haja risco de acidente com os atores, porem não podemos instalá-lo em nossas janelas, pois

    com a chuva e lavagem eles desapareceriam, dissolvidos na água.

    A Figura 19 mostra a “fabricação” de vidro de açúcar

    Figura 19: “Fabricação” de vidro de açúcar

    O material mais empregado e que gera vidro da mesma maneira que o açúcar e é a sílica ou

    óxido de silício (SiO2), muito abundante na natureza. Ela é nossa velha conhecida na forma da

    areia que há nas praias ou na areia empregadas nas construções. A Figura 20 mostra algumas

    formas de sílica encontradas na natureza.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 19/58

    Figura 20: Alguns materiais encontrados na natureza e constituídos de sílica.

    Se pudéssemos observar os átomos de um grão de areia veríamos que eles se organizam

    formando cristais que são disposições organizadas e com formação repetitiva. Se fundirmos

    estes grãos a organização acaba e se esfriarmos rapidamente (e nem precisa ser muito

    rapidamente) os átomos não conseguem se reorganizar e permanecem amorfos (sem

    organização) gerando o vidro com propriedades e características muito boas para as nossas

    aplicações, diferentemente do vidro de açúcar.

    A Figura 21 mostra uma molécula de sílica que se constitui de um átomo de silício rodeado de

    quatro átomos de oxigênio formando um tetraedro (figura de quatro faces sendo cada uma

    um triângulo) e como esses átomos se unem pelos oxigênios formando uma rede

    tridimensional que é a estrutura do vidro.

    Figura 21: Molécula de sílica e como as moléculas de sílica se unem formando uma rede

    espacial que é a estrutura básica do vidro.

    Na figura 22 estão representadas a estrutura molecular de uma sílica cristalina, como é

    encontrada na natureza e a mesma estrutura quando transformada em vidro. Podemos fazer

    uma analogia onde cada molécula de sílica é um tijolo. Na forma cristalina os tijolos estão

    ordenados como numa parede. No vidro os mesmos tijolos estão em desordem como se

    tivessem sido jogados ao acaso em algum lugar.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 20/58

    Figura 22: comparativo entre a sílica na forma cristalina e na forma vítrea

    Vidros industriais

    A sílica sozinha produz um excelente vidro com ótimas propriedades porem com um grave

    problema: seu ponto de fusão é muito alto requerendo fornos especiais e muito consumo de

    energia e conseqüentemente apresentando alto custo de produção.

    A solução encontrada para contornar este problema foi de incorporar elementos fundentes à

    sílica que abaixam a temperatura de elaboração, mas mantém características adequadas para

    os produtos. Estes fundentes são o óxido de sódio e o óxido de cálcio que em conjunto com a

    sílica produzem a família de vidro denominada silico-sodo-cálcico ou simplesmente sodo-

    cálcico.

    Ação dos Fundentes

    A estrutura básica dos vidros a base de sílica é uma rede formada de silícios ligados cada um a

    quatro oxigênios e cada oxigênio liga dois átomos de sílica como mostrado na Figura 23. Esta

    figura é apenas esquemática, pois está nos dois planos do papel, mas na realidade a rede da

    sílica é tridimensional. Estas ligações são muito fortes, sendo esta a razão do alto ponto de

    fusão dos cristais de sílica, e mesmo no estado líquido elas continuam a agir provocando a alta

    viscosidade.

    Figura 23: Esquema das ligações dos átomos em um vidro de sílica

    Quando se adiciona o sódio à sílica os átomos de sódio que tem muita afinidade com o

    oxigênio se unem a ele e os oxigênios que se unem aos sódios deixam de ficar ligados ao silício

    fazendo desta maneira um corte na rede. Quanto mais sódios se adicionam mais cortes na

    rede se apresentam e mais fraca a mesma fica. Isto na prática se traduz com viscosidade mais

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 21/58

    baixa e menor temperatura de elaboração do vidro. A Figura 24 mostra o efeito da introdução

    de sódio na estrutura do vidro de sílica.

    Figura 24: Representação esquemática do efeito da adição de sódio ao vidro de sílica.

    A introdução de sódio ao vidro traz um novo problema. Ele aumenta a solubilidade do vidro,

    isto é, quanto mais sódio se adiciona mais o vidro fica próximo ao vidro, já citado, feito de

    açúcar.

    Por essa razão se introduz o sódio até determinado limite e como neste limite o vidro ainda se

    encontra muito viscoso para ser elaborado e trabalhado em temperaturas industrialmente

    razoáveis, se introduz um segundo fundente que é o cálcio.

    O cálcio como o sódio se une aos oxigênios liberando ligações entre este e a sílica, mas como

    ele é bivalente cada átomo de cálcio se une a dois átomos de sódio.

    Por ele gerar uma nova ligação para cada duas destruídas ele não é tão eficiente como o sódio

    porem por ser muito pouco solúvel em água pouco afeta a resistência do vidro à solubilidade.

    O efeito da introdução do cálcio ao vidro esta esquematizado na figura 25.

    Figura 25: Representação esquemática do efeito da adição de cálcio ao vidro de sílica.

    A estrutura de um vidro sodo-cálcico pode ser representada pela figura 26 que mostra a rede

    de sílica interrompida pela presença de átomos de sódio e cálcio.

    Observar que como o vidro não apresenta estrutura ordenada cristalina como, por exemplo, a

    do sal de cozinha da Figura 16, pode receber diferentes quantidades de cada um dos

    fundentes assim como de diversas outras substâncias e, portanto apresentar um leque infinito

    de propriedades

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 22/58

    Figura 26: Esquema da estrutura molecular de um vidro sodo-cálcico

    Vidros sodo-cálcicos são empregados para a maioria das embalagens, vidraças, lâmpadas,

    artigos domésticos, etc., participando com mais de 90% de todo o vidro produzido no planeta.

    A Figura 27 mostra exemplos de aplicações de vidros sodo-cálcicos e a faixa de composição

    química em que eles se situam.

