45
Name of work:- pkn Top Dome 1 Tank capacity 1000000 Ltr. 1000 100 mm thi 2 Height of tower from G.L. 16.00 Foudation from 1.00 mtr Top Ring Beam 3 Live load on Dome 1.50 Finishes load 0.1 300 x 300 2.00 m 3 Intencity of wind 1.50 wt of water 10 4 Noumber of columns 8 No. Bearing capci 250 4 Conrete M 20 unit weight 24 ### m 5 m 13 7 Q 0.897 8.00 m 5 Steel HYSD fy 415 sile stress (Tank) 150 1.2 1.7 Bottom Ring Beam Conocal Dom 6 Nominal Cover 25 mm Effective Cover 40 mm 1200 x 600 mm 600 mm thi 7 Depth / diameter Rati 1: 0.75 8 Reinforcement Borrom sperical D 300 mm 8 160 mm c/c both way 1.60 m 2.00 Top Ring Beam 12 8 Nos. Bottom two ledge srirrups 8 300 mm c/c Circular Girder 8.00 M Vertical wall 600 x 1200 4.00 2 m from top hoop ring 10 190 mm c/c both side 4 m from top hoop ring 16 250 mm c/c both side 8 m from top hoop ring 20 190 mm c/c both side Circular 2 m from top stri. Steel 10 260 mm c/c both side Group of columns Braces 4 m from top stri. Steel 10 170 mm c/c both side 650 mm dia 4.00 8 m from top stri. Steel 10 130 mm c/c both side Bottom Ring Beam Main 20 18 Nos. 4.00 Distri. Steel 10 150 mm c/c Conical wall Main 25 190 mm c/c Distri. Steel 10 130 mm c/c 4.00 Bottom sperical Dome 10 120 mm c/c both side Circular Bottom circular girder Main top 25 6 Nos. Girder for Raft N. Vertical strirrups 12 110 mm c/c 4 750 X 1000 1.00 Main bottom 25 5 Nos. mm Vertical strirrups 10 300 mm c/c 2 500 Column supprting tower Main 32 8 Nos. O.K. 3.00 5.00 m Latral 10 300 mm c/c 11.00 m Bracing main 25 4 Nos. at top and bottom strirrups 10 300 mm c/c 2 Ledge strirrup Circular girder for Raft bottom 25 6 Nos. top 25 3 Nos. strirrups 12 130 mm c/c 4 Ledge strirrup Raft Foundation slab main 25 200 mm c/c Distribution 12 180 mm c/c 25 DESIGN OF INTZE WATER TANK m 3 kN/m 2 kN/m 2 kN/m 2 kN/m 3 kN/m 2 kN/m 3 scc N/mm 2 scb N/mm 2 N/mm 2 Resistance to cracking sct N/mm 2 scb N/mm 2 Top Dome (main / distri. ) mm F mm F mm F mm F mm F mm F mm F mm F mm F mm F mm F mm F mm F mm F mm F mm F Ledge mm F mm F Ledge mm F mm F mm F mm F mm F mm F mm F mm F mm F pk_nandwana@yahoo mm f

Intze Water Tank Based on K. Raju

Embed Size (px)

Citation preview

Page 1: Intze Water Tank Based on K. Raju

Name of work:- pkn Top Dome

1 Tank capacity 1000000 Ltr. 1000 100 mm thick

2 Height of tower from G.L. 16.00 mtr Foudation from G.L. 1.00 mtr Top Ring Beam

3 Live load on Dome 1.50 Finishes load 0.1 300 x 3002.00 m

3 Intencity of wind 1.50 wt of water 104 Noumber of columns 8 No. Bearing capcity of earth 2504 Conrete M 20 unit weight 24 12.00 m

5 m 137 Q 0.897 8.00 m

5 Steel HYSD fy 415 Tensile stress (Tank) 1501.2 1.7 Bottom Ring Beam Conocal Dom

6 Nominal Cover 25 mm Effective Cover 40 mm 1200 x 600 mm 600 mm thick

7 Depth / diameter Ratio 1: 0.758 Reinforcement Borrom sperical Dom 300 mm

8 160 mm c/c both way1.60 m

2.00 m

Top Ring Beam 12 8 Nos. Bottom 2.00

two ledge srirrups 8 300 mm c/c Circular Girder 8.00 M

Vertical wall 600 x 1200 4.00 m

2 m from top hoop ring 10 190 mm c/c both side4 m from top hoop ring 16 250 mm c/c both side8 m from top hoop ring 20 190 mm c/c both side Circular