    Figura 27: Exemplos de produtos produzidos a partir do vidro sodo-cálcico e faixa de

    composição química em que eles se encontram.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 23/58

    6 - Propriedades dos vidros

    As propriedades do vidro variam com a sua composição química. Como a composição do vidro

    não é fixa e vários componentes podem ser adicionados, em diferentes proporções, se obtém

    vidros com propriedades variando dentro de determinadas faixas.

    Com o conhecimento do efeito de cada componente na estrutura do vidro é possível se

    projetar composições de vidros apropriadas para cada processo produtivo e aplicação final.

    Um exemplo disso é a cor. É possível se obter vidro isento de cor mas também com infinitas

    tonalidades indo da total transparência até a total opacidade. Isso se consegue adicionando

    determinados componentes na massa de vidro.

    Vamos agora descrever algumas das principais propriedades deste material.

    Viscosidade

    Esta é a propriedade mais importante para a produção do vidro. Viscosidade é a dificuldade de

    um líquido de escoar e é o inverso de fluidez. Por exemplo, o mel é mais viscoso que a água e a

    água é mais fluida que o mel.

    O vidro para existir, já vimos, tem que apresentar alta viscosidade para impedir a cristalização

    de suas moléculas. Quando um material se cristaliza, ao se esfriar, perde a estrutura

    desordenada de líquido e não se torna um vidro.

    A temperatura do forno de fusão é regulada para que o vidro atinja uma viscosidade suficiente

    para que a massa se homogeneíze e as bolhas presas no seu interior possam ser liberadas.

    Para fabricar uma peça de vidro, isto é, conformá-la no seu desenho final a viscosidade tem

    papel fundamental.

    No início da conformação deve se ter uma viscosidade suficientemente alta para poder formar

    uma gota. Se estiver muito fluido, como a água, por exemplo, é impossível dar forma, pois ela

    escoa muito facilmente. Por outro lado se a viscosidade estiver excessivamente alta o vidro

    estará muito duro e será difícil imprimir forma.

    Durante o processo de conformação o vidro vai se esfriando e ficando mais viscoso. Ao se

    chegar à forma final desejada ele deve estar viscoso o bastante para não continuar a fluir pois

    se isso ocorrer ele escoa e se perde a forma necessária. Por outro lado ele não pode ficar

    demasiadamente viscoso enquanto se esta fazendo a conformação, pois fica difícil de trabalhar

    e pode se chegar a um ponto no qual ele já esta rígido mas a forma final não foi atingida.

    Depois de conformada a peça de vidro possui tensões devido ao esfriamento desigual que

    sempre ocorre durante qualquer processo de conformação e deve ser recozida. O recozimento

    consiste em aquecer o produto até uma temperatura na qual a viscosidade seja baixa o

    suficiente para que microscopicamente o vidro flua e alivie as tensões existentes na massa,

    mas não se pode esquentar demais abaixando em demasia a viscosidade sob pena de fazer o

    vidro escoar pela força de seu próprio peso e se perder a forma necessária.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 24/58

    Ajustando a composição química pode se alterar a viscosidade adaptando-a ao processo de

    conformação empregado.

    O artista que faz uma peça manualmente leva mais tempo para conformá-la do que uma

    moderna máquina automática e sempre que o vidro comece a ficar muito duro, para continuar

    seu trabalho deve esquentá-la novamente repetindo diversas vezes a operação ao longo da

    conformação até acabar seu trabalho.

    A chapa de vidro sobre o banho de estanho deve ter viscosidade suficiente para escoar e

    formar a folha, mas ao sair do float deve estar rígida o suficiente pra não ser marcada pelos

    rolos responsáveis pelo seu transporte.

    Resistência química

    Outra propriedade fundamental é a inércia química do vidro, isto é, ele não reage com quase

    nenhum componente podendo permanecer numa janela por séculos com o mesmo aspecto de

    novo. Da mesma forma embalagens de vidro não reagem com os produtos que contem.

    A foto da Figura 28 é de uma garrafa de cerveja recuperada de um naufrágio, onde

    permaneceu por 200 anos no fundo do mar e mesmo assim apresenta aspecto de nova alem

    de ter conservado a cerveja por todo esse tempo que inclusive seria estudada por especialistas

    cervejeiros.

    Figura 28: Garrafa de cerveja recuperada de um naufrágio depois de permanecer 200 anos no

    fundo do mar. O conteúdo estava intacto

    Da mesma forma vidros em janelas resistem por séculos mantendo as suas superfícies lisas

    que permitem a passagem de luz.

    Impermeabilidade

    O vidro também é completamente impermeável, haja vista o exemplo da cerveja, e em janelas

    protege contra as intempéries ao mesmo tempo em que deixa passar a luz. Como ele é

    formado a partir de um líquido não possui porosidades o que lhe confere essa característica

    impedindo a passagem de contaminantes gasosos ou líquidos.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 25/58

    Resistência mecânica

    Há uma grande confusão sobre a resistência do vidro e muitos o julgam um material fraco. Um

    material fraco é aquele que não resiste e se quebra quando aplicamos uma força ainda que

    baixa. Por exemplo, um giz é facilmente quebrável e, de fato, podemos considerá-lo um

    material fraco. Mas o vidro não é fraco. Imagine um bastão de vidro do mesmo formato do giz,

    exige muita força para quebrar. Ao contrário de ser fraco, o vidro é muito forte.

    O vidro por outro lado é frágil, isto é, não é muito resistente a impactos. Hoje já é comum se

    empregar vidro em pisos justamente porque ele resiste muito bem a qualquer pessoa que

    passe sobre ele. Mas como ele é frágil e pode quebrar com uma batida então estes vidros são

    laminados, ou seja, são constituídos por diversas chapas de vidro entremeadas de um plástico

    de forma que as camadas internas resistem ao peso as de fora se receberem algum impacto

    podem até eventualmente se quebrar, mas não será comprometida a segurança do conjunto.

    É o mesmo princípio aplicado nos vidros a prova de balas. Um exemplo deste tipo de aplicação

    pode ser visto nas fotos da Figura 29

    Figura 29: Aplicação estrutural de vidros planos laminados.