2 m from top Distri. Steel 10 260 mm c/c both side Group of columnsBraces

4 m from top Distri. Steel 10 170 mm c/c both side 650 mm dia 4.00 m

8 m from top Distri. Steel 10 130 mm c/c both sideBottom Ring Beam

Main 20 18 Nos. 4.00 m

Distri. Steel 10 150 mm c/cConical wall

Main 25 190 mm c/cDistri. Steel 10 130 mm c/c 4.00 m

Bottom sperical Dome 10 120 mm c/c both side Circular Bottom circular girder Main top 25 6 Nos. Girder for Raft N.S.L.

Vertical strirrups 12 110 mm c/c 4 750 X 1000 1.00 mMain bottom 25 5 Nos. mm

Vertical strirrups 10 300 mm c/c 2500

1000

Column supprting tower Main 32 8 Nos. O.K. 3.00 5.00 m 250

Latral 10 300 mm c/c 11.00 m

Bracing main 25 4 Nos. at top and bottomstrirrups 10 300 mm c/c 2 Ledge strirrup

Circular girder for Raft bottom 25 6 Nos. top 25 3 Nos.

strirrups 12 130 mm c/c 4 Ledge strirrup Raft Foundation slab main 25 200 mm c/c

Distribution 12 180 mm c/c25

DESIGN OF INTZE WATER TANK

m3

kN/m2 kN/m2

kN/m2 kN/m3

kN/m2

kN/m3

scc N/mm2

scb N/mm2

N/mm2

Resistance to cracking sct N/mm2 scb N/mm2

Top Dome (main / distri. ) mm Fmm Fmm F

mm Fmm Fmm Fmm Fmm Fmm F

mm Fmm F

mm Fmm Fmm Fmm Fmm F Ledge

strirrup near

supports

mm Fmm F Ledge

strirrup near

supports

mm Fmm Fmm Fmm Fmm Fmm Fmm Fmm Fmm F [email protected]

mm f @

Page 2: Intze Water Tank Based on K. Raju

8 160 mm c/c Both side 6 Nos. top

100 120010

150 mm c/c strirrup

300 Bottom circular girder 600

Reiforcement in circular girder

B1 6.00 M columns

12 8 Nos.

300 8 300 mm c/c

0 m

200 10 190 mm c/cmm 10 260 mm c/c 200 x 200

300 10 170 mm c/c Fillet 10

mm 16 250 mm c/c Braces 300 mm c/c

2 m 500 25

20 190 mm c/c500

4 nos.top

4 m 25

10 130 mm c/c 4 nos.Bottom

400 Reinfocement in Bracemm

20 18 Nos. 25

10 150 mm c/c 10 3 nos.top nos.top

600 mm 300 mm c/c 12 25

30032 130 mm c/c 6 nos.top

8 mm c/c 25 12

200 mm c/c 6 nos.top

Reinforcement Detail in r columns

25

6 Nos. top 32 10

12 8 nos. 300 mm c/c Cross -section of Bottom Ring girder

110 mmc/c.strirrup 1200

12

6 Nos.both side

25

5 Nos.bottom

Reinforcement detail in Intze Tank.

Reinforcement Detail in circular girder and Raft foundation slab

mm f @

mm f @

mm f @

mm f @

mm f @

mm f @

mm f @ mm f strirrup

mm f @

mm f

mm f @

mm f

mm f @

mm f @ mm f mm f

mm f @ mm f

mm f mm f

mm f

mm f mm f

mm f @

mm f mm f

mm f @

mm f @

mm f @

[email protected]

Page 3: Intze Water Tank Based on K. Raju

DESIGN OF INTZE WATER TANK

Tank capacity 1000000 ltr or = 1000Height of tower from G.L. 16.0 m foundation from G.L. = 1.00 mtr

Live load on Dome 1.50 Finishes load = 0.10Intencity of wind 1.50 wt of water = 10Noumber of columns 8 No. Bearing capcity of = 250Conrete M- 20 wt. of concrete = 24

7 m = 13

5 Q = 0.897Steel HYSD fy 415 Tensile stess = 150

1.2 = 1.7Nominal cover 25 mm Effective cover = 35 mm

2 Design Constants:For HYSD Bars Cocrete M = 20 wt. of concrete = 24

= 150 = 230

= 7 m = 13k = 0.378 k = 0.283J = 0.874 J = 0.906R = 1.156 R = 1.669

3 Dimention of tank:-

D = Inside diameter of tank Assuming the average depth = 0.75 D

We have,x 0.75 D = 1000 D "= 11.930 Say 12.00 m

4

\ Height of cylindrical portion of tank = 0.75 x 11.93 = 8.00 m

Depth of conical Dome D/5 or D/6 = 12.00 / 6 = 2.00 m

Diameter of supporting tower = 8 m

Spacing of bracing = 4 m

4 Design of top dome :-Thickness of dome slab = 100 mm or = 0.10 m

Self load of dome = 0.10 x 1 x 1 x 24 = 2.4

Live load = 1.50

finishes = 0.10

Total load = 4.00

If R = radious of dome D = diameter of Tank = 12.00 m r = central rise = D/6= 2.00 m

=6.00 2.00 2

or = 10.00 m2r 2 x 2.00

= 8 / 10.00 = 0.80 or = 37 degree

Maridianal thrust at edge 'T'= =4.00 x 10.00 =

22.20 N/m1 + 0.80

Circumferential force =wR cose f -1.00

= 4.00 x 10.00 x 0.80 -1.00

= 9.78 kN/mcos f 1.80

Maridianal Stress =22.20 x 1000

= 0.22 < 5 Safe100 x 1000

Hoop stress =9.78 x 1000

= 0.10 < 5.00 safe1000 x 100The stress are with in safe limit. However provide minimum reinforcement @ 0.3 % of area in each direction.

=0.3

x 1000 x 100 = 300100

using 8 mm bars A = =3.14 x 8 x 8

= 50.24 x100 4 x 100Spacing of hoop Bars = 1000 x 50.2 / 300 = 167 say = 160 mm

m3

kN/m2 kN/m2

kN/m2 kN/mm3

kN/m2

kN/mm3

scb N/mm2

sct N/mm2

N/mm2 N/mm2

Resistance to cracking scb N/mm2 scb N/mm2

kN/mm3

for water Tank sst N/mm2 sst N/mm2

scb N/mm2

p x D2

m3

kN/m2

kN/m2

kN/m2

kN/m2

the radius rtop is given by, R =D/22+r2 2+

cos f f p xR1

1 + cosf

N/mm2 N/mm2

N/m2 N/mm2

\ Ast mm2

3.14xdia2

mm2

Page 4: Intze Water Tank Based on K. Raju

Hence Provided 8 160 mm c/c in both circumferenially and meridionanlly.

5 Design of top ring Beam :-

Hoop tension'=F1= =22.20 x 0.800 x 12.00

= 106.60 kN2 2

Permissible stress in high yield strenth deformed bars = 150

Ast =106.60 x 1000

= 711150

using ### mm bars A = =3.14 x 12 x 12

= 1134 x100 4 x 100No.of hoop Bars = 711 / 113 = 7 No. say 8.0 No.

Hence Provided 8 No 12Actual , Ast = 8 x 113 = 904

If Ac = cross section of ring beam Equivelent area of composite section of beam

106.60 x 1000= 1.2 , \ Ac = 77077

Ac + m x 904

Provide ring beam 300 x 300 = 90000

Provide 8 300 mm c/c to tie the 8 x 12

6 Design of Cylendrical Tank wall :-

Maximum hoop tension at base=wHD

=10 x 8.00 x 12.00

= 480 kN/m height2 2

Area of ring Req. = 480000 / 150 = 3200 or 1600

To resist the hoop tension at 2 mtere below top,2.00 x 3200

= 800.08

using ### mm bars A = =3.14 x 10 x 10

= 794 x100 4 x 100

###1000 x 78.5

= 196 mm800.0 / 2

Hence Provided 10 190 mm c/c both direction from top 0 to 2 mtr from top

To resist the hoop tension at 4 mtere below top,4.00 x 3200

= 16008

using ### mm bars A = =3.14 x 16 x 16

= 2014 x100 4 x 100

###1000 x 201

= 251 mm1600 / 2

Hence Provided 16 250 mm c/c both direction from top 2 to 4 mtr from top

To resist the hoop tension at 8 mtere below top,8.00 x 3200

= 32008

using ### mm bars A = =3.14 x 20 x 20

= 3144 x100 4 x 100

###1000 x 314

= 196 mm3200 / 2

Hence Provided 20 190 mm c/c both direction from top 4 to 8 mtr from top

Actual , Ast = 2 x1000 x 314

= 3305190

The spacing of ring may be increased towards the top, since pressure varies lineearly