    A quebra do vidro se dá pela conjunção de dois fatores: um defeito na superfície que pode se

    tornar o início de uma trinca e uma força de tração que tende a abrir esta trinca. A resistência

    de qualquer material se dá pela força como suas moléculas estão ligadas. No caso do vidro

    estas ligações são muito fortes, porém, quando há um defeito no vidro como um risco, na

    ponta deste defeito ocorre uma concentração de tensões que chega a ser muitas vezes

    superior à tensão que se esta aplicando à peça de vidro como um todo e então esta trinca

    pode abrir um pouco e ai a tensão em sua ponta aumenta e ela abre mais e assim sucessiva e

    rapidamente e o vidro se parte. A quebra ocorre quando essa trinca atravessa toda a peça.

    Portanto a resistência mecânica de uma peça de vidro esta diretamente ligada ao estado de

    superfície. Riscos, mesmos microscópios, lascas nos bordos ou qualquer outra imperfeição

    reduzem significativamente a resistência.

    Este princípio é utilizado para cortar chapas de vidro. Com uma ferramenta se faz um risco no

    vidro que será o início de uma trinca e depois se flete o vidro para gerar tensão de tração neste

    risco e a trinca atravessa a chapa dividindo-a em duas. Na verdade o termo corte nem seria o

    mais adequado a esta operação mas sim “destaque”.

    A Figura 30 mostra a seqüência do processo de corte do vidro.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 26/58

    Figura 30: Sequência de corte de uma chapa de vidro

    1 Chapa original.

    2 Chapa com risco no local do corte.

    3 Chapa apoiada para o corte.

    4 Esforços aplicados e tensão de tração produzida na região do corte.

    5 A trinca iniciada no risco se propaga por ação da tenção de tração.

    6 Chapa cortada em duas.

    O risco para o corte é realizado com uma ferramenta que possui uma pequena rodinha como

    mostrado na figura 31 de um metal muito duro, chamado de vídea, para conseguir riscar o

    vidro que também é muito duro.

    Figura 31: Ferramenta em vídea para riscar o vidro a ser cortado.

    Resistência ao choque térmico

    O vidro é um material muito mal condutor de calor. Sua condutividade é comparada com

    alguns materiais conhecido na tabela 1:

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 27/58

    Tabela 1: Condutividade térmica do vidro e de outros materiais

    Na verdade o vidro é um bom isolante térmico.

    Uma conseqüência disto é que se em um dos lados de uma vidraça se aquece, a face do vidro

    deste lado esquenta porem o calor leva certo tempo até atravessar a espessura e aquecer a

    outra face, pois o vidro oferece resistência à passagem do calor.

    A região que se aqueceu se dilata enquanto a que continua fria permanece inalterada. Estas

    diferenças de “tamanho” geram tensões que associadas a defeitos da superfície podem dar

    início a uma trinca.

    O mesmo pode acontecer com as diferenças causadas pelo aquecimento da parte da vidraça

    exposta ao sol enquanto que as regiões dentro dos caixilhos não se aquecem.

    Fenômeno semelhante ocorre quando se coloca um líquido quente dentro de um copo. A

    superfície do vidro em contato com a água se aquece e se dilata. Enquanto isto a superfície

    externa ainda esta fria e não “quer” se dilatar. Como resultado gera-se tensões de tração na

    superfície fria externa, e se este valor for acima do que o vidro pode suportar ele vai quebrar.

    Desta maneira podemos afirmar que a capacidade de resistir a choques térmicos é

    inversamente proporcional a quanto o vidro se dilata quando aquecido. Ou seja, quanto maior

    for a dilatação térmica, menor será a resistência do vidro a mudanças bruscas de temperatura.

    A dilatação térmica depende da composição química do vidro. Para os vidros sodo-cálcicos,

    peças de 4 a 5 mm de espessura suportam algo em torno de 60oC de diferença de

    temperatura. É, portanto desaconselhável colocar água fervendo (100 oC) em um copo de

    vidro a temperatura ambiente, a não ser que ele seja temperado.

    Quanto mais fina for a peça, ainda que produzida com o mesmo vidro, menores serão as

    diferenças de temperatura entre os pontos frios e quentes e portanto mais resistente ela será

    ao choque térmico.

    A quebra sempre se dá na região mais fria da peça, onde ocorre a tração, e comumente o risco

    maior de quebra é quando o vidro está quente e sofre um esfriamento rápido. Por exemplo:

    tirar uma peça do forno e colocá-la sob a torneira ou sobre uma superfície fria.

    Por outro lado se o aquecimento é homogêneo em toda a superfície, como dentro de um

    forno, toda a superfície fica comprimida devido ao aquecimento e não há quebra.

    Para aumentar a resistência ao choques térmicos de produtos de vidro, fundamentalmente se

    empregam dois recursos:

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 28/58

    1 A têmpera, que deixa a superfície do vidro em compressão e neste caso as diferenças de

    temperaturas devem ser maiores para poderem eliminar o efeito de compressão da superfície,

    ocasionada pela têmpera, e provocar a quebra. A resistência destes vidros chega até cerca de

    200 oC.

    2 A mudança da composição do vidro para outra que dilate menos com o aquecimento, É o

    caso do Pyrex, que trata-se de um vidro borossilicato, que dilata cerca de 60% menos do que

    um vidro sodo-cálcico para as mesmas temperaturas, e por isso pode resistir a esfriamentos

    bruscos de até 150 oC.

    Cor

    A cor nos vidros é gerada por componentes que são dissolvidos em sua massa durante sua

    elaboração. Normalmente são metais que interagem com a luz filtrando algumas cores e

    deixando passar outras.

    As cores no vidro alem do aspecto estético tem a função de filtrar determinadas radiações de

    luz que sejam indesejáveis. No caso de embalagem de bebidas e medicamentos é a radiação

    ultravioleta que pode deteriorar o conteúdo das mesmas. É por isso que as cervejas e os

    vinhos normalmente são envasados em recipientes verdes ou âmbar.