Using a tensile stress of 1.2N/mm2 for the the combined section ,

thickness T is given by=480 x 1000

= 1.21000 T + ( 13 x 3305 )

From which T = 360 mm say = 400 mm

Hence provided = 400 mm, at bottom and 200 mm at top Av thickness = 300 mmDistribution reinforcement

At top , Ast =0.30

x 200 x 1000 = 600100

Provide half the reinfocement near each face, Asd = 300

mm F bar, @[email protected]

T1 cos f- D

N/mm2,

mm2

3.14xdia2

mm2

mm F Ring bar, for symetry.

mm2

mm2

mm2

mm f strirrups @ mm f ring beam.

Since dome roof has been design on membrane the analysis, the tank wall may be assumed to be free on top and bottom, Maximum hoop tension occurs at the base of wall,

mm2 per meter height mm2 both side

Ash mm2

3.14xdia2

mm2

\ spacing of mm f rings =

mm F bar, @

Ash mm2

3.14xdia2

mm2

\ spacing of mm f rings =

mm F bar, @

Ash mm2

3.14xdia2

mm2

\ spacing of mm f rings =

mm F bar, @

mm2

\

mm2

mm2

Page 5: Intze Water Tank Based on K. Raju

using ### mm bars A = =3.14 x 10 x 10

= 794 x100 4 x 100The spacing of ### 1000 x 79 / 300 = 260 mm c/cHence Provided 10 260 mm c/c both direction from top 0 to 2 mtr from top

At middle , Ast =0.30

x 300 x 1000 = 900100

Provide half the reinfocement near each face, Asd = 450

using ### mm bars A = =3.14 x 10 x 10

= 794 x100 4 x 100The spacing of ### 1000 x 79 / 450 = 170 mm c/cHence Provided 10 170 mm c/c both direction from top 2 to 4 mtr from top

At bottom , Ast =0.30

x 400 x 1000 = 1200100

Provide half the reinfocement near each face, Asd = 600

using ### mm bars A = =3.14 x 10 x 10

= 794 x100 4 x 100The spacing of ### 1000 x 79 / 600 = 130 mm c/cHence Provided 10 130 mm c/c both direction from top 4 to 8 meter upto

Keep clear cover 25 mm7 Design of Bottom Ring Beam :-

Load on ring beam:

= 22.20 x sin ### = 22.20 x 0.602 = 13.36 kN/m(B) Load due to top ring beam = 0.30 x 0.30 x 24 = 2.16 kN/m© Load due to cylendrical wall = 0.30 x 8.00 x 24 = 57.6 kN/m

(D) Self load of Ring beam

Assuming Beam 1.20 x 0.60 = 1.20 x 0.60 x 24 = 17.28 kN/m

Total = 90.40 kN/m say 91.00 kN/m

Horizontal force = H = V1 cot f = 91.00 x 1 = 91.00 kN/m

Hg =((H x D )/2 =( 91.00 x 12.00 )/ 2.00 = 546 kN/m

Hoop Tension due to water pressure =(( wh.d.D)/2 )

Hw =( 10.00 x 8.00 x 0.60 x 12.00 ) / 2 = 288 kN/m

Total Hoop tension = Hg + Hw = 546 + 288.0 = 834.00 kN/m

834 x 1000 / 150 = 5560

using ### mm bars A = =3.14 x 20 x 20

= 3144 x100 4 x 100

No.of hoop Bars = 5560 / 314 = 18 No. say 18 No. Hence Provided 18 No 20Actual , Ast = 18 x 314 = 5652

Stress in equivalent section =834 x 1000

=1.05 < 1.2

1200 x 600 + 13 x 5652 Hence safeThe ### 150 mm c/c should taken

round the above ring to act as strirrups.

8 Design of conical dome wall :-

Avrage diameter of conical dome = ( 12.00 + 8.00 ) / 2 = 10.00

Avrage depth of water = 8.00 + 2.00 / 2 = 9.00

Weight of water above conical dome = 3.140 x 10.00 x 9.00 x 2.00 x 10 = 5652

Self weight of slab 600 mm thick = 3 x 10.00 x 2.83 x 0.6 x 24 = 1279

Load from top dome,top beam, wall & bottom beam = = 3.14 x 12.00 x 91.00 = 3429

= 10360 kN

Load / unit Length = 10360 / ( 3.14 x 8.00 )= 413 kN/m

= 413 xcosec 45 = 413 x 1.414 = 584 kN

Meridional Stress = 584 x 1000 ) /( 600 x 1000 )= 0.97 < 5.00 safeHoop tension in conical dome will be maximum at top of the conical dome slab since diameter D is maximum at this section. Hoop tension =

3.14xdia2

mm2

mm f bars =mm F bar, @

mm2

mm2

3.14xdia2

mm2

mm f bars =mm F bar, @

mm2

mm2

3.14xdia2

mm2

mm f bars =mm F bar, @

(A) Load due to top dome = (Meridional trust x sin f )

\ Hoop tension

This to be rested entirely by steel hoops, the area of which is Ash= mm2

3.14xdia2

mm2

mm F Ring bar, for symetry.

mm2

N/mm2

mm f distribution bars (vertical bars) provided in the wall @

\ Total load on conical slab

V2

Meridional thrust = T = V2 x Cosec f N/mm2

H =( p.cosec f + q. cot f ) . D/2

Page 6: Intze Water Tank Based on K. Raju

Water pressure = p = 10.00 x 8.00 = 80.00

Weight of conical dome slab per m2 is computed as, q= 0.6 x 24 = 14.4f = 45 Degree D = 12 m

= 80.00 x cosec 45 + 14.4 x cot 45 x D /2=( 80.00 x 1.4142 + 14.4 x 1 )x 12.00 / 2 = 765 kN

Whole of which is to be resisted by steel, As = 765000 / 150 = 5100\ Area of each face = 5100 / 2 = 2550

using ### mm bars A = =3.14 x 25 x 25

= 4914 x100 4 x 100The spacing of ### 1000 x 491 / 2550 = 190 mm c/c

Hence Provided 25 190 mm c/c on each face of the slab

Actual , Ast = 2 x1000 x 491

= 5164190

At bottom , Ast =0.20

x 600 x 1000 = 1200100

Provide half the reinfocement near each face, Asd = 600

using ### mm bars A = =3.14 x 10 x 10

= 794 x100 4 x 100The spacing of ### 1000 x 79 / 600 = 130 mm c/c

Hence Provided = 10 130 mm c/c on both face along the meridions.

Maximim tenssile stress =765 x 1000

=1.15 < 1.2

600 x 1000 + 13 x 5164 Hence safe

9 Design of Bottom Sperical Dome:-Thickness of Dom slab is assume = 300 mmDiameter at base of slab = D = 8.00 mCentral rise (1/5 x D) = 1.6 m

If R = radious of dome D = diameter of base = 8.00 m r = central rise = D/5= 1.60 m

=4.00 1.60 2

or R = 5.80 m2r 2 x 1.60

Self weight of Dome slab = 2x 3.14 x 5.800 x 1.60 x 0.300 x 24.00 = 420.00 kNVolume of water above the dome is =

= 3.14 x 4.00 10.0 )-6.28 x 5.80 1.60

-3.14 x 4.00

3.00 3.00

( 5.80 - 1.60 ) = 460

\ Weight of water = 460.0 x 10.00 = 4600 kN\ Total load on dome = 420.0 + 4600 = 5020 kN

Load / unit Length = 5020 / ( 3.14 x 16.00 )= 100 kN/m

= 4.20 / 5.80 = 0.724 \ f = 44 Degree

\ =100 x 5.80

= 337.00 kN/m1 + 0.724

Meridional Stress = 337.00 x 1000 ) /( 300 x 1000 )= 1.12 < 5.00 safe

Circumferential force = wR x -1

w R = 100 x 5.80 x 0.724 -1

= 83.60 kn/m1.724

=( 83.60 x 1000 ) /( 300 x 1000 )= 0.28 < 5.00 safe

Provide nominal reinforcement =0.30

x 300 x 1000 = 900100

using ### mm bars A = =3.14 x 10 x 10

= 794 x100 4Spacing of hoop Bars = 1000 x 79 / 650 = 121 say = 120 mm

Hence Provided 10 120 mm c/c curmferentially and along the meridions.