    No caso das vidraças alem da filtragem do ultravioleta, que também desbota mobiliário e

    tecido, procura se evitar a passagem do infravermelho responsável pelo aquecimento e assim

    incrementar o conforto térmico e economia de energia despendida com ar condicionado no

    interior de veículos e residências.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 29/58

    Matérias Primas

    As matérias primas são muito importantes no processo de elaboração do vidro, pois tudo o

    que se enforna no forno de fusão sai na forma de vidro, ou seja, não existe recurso de separar

    algo que foi enfornado errado e todo erro acaba comprometendo a qualidade dos produtos.

    A qualidade das matérias-primas é muito importante para a obtenção de bons resultados na

    produção, pois tudo o que entra no forno vai para o vidro final. Só para sentirmos o quanto

    isso é importante consideremos uma chapa de vidro de 20 metros quadrados e dez milímetros

    de espessura. Ela pesa 500 quilos e para elaborar essa quantidade de vidro são necessários 350

    quilos de areia. Se nessa chapa tiver uma inclusão, um material que entrou como

    contaminante e não se fundiu no forno, de 0,5 milímetro de diâmetro ela será reprovada. Ou

    seja, um contaminante de 0,5mm de diâmetro em cada 350 quilos de areia pode reprovar toda

    a produção.

    Alem disso, a partir do momento em que se resolva o problema que esta gerando o defeito,

    como, por exemplo, se troque a areia por outra não contaminada, ainda se leva alguns dias

    para se limpar o vidro contaminado que se encontra como lastro dentro do forno.

    As matérias-primas são empregadas todas na forma de sólidos granulados com os grãos

    variando de 0,1 a 2,0 mm de diâmetro.

    Todas devem ser controladas e mantidas dentro de rígidas especificações tanto no aspecto

    químico quanto no aspecto granulométrico, ou seja, no tamanho dos grãos em que se

    apresentam, e ainda estar isentas de contaminações não fusíveis no forno ou que possam

    afetar alguma propriedade, como cor por exemplo.

    Impurezas presentes nas matérias primas podem trazer defeitos como inclusões na massa de

    vidro ou dificuldade na fusão da composição. Grãos muito grandes podem passar pelo forno

    sem serem fundidos gerando defeitos. Grãos muito finos podem ser arrastados pelos gases,

    atacar os revestimentos dos fornos, entupirem os canais de fumaças e se constituírem material

    particulado poluente.

    A grande maioria das matérias-primas empregadas na produção do vidro é de minerais

    naturais extraídos da natureza.

    A extração de minerais é uma atividade controlada pelo Departamento Nacional de Produção

    Mineral (DNPM) e deve ser executada com um mínimo de interferência com o meio ambiente.

    Os locais de extração ao final do uso devem ser entregues recuperados e tudo isso deve ser

    muito bem documentado antes mesmo do início da exploração.

    Todos os minerais empregados como matérias primas devem passar por algum tipo de

    beneficiamento que garantam o atendimento das especificações. O tipo de beneficiamento

    empregado depende das características do produto bruto original e das especificações exigidas

    pela produção.

    A fornecedora da sílica, a base do vidro, é a areia que é encontrada em depósitos onde foi

    acumulada através do tempo pela ação da erosão das intempéries sobre as rochas.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 30/58

    A areia é a matéria prima presente em maior volume na composição. Também é a mais difícil

    de fundir.

    A Figura 32 mostra uma jazida de extração de areia. Neste caso a própria natureza ajudou

    constituindo um depósito imenso de minério originário do desgaste de rochas e que se

    acumulou, quer seja pela ação de ventos ou da água de rios, já na forma granulada necessária

    para a introdução das composições vidreiras. Ainda assim esta areia deve ser beneficiada para

    separar os grãos muito finos e os muito grossos e livrá-la de componentes prejudiciais ao

    vidro.

    Figura 32: Jazida de areia vidreira. (Mineração Jundu)

    Os fornecedores de cálcio, magnésio e alumina são rochas que devem ser retiradas como em

    pedreiras e depois moídas para chegarem à granulometria adequada. Normalmente são

    separadas por explosões que formam grandes pedaços que são moídos até chegarem ao

    tamanho de grãos necessários para a utilização na composição.

    A Figura 33 mostra uma jazida de calcário que é o mineral normalmente empregado para

    fornecer o cálcio ao vidro.

    Figura 33: Jazida de calcário. (Mineração Jundu)

    Existem algumas matérias-primas industriais, que são produzidas através de processos

    químicos. A mais importante, sem dúvida, é a barrilha ou carbonato de sódio anidro

    responsável por aportar o óxido de sódio ao vidro.

    A barrilha empregada pelos vidreiros tem duas origens:

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 31/58

    Barrilha trona ou natural:

    É produzida a partir do mineral “trona” que é constituído principalmente de carbonato de

    sódio hidratado. A trona é um mineral raro presente em poucas regiões do mundo,

    usualmente em lugares de clima desértico. As jazidas mais importantes se encontram nos

    Estados Unidos e na Turquia.

    Barrilha artificial ou Solvay:

    É produzida a partir da salmoura dos oceanos através de um processo químico denominado

    “Solvay”. Existe uma empresa com este nome que produz barrilha, mas também muitas outras

    que o fazem empregando este processo.

    A barrilha originária da trona é mais barata de se produzir, entretanto os locais de extração são

    normalmente desertos longe dos centros produtivos de vidro devendo, portanto ser

    transportada por longas distâncias. A barrilha Solvay pode ter fábricas localizadas em qualquer

    lugar perto da costa. Ambas atuam no vidro de maneira indistinta e a escolha de uma ou outra

    se dá apenas por razões econômicas.

    No Brasil não existe nenhuma produção deste material que, portanto deve ser todo

    importado. Ele também é de longe a matéria-prima mais dispendiosa constituindo de 50 a 60%

    do custo da composição dos vidros sodo-cálcicos.