10 Design of Bottom Circilar Girder :-

= 413.00 kN/m

= 45 Degree

kN/m2

kN/m2

\ H

[email protected]

mm2

mm2

3.14xdia2

mm2

mm f bars =mm F bar, @

mm2

mm2

mm2

3.14xdia2

mm2

mm f bars =mm F bar, @

N/mm2

the radius is given by, R =D/22+r2 2+

2(2x 2x

mm3

V2

Meridional thrust = T = wR/1+cosf cos f

T2

N/mm2

cos f1+ cosf

\ Hoop strss N/mm2

mm2

3.14xdia2

mm2

mm F bar, @

Thurst from the conical dome T1

Acting at angle of a

Page 7: Intze Water Tank Based on K. Raju

= 337.00 kN/m

= 44.50 DegreeNet horizontal force on ring beam =

Net horizontal force on ring beam = 413.0 x 0.707 - 337.0 x 0.713 = 51.71 kN/m

Hoop compression in the beam = 51.71 x 8 / 2.00 = 206.84 kNAssuming size of ring beam 600 x 1200 mm

=( 206.84 x 1000 ) /( 600 x 1200 )= 0.29 < 5.00 safe

= 413.0 x 0.707 + 337.0 x 0.701 = 529 kN/mSelf weight of Beam = 0.60 x 1.200 x 24.00 = 18.00 kN/m

\ Total Load 547.0 kN/mTotal design load on the Ring girder = W = 3.14 x D x w

W = 3.14 x 8.000 x 547 = 13741 kNThe circular girder supported on 8 column. Using the moment cofficient given in table 4.1Maximum negative bending moment on supports = 0.0083 x wR

M = 0.0083 x ### x 4.00 = 457 kN.mMaximum Positive B.M. at mid span section = 0.0041 x wR

= 0.0041 x ### x 4.00 = 226 kN/mMaximum Torsional moment = 0.0006 x wR

= 0.0006 x ### x 4.00 = 33 kN/m= 547.0 x 4 x 0.79 )/ 2 = 859 kN

Shear force at section of maximum torsion is (At an angle of 12.75 degree from higher support)V = 859 -( 547.0 x 3.14 x 4 x 12.75 )/ 180 = 373 kN

Design of support section M = 457 V = 859 kN

=457 x 1000000

= 934 mm0.874 x 600

Provide depth = 1200 mm cover = 50 mm Afective depth = 1150 mm

= =457 x 1000000

= 3031150 x 0.874 x 1150

using ### mm bars A = =3.14 x 25 x 25

= 4914 x100 4 x 100No.of Bars = 3031 / 491 = 6 No.

Actual , Ast = 6 x 491 = 2944

tv =859 x 1000

= 1.24600 x 1150

% of steel used =100 Ast

=100 x 2944

= 0.427 % \ = 0.27 N/mm2b x d 600 x 1150

Since tc < Tv 0.27 < 1.24 Shear reinforcement required

Shear taken by concrete =0.27 x 600 x 1150

= 186 kN1000Balance shear = 859 - 186 = 673 kN

Using ### 4 legged strirups, spacing is,

=150 x 4 x 113.04 x 1150

= 116 mm673 x 1000

Hence Provided 12 110 mm c/c center near supports.

Design of mid span section:-

= =226 x 1000000

= 1499150 x 0.874 x 1150

But minimum area of steel is =0.30

x 600 x 1200 = 2160100

using ### mm bars A = =3.14 x 25 x 25

= 4914 x100 4 x 100

No.of Bars = 2160 / 491 = 5 No.