    Figura 34: Armazém carregado de barrilha recém descarregada de um navio.

    Colorantes

    O vidro obtido com as matérias-primas básicas é incolor. Para obter as diversas cores possíveis

    de se configurar ao vidro se adicionam alguns óxidos metálicos, normalmente em

    pequeníssimas proporções, tanto que nem nos referimos a eles em porcentagem, mas em

    PPM (partes por milhão). 1 PPM = 0,0001%.

    Os colorantes mais usualmente empregados em vidros industriais são:

    Óxido de cromo que produz o verde das garrafas de vinho

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 32/58

    Figura 35: Garrafa de vinho colorida por óxido de cromo

    Óxido de ferro que dá o verde das chapas de vidro plano. Sua cor é menos intensa que a do

    cromo, porém retém a passagem de radiação infravermelha responsável pelo aquecimento.

    Figura 36: Artigos apresentando a coloração do ferro.

    Óxido de cobalto gera um azul forte empregado em artigos domésticos, algumas garrafas de

    vinho branco alemão e vidros planos impressos.

    Figura 37: Azul ao Cobalto

    Óxido de cobre também confere cor azul porem um pouco diferente da do cobalto, com um

    tom mais esverdeado. Em alguns frascos de perfume se emprega também óxido de neodímio

    que também confere um tom de azul porem é pouco empregado devido ao alto custo por ser

    componente muito raro na natureza. A foto da Figura 38 mostra um frasco produzido com

    vidro colorido ao cobre e outro ao neodímio.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 33/58

    Figura 38: À esquerda vidro azul ao Cobre e à direita ao Neodímio

    Selênio dá uma cor rosada. O selênio é empregado em conjunto com o cobalto e o ferro para

    produzir as cores cinza e bronze dos vidros planos.

    Figura 39: Vidro ao Selênio

    O óxido de manganês fornece uma cor “vinho” e é empregado em alguns vidros planos

    impressos.

    Os vidros planos “bronze” e “cinza” são obtidos com a mistura de três colorantes: ferro,

    selênio e cobalto.

    Figura 40: Exemplo de vidro plano cinza ou fumê colorido com ferro, selênio e cobalto.

    Caco

    Referindo-se a matérias-primas de vidro não se pode deixar de mencionar o caco, pois o vidro,

    de fato é 100% reciclável e um quilo de caco introduzido no forno vai gerar um quilo de vidro

    novo com as mesmas características e propriedades do vidro original com o qual se produziu o

    caco.

    O uso do caco trás uma série de vantagens aqui divididas em três grupos:

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 34/58

    Ecológicas ou de meio ambiente

    Quando se usa caco deixa de se usar matérias-primas minerais novas. Por mais cuidado que se

    tenha na exploração desses bens minerais sempre há alguma agressão ao meio ambiente e a

    sua redução é positiva.

    O caco também exige menos energia para elaborar vidro do que as matérias-primas novas,

    pois ele já é vidro pronto que só necessita ser aquecido para recuperar uma viscosidade que

    permita a sua conformação enquanto as matérias-primas novas demandam energia para uma

    série de reações químicas necessárias para transformá-las em vidro. Desta maneira quanto

    mais caco houver na composição menos energia será necessário empregar no forno e

    conseqüentemente menos gases de efeito estufa serão emitidos.

    Quando se recicla o caco ele não está sendo descartando no meio ambiente e, portanto,

    menos agressão também nesta área.

    Estratégicas

    Como o vidro pode ser produzido só com caco, sempre é bom ter estocado certa quantidade

    deste material na fábrica, pois em caso de algum problema como demora na entrega de uma

    matéria-prima, pane no sistema de preparação da composição, etc. se enforna caco enquanto

    se busca a solução do problema sem afetar a produção.

    Econômicas

    Como o caco exige menos energia para ser elaborado pode-se produzir quantidades maiores

    de vidro em um forno onde se emprega maior teor de caco.

    Da mesma forma como se gasta menos energia na elaboração se reduz o custo global de

    produção.

    Por outro lado a utilização do caco pode trazer alguns problemas e a maioria deles se origina

    em contaminações que eventualmente estejam presentes. Impurezas que entram no forno de

    fusão junto com o caco como cerâmicas, metais, etc., podem tanto ocasionar defeitos nos

    produtos como acelerar o desgaste do forno.

    Da mesma forma a cor do caco pode ser um limitante no seu emprego, pois se estamos

    produzindo vidro incolor não podemos usar nenhum caco colorido. A recíproca não é válida:

    pode se usar vidro incolor para produzir vidro colorido, bastando acrescentar na composição

    as quantidades de colorantes necessárias para colorir este vidro.

    Figura 41: estoque estratégico de caco em uma vidraria

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 35/58

    8 - Processo Produtivo Industrial

    Agora que já conhecemos o vidro e do que ele é feito vamos ver como ele é feito.

    A figura 42: mostra o processo completo de produção em uma fábrica de vidro plano float e a

    Figura 43 de uma fábrica de embalagens.

    Figura 42: Fluxograma de uma fábrica de vidro plano

    Figura 43: Fluxograma de uma fábrica de vidro embalagem.

    As matérias-primas chegam à vidraria já prontas para serem utilizadas. A massa de matérias-

    primas empregadas supera a massa de vidro correspondente produzida, pois algumas delas

    perdem gases durante o processo de elaboração. Para cada 1000 quilos de vidro produzido são

    necessários, aproximadamente, 1200 quilos de matérias-primas.

    Devido ao grande volume de utilização muitas vezes se privilegia transporte ferroviário e

    marítimo, porém, no Brasil 100% do transporte de matérias-primas, com exceção das

    importadas até chegarem a um porto brasileiro, é feita por via rodoviária.

    8.1 - Usina de Composição

    Chegando à vidraria as matérias-primas são encaminhadas para a “usina de composição” que

    tem a função de armazenar, dosar e misturar os materiais.

    Fazer vidro é semelhante a cozinhar. A usina de composição é semelhante à parte da cozinha

    onde se guarda os mantimentos e se faz sua dosagem seguindo a receita do bolo.

    A usina de composição é constituída de silos de armazenagem, pelo menos um para cada

    material, balanças dosadoras e um misturador para misturar todos os materiais e

    homogeneizar a composição, semelhante a uma batedeira, que será em seguida enfornada e

    fundida para se tornar vidro.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 36/58

    Um esquema de usina de composição é apresentado na Figura 44. Por intermédio de

    elevadores de canecas e esteiras as matérias primas são conduzidas aos seus respectivos silos.

    Sob cada silo existe uma balança responsável por dosar cada material. Todos os materiais já

    pesados são conduzidos a um misturador que em poucos minutos gera uma mistura

    homogênea de todos eles.

    O caco não entra no misturador, mas é igualmente dosado e acrescido à mistura na saída do

    misturador. A composição assim pronta é conduzida ao forno de fusão.

    Figura 44: Esquema de uma usina de composição.

    A receita que estabelece a quantidade necessária de cada material para produzir o vidro que

    precisamos é chamada de “cálculo de composição” e com essas informações se regulam as

    balanças que vão preparar a mistura para garantir a obtenção de um vidro com a composição

    química adequada.

    8.2 - Forno de Fusão

    Depois de pronta a composição é levada ao forno onde é fundida e transformada em vidro. Da

    mesma forma que a massa do bolo se transforma em bolo dentro do forno.

    O forno é constituído de uma grande piscina sempre cheia de vidro fundido. De uma

    extremidade dessa “piscina” vai se tirando o vidro para produzir os artigos enquanto que da

    outra se repõe a mesma quantidade de composição. O controle da quantidade enfornada se

    dá por um sistema que mede o nível do banho com grande precisão. Quando a extração está

    muito alta o nível tende a baixar e o medidor informa para a enfornadeira trabalhar mais

    rápido. Se o nível está alto o mesmo informa para a enfornadeira reduzir seu ritmo.

    Sobre a piscina existe um espaço onde se faz a combustão do combustível que pode ser óleo,

    mas preferencialmente se usa gás. A chama desta combustão mantém a piscina aquecida e

    líquida e fornece energia para fundir a composição que está entrando e que fica boiando sobre

    o banho até vir a fazer parte dele.

    A figura 45 mostra o corte longitudinal de um esquema de um forno de fusão.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 37/58

    Figura 45: esquema de corte longitudinal de um forno de fusão

    Os fornos de fusão empregados em vidro plano são regenerativos, isto é, aproveitam o calor

    da fumaça antes de descartá-la para aquecer o ar que em conjunto com o gás fará a

    combustão.

    A Figura 46 mostra um corte transversal do forno mostrando as câmaras de regeneração e o

    sistema de funcionamento.

    Existe um ventilador que capta o ar do ambiente e o injeta no forno, antes porém passando

    por uma câmara de regeneração de calor. Na entrada do forno é misturado com o combustível

    e gera a chama. No primeiro esquema da Figura 46 mostra o ar entrando pelo lado esquerdo

    do forno e a fumaça saindo pelo direito. A fumaça quente passa pelo regenerador do lado

    direito e o aquece (ao mesmo tempo em que ela se esfria) indo em seguida para o filtro e a

    chaminé.

    Depois de 20 minutos nesta situação se corta o combustível e se apaga a chama. A válvula de

    inversão muda de posição e o ar captado pelo ventilador passa a entrar pelo lado direito. A

    câmara de regeneração do lado direito esta bem aquecida, pois recebeu fumaça quente por

    vinte minutos, e então o ar se aquece antes de entrar no forno recuperando parte da energia

    que seria perdida pela fumaça.

    Em seguida se abre o combustível do lado direito, a combustão reinicia e a fumaça quente

    passa a aquecer a câmara esquerda que agora esta fria, pois recebeu ar da atmosfera pelos

    últimos vinte minutos.

    A cada vinte minutos este processo se repete.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 38/58

    Figura 46: Sistema de regeneração dos fornos de fusão

    A foto da figura 47 mostra o interior do forno de combustão. No momento esta queimando do

    lado esquerdo e a fumaça saindo pelo lado oposto. A superfície do banho é espelhada e

    podemos notar as imagens refletidas na mesma.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 39/58

    Figura 47: Vista do interior de um forno de fusão.

    8.2.1 - Refratários

    Todo o interior do forno é revestido de material refratário que é feito especialmente para

    fornos de vidro devendo resistir ao calor e não contaminar o vidro. Os fornos trabalham

    ininterruptamente por diversos anos e os refratários devem permanecer íntegros durante todo

    esse período. Depois de determinado período de funcionamento, que pode ser até superior a

    15 anos, o forno é apagado para ser reformado se procedendo a troca dos refratários.

    O período de funcionamento entre duas reformas ou entre a construção e a primeira reforma

    é denominado de “campanha”.

    Os refratários são feitos sob medida e as fotos da figura 48 mostram a pré-montagem de

    partes do forno, feita ainda no fabricante, para se certificar que na montagem vão se encaixar

    perfeitamente.

    Figura 48: Pré-montagem de peças refratárias de um forno. Fonte: SEFPRO

    A figura 49 mostra esquema dos refratários de um forno de vidro plano. No mesmo se

    observam os regeneradores dispostos de ambos os lados. As diferentes cores representam

    diferentes qualidades de refratários que se empregam.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 40/58

    Um forno desses comporta em torno de 20 000 toneladas de refratários a um custo da ordem

    de sessenta milhões de euros podendo trabalhar mais de 15 anos até ser necessária sua

    parada para reparação.

    Figura 49: Desenho representando um forno de fusão de vidro plano. Fonte: SEFPRO

    A figura 50 mostra esquema dos refratários de um forno de vidro embalagem. No mesmo se

    observam os regeneradores, sempre em número de dois, dispostos na parte anterior do forno.

    Figura 50: Desenho representando um forno de fusão de vidro embalagem. Fonte: SEFPRO

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 41/58

    8.3 - Processo de Conformação

    Após o vidro ter sido elaborado no forno de fusão ele será conformado nos diversos produtos.