Actual , Ast = 5 x 491 = 2453

tv =226 x 1000

= 0.33600 x 1150

% of steel used =100 Ast

=100 x 2453

= 0.356 % \ = 0.25 N/mm2b x d 600 x 1150

Thrust from sperical dome T2

Acting at angle of bT1 cos a - T2 cos b

[email protected]

\ Hoop strss N/mm2

Vertical load on ring beam =( T1 sin a + T2 sin b )

Shear force at suppoprt section is = V = (w.R.p/4)/2

\ d

AstMc mm2

sst. j.d3.14xdia2

mm2

mm2

N/mm2

tc

mm f

sv

mm F bar, @

AstMc mm2

sst. j.d

mm2

3.14xdia2

mm2

mm2

N/mm2

tc

Page 8: Intze Water Tank Based on K. Raju

Since tc < Tv 0.25 < 0.33 Shear reinforcement required

Shear taken by concrete =0.25 x 600 x 1150

= 173 kN1000Balance shear = 226 - 173 = 54 kN

Using ### 2 legged strirups, spacing is,

=150 x 2 x 78.5 x 1150

= 506 mm say 500 mm54 x 1000

But Sv > 0.75d or 300 mm whichever is less = 0.75 x 1150 = 863 mm

Hence Provided 10 2 legged strirrups @ 300 mm c/c .

Design of section subject to maximum torsion:-T = 33.00 kN D = 1200 mm d = 1150 mmV = 373 kN b = 600 mm M = 0

Mt = T1 + D / b

= 33.001+ 1200 / 600

= 59.00 kN.m1.7 1.7

= (M+M1) = 0 + 59.00 = 59.00 kN.m

= =59 x 1000000

= 391150 x 0.874 x 1150

But minimum area of steel is =0.30

x 600 x 1200 = 2160100

using ### mm bars A = =3.14 x 25 x 25

= 4914 x100 4 x 100

No.of Bars = 2160 / 491 = 5 No.

Actual , Ast = 5 x 491 = 2453

Equivalent shear = Ve = V+1.6T/b = 373 + 1.6 x33.00

= 461 kN0.6

Tve =Ve

=461 x 1000

= 0.668bd 600 x 1150

% of steel used =100 Ast

=100 x 2453

= 0.356 % \ = 0.25 N/mm2b x d 600 x 1150

Since tc < Tv 0.25 < 0.67 Shear reinforcement required

Using ### 4 legged strirups,with side cover of 25mm and top and bottom cover of 50mm

=Asv . Asv

=4 x 113.04 x 150

= 270 mmTv-Tc)b 0.668 - 0.25 ) x 600

Hence Provided 12 4 legged strirrups @ 270 mm c/c .

11 Design of columns of supporting tower :-

The tank is supported on 8 columns, symemetrically placed on a circle of 8 m

mean diameter . Height of staging above ground level is 16.0 m. Let us assume the height of bracing is

4.00 mt . Hence 3 Panels of 4.00 m height each and 1 panel of 4.00 m height.

Let the columns is connected to raft foundation by means of a ring beam. The top of which is provided at

1.00 meter below the ground level, so that the actual height of bottom pannel is 5.00 m height

load on columns

Vertical load on each column = 13741 / 8 = 1718 kN

Self weight of column diameter mm 650 = 0.785 x 0.65 16 x 24.0 = 128 kN

height meter 16

weight of bracing ( 500 x 500 ) = 3 x 0.5 x 0.5 x 3.14 x 24.0 = 57 kN

Total vertical load on each column = 1903 kN

Wind force on column

Intensity of wind pressure = 1.50 Reduction coffiecent of circular shape = 0.70

(a) wind force on top of dome and culendrical wall.

= 9.00 x 12.00 x 0.70 x 1.50 x = 114 kN

(b) Wind force on conical dome= 2.00 x 10.00 x 0.70 x 1.50 x = 21 kN

(c ) Wind force on bottom ring beam 1.2 x 8.00 x 0.70 x 1.50 x = 11 kN

(d) wind force on 5 no. column= 5 x 0.65 x 0.70 x 1.50 x 16.0 = 55 kN

mm f

sv

mm F ,

\ Me1

AstMc mm2

sst. j.d

mm2

3.14xdia2

mm2

mm2

N/mm2

tc

mm f

Spacing sv

mm F ,

2x

kN/m2

Page 9: Intze Water Tank Based on K. Raju

(e) wind force in bracing = 0.5 x 8.00 x 3 x 1.50 = 18 kN

Total Horizontal force = 219 kN

Assuming contraflexure point at mid height of columns and fixidity at base due to raft foundation, the