    A conformação inicia quando o vidro ainda esta viscoso e pode fluir. Ao mesmo tempo em que

    ele vai sendo conformado ele se esfria e a viscosidade vai aumentando. O processo de

    conformação então deve terminar no exato momento em que o vidro fica rígido para manter

    então a forma do produto final.

    Caso a conformação seja muito lenta e não termine antes do enrijecimento não se chega ao

    produto desejado. Da mesma forma se ele for muito rápido e terminar com o vidro ainda

    fluido ele, pelo próprio peso, vai escoar e perder a forma necessária.

    Existem vários processos de conformação empregados de acordo com o produto almejado. O

    vidro plano no passado era estirado e agora é flotado como pode se observado na figura 14.

    Os produtos de cozinha normalmente são prensados em um molde que confere a forma final

    ao mesmo tempo em que resfria o vidro. A figura 51 a seguir mostra o esquema da prensagem

    de uma gota de vidro a fim de produzir uma saladeira.

    Figura 51: Prensagem de uma saladeira

    Fibras de vidro empregadas no reforço de plásticos são estiradas, ou seja, são esticadas até

    chegarem na espessura necessária que é de alguns milésimos de milímetro. A figura 52 mostra

    a estiragem de fibras de reforço, alguns produtos e algumas aplicações.

    Figura 52: Processo de estiragem de fibras de reforço, alguns produtos e um exemplo de

    aplicação de fibra de vidro reforçando plástico.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 42/58

    A figura 53 mostra o processo de fibragem da lã de vidro e um exemplo de aplicação deste

    material, excelente isolante termo acústico. É o mesmo princípio da produção do algodão

    doce.

    Figura 53: processo de fibragem de lã de vidro e um exemplo de aplicação como isolante

    termo-acústico na construção civil.

    As garrafas são sopradas dentro de um molde. No Processo primeiramente se faz um pré-

    garrafa e num segundo sopro se conclui a forma final. O processo é feito em duas fases, pois

    na primeira deve-se formar a boca e no segundo o corpo da embalagem. A figura 54 a seguir

    representa as etapas da conformação de uma embalagem.

    Figura 54: Processo de conformação de embalagem

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 43/58

    8.3.1- Processo Float

    Na saída do forno o vidro escorre sobre um banho de estanho fundido onde se esfria até

    enrijecer saindo deste já na forma final.

    A Figura 55 mostra um esquema da conformação da chapa de vidro, onde se observa o vidro

    escorrendo sobre o banho de estanho fundido a 1050oC, se esfriando e enrijecendo sobre o

    mesmo e saindo a 600oC quando já se comporta como um sólido não sendo mais marcado por

    contato. Esta parte do processo é denominada “float”. O fato da chapa se enrijecer apenas em

    contato com a superfície do líquido garante que ela tenha suas superfícies perfeitamente lisas

    e paralelas garantindo uma excelente qualidade ótica.

    A região do banho de estanho é hermeticamente fechada e se injeta nitrogênio em seu interior

    para evitar contato do estanho com oxigênio que o oxida e gera defeitos no vidro.

    Figura 55: Esquema do processo de conformação da chapa de vidro sobre o banho de estanho

    Na saída do banho de estanho o vidro já está rígido e é conduzido sobre uma seqüência de

    rolos acionados por um motor que controlam a velocidade de saída da fita.

    A figura 56 mostra estes rolos. Eles conduzem a fita de vidro desde a saída do banho de

    estanho, passando pelo forno de recozimento até o ponto de corte e estocagem das chapas.

    Figura 56: Rolos de transporte da fita de vidro após a saída do mesmo do banho de estanho

    A espessura da fita de vidro é dada pela velocidade dos rolos, quanto mais rápido eles

    puxarem o vidro mais este vai se afinar e vice versa.

    Quando se puxa o vidro ele tende a se afinar, mas também tende a estreitar e por esta razão

    dentro do float há uma serie de rodas metálicas dentadas chamadas de “moletes” que

    seguram o vidro impedindo a fita de se estreitar.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 44/58

    Na foto da figura 57 mostra o interior do float, a região do banho de estanho. A lâmina de

    vidro ainda em processo de enrijecimento é conduzida por moletes, que evitam seu

    estreitamento.

    Figura 57: Vista do interior do float

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 45/58

    8.3.2 - Princípio de funcionamento do float

    Sempre que vertemos um líquido sobre uma superfície sólida este líquido vai se esparramar

    até que forma uma camada estável com determinada espessura. Esta espessura depende de

    algumas propriedades tanto do sólido como do líquido. A força da gravidade tende a

    “espalhar” ao máximo o líquido. Por outro lado a tensão superficial tende a ter o mínimo de

    superfície no líquido formando uma esfera. Do equilíbrio entre estas duas forças vai se gerar

    uma espessura de equilíbrio deste líquido derramado. No caso de vidro fundido sobre estanho

    esta espessura é de 6 mm como representado na Figura 58

    Figura 58: Espessura de equilíbrio do vidro sobre estanho fundido

    A figura 59 mostra a fita de vidro se formando sobre o banho de estanho e produzindo chapa

    de 6mm de espessura.

    Figura 59: vista superior da formação da chapa de vidro de 6mm sobre o banho de estanho

    Ou seja, se produzíssemos sempre só chapas de 6 mm de espessura bastaria escorrer o vidro

    sobre o estanho e puxá-lo para fora. Como isso não é o caso, quando queremos fazer vidro

    mais fino temos que aumentar a velocidade de extração do vidro que vai esticar e afinar. Só

    que alem de afinar a espessura ele também vai afinar na largura, como um chiclete.

    A figura 60 demonstra este efeito.

    Figura 60: Efeito de estricção quando se traciona uma lâmina (“efeito chiclete”).

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 46/58

    Para evitar que ele afine na largura dentro do float, que é a região onde há o banho de

    estanho, se utilizam as moletes que seguram o vidro e não o deixam diminuir na largura

    enquanto que a espessura adequada é obtida ajustando-se a velocidade de extração. A

    velocidade de extração é regulada pelos rolos que conduzem o vidro na saída do float.

    A figura 61 mostra a posição das moletes quando se produz vidro mais fino que 6mm.

    Figura 61: Esquema de posicionamento das moletes na produção de vidro fino

    A figura 62 mostra a posição das moletes quando se produz vidro mais grosso que 6mm. Neste

    caso a velocidade de extração é diminuída e o vidro tende a escoar sobre os banhos em

    direção às laterais, mas é impedido pelas moletes. Para vidros muito grossos esse fenômeno se

    agrava e moletes adicionais devem ser introduzidas.

    Figura 63: Posicionamento das moletes na produção do vidro grosso.

    Enquanto que a espessura da fita é regulada com a velocidade dos rolos de extração da mesma

    e o número e posicionamento das moletes, a quantidade de vidro produzida, em toneladas, é

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 47/58

    regulada por um registro na saída do forno chamado de “front tweel” representado na Figura

    64. O front tweel é levantado ou abaixado de acordo com a extração e espessura necessárias.

    Figura 64: Esquema do float mostrando o front tweel que é o registro que regula a tonelagem

    produzida.

    O perfil térmico adequado para a conformação da chapa é obtido por uma série de resistências

    elétricas existentes sobre o banho de estanho. Na foto da Figura 57 é possível se ver estas

    resistências.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 48/58

    8.4 - Recozimento

    Durante a conformação, como conseqüência do fato de que a massa de vidro não se esfria por

    igual, são geradas muitas tensões. Devido a isso o vidro deve ser recozido, ou seja, levado até a

    temperatura de recozimento para alívio de tensões e em seguida esfriado lentamente, todo

    por igual. Isto é feito no forno de recozimento que aproveita a própria energia térmica que os

    produtos trazem do forno.

    O forno de recozimento é um túnel cuja entrada fica logo na saída da conformação do produto

    e tem um perfil de temperatura adequado para o tratamento térmico. O vidro é conduzido

    dentro dele por um conjunto de rolos, no caso do vidro plano, ou por uma esteira metálica nos

    demais.

    Após o forno de recozimento o vidro tem a sua qualidade verificada e é cortado e empilhado

    para ser expedido, no caso de vidro plano, ou embalado em palets no caso de vidros de

    embalagem,

    A Figura 65 mostra um forno de recozimento de uma linha de produção de vidro plano e a

    Figura 66 um forno de recozimento de embalagens.

    Figura 65: Forno de recozimento de vidro plano.

    Figura 66: Forno de recozimento de embalagens.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 49/58

    9 - Transformação do Vidro

    O vidro plano, diferentemente da maioria dos produtos de vidro, depois de pronto pode ser

    utilizado diretamente ou sofrer diversas transformações que lhe agregam valor ou mesmo o

    transformam em um novo produto.

    Um exemplo típico são os espelhos. Na verdade o que reflete a imagem não é o vidro, mas

    uma fina camada de prata que é aplicada em sua superfície. O vidro só tem a função de

    suportar a prata e por ser uma superfície perfeitamente lisa não distorce as imagens. A prata

    também se oxida em contato com o ar e como o vidro é totalmente impermeável, a protege.

    Para se fazer um espelho, do lado oposto ao vidro várias camadas são adicionadas após a

    aplicação da prata tanto para protegê-la como para impedir que alguma luz atravesse o vidro e

    atrapalhe a observação da imagem refletida.

    A têmpera aplicada ao vidro é uma forma de aumentar de 3 a 5 vezes a sua resistência

    mecânica. O principio da têmpera se baseia no fato de que quando o vidro esfria mais

    rapidamente (mais desordenado) tende a ocupar maior espaço do que vidro esfriado

    lentamente (mais ordenado).

    Para se temperar uma chapa de vidro ela é aquecida até que quase comece a escoar. Em

    seguida se esfria com jatos de ar direcionado por toda a sua superfície. Desta forma o vidro

    que esta na camada externa, como se fosse a sua pele, esfria rapidamente com o jato de ar.

    Porem o vidro do centro, que esta protegido pela pele, se esfria lentamente (o vidro é um mau

    condutor de calor).

    No final do processo o vidro da pele ocupa um volume maior, como se ele quisesse crescer,

    mas fica impedido pelo núcleo que ocupa um volume menor e quer se encolher. Isso tudo gera

    uma tensão de compressão na superfície que impede, ou ao menos dificulta, qualquer defeito

    superficial de se tornar uma trinca que quebraria o vidro.

    Entretanto se por alguma razão alguma trinca penetrar no vidro e atingir a zona em tração no

    núcleo, o vidro se quebra em muitos pedaços. Esta é uma vantagem do vidro temperado,

    chamado muitas vezes de “vidro de segurança”, pois por não se quebrar em pedaços grandes

    tem menos chance de ferir pessoas e normalmente os ferimentos são menos importantes.

    O esquema da Figura 67 mostra a quebra em três tipos de vidro: o primeiro é um recozido, que

    é o vidro como sai do processo float, o segundo é um vidro laminado constituído por duas

    lâminas de vidro recozido com uma camada interna de um plástico especial chamado de

    polivinilbutiral ou PVB que adere ao vidro, não interferindo em sua transparência, e segurando

    firmemente os cacos em caso de quebra evitando assim riscos de cortes nas pessoas que

    estiverem próximas. O terceiro é um vidro temperado que se quebra (com mais dificuldade)

    em muitos pedaços pequenos e com os bordos arredondados.

  • Escola do Vidro – Introdução ao Vidro Plano e sua Produção – Mauro Akerman – Maio 2013 50/58

    Figura 67: Quebra de vidro recozido; laminado e temperado.

    Os para brisas de todos os veículos são fabricados em vidro laminado por questões de

    segurança. Em caso de quebra o vão não fica vazado e se pode prosseguir a viagem, além de

    gerar menos riscos ao condutor e passageiros. O vidro temperado q