moment at the base columns is computed as 219 x 4.00 / 2 = 438 kN.m

If M1 =Moment at the base of columns due to wind load

=( 114 x 23 + 21 x 17 + 11 x 16.00 + 6 x 12

+ 6 x 8.00 + 6 x 4.00 ) = 3299 kN.m

If V = Reaction devloped at the base of exterior columns

V= 3299 +

Vx 2 x 4 4 x

4

r1 4 2

= 3299 + V x 16\ V = 3299 / 16 = 207\ Total load on leeward column at base = 1903 + 207 = 2110 kN

Moment in each column in the base = 438 / 8 = 55.0 kN.m

Reinforcement in column ;-

2110 kN

55.0 kN.m

55.0 x 1000000= 26.07 mm

1000 2110

Since eccentricity is small, direct stress are predominent.

Using 8 bars of ### 10 300 mm c/c

= 8 x 0.785 x 32 x 32.00 = 6431

= 0.785 x 650 1.50 x 13 x 6431 ) = 457067moment of ineria, le = 0.785 x 325 1.50 x 13 )x 4 x 804 x 275

4 x 804 x ( 275 / 1.414

= 8757962890.625 +( 19.5 )x( 243210000 + 3216 x 37812.5

= 8757962890.625 + 4742595000 + 121605000

= 13622162890.625

=2110 x 1000

= 4.62457067

=55.0 x 1000 x 1000 x 325

= 1.3113622162890.625

Permissible stress in concrete is increased by 33.33% while considering wind effect.

= + < 1 or4.62

+1.31

5 x 1.33 7 x 1.33

= 0.694194 + 0.141 = 0.84

= 0.84 < 1 O.K.12 Design of Bracing :-

Moment In Brace = 2 x 55.0 x 2.00

= 156.00 kN.m

Section of braces = 500 x 500 mm\ b = 500 mm and d = 450 mm

Moment of resistance of section is

= 0.897 x 500 x 450 90821250 or 91.00 kN.m

Balance moment = = 156.00 - 91.00 = 65.00 kN.m

= =91 x 1000000

= 971.0230 x 0.906 x 450

= =65 x 1000000

= 781.0230 x 0.906 x 400

\ Ast = + = 971 + 781 = 1752

using ### mm bars A = =3.14 x 25 x 25

= 4914 x100 4 x 100

M=

M1 = S M + S r2 2+2

Axial load = P =

Bending moment = M =

eccentricity = (M/P) =x

mm f and latral tis of mm f at

Ast mm2

AC2+( mm3

4+( 2+

)2

mm4

Direct compressve stress = s'cc N/mm2

Bending stress = s'cb N/mm2

s'cc s'cb

scc scb

2 x Moment in column x (2)0.5 = (1/2)

M12=

M1 - M2

Ast1

Mcmm2

sst. j.d

Ast2

Mcmm2

sst. j.d

Ast1 Ast2 mm2

3.14xdia2

mm2

Page 10: Intze Water Tank Based on K. Raju

No.of Bars = 1752 / 491 = 4 No. bars at top and bottom

Actual , Ast = 4 x 491 = 1963

Length of barces L = 2 x 4.00 x sin 22.5

= 2 x 4.00 x 0.38 = 3.06 m

Maximum shear force in brace. =Moment in brace

=156.00

= 102.00 kN1/2 x brace length 0.5 x 3.06

=102.00 x 1000

= 0.46500 450

% of steel used =100 Ast

=100 x 1963

= 0.872 % \ = 0.36b x d 500 x 450

Since tc < 0.36 < 0.46 Shear reinforcement required

Shear carried by concrete =0.36 x 500 x 450

= 81.00 kN1000

Balance shear = 102.0 - 81.00 = 21.00 kN

Using ### 2 legged strirups, spacing is,

=150 2 x 78.5 x 450

= 505 mm Say 500 mm21 x 1000

But Sv > 0.75d or 300 mm whichever is less = 0.75 x 450 = 338 or 330 mm

Hence Provided 10 2 legged strirrups @ 300 mm c/c .

13 Design of foundation:-

A circular girder with raft slab is provided for tower foundations.

Total load on foundation = 1903 x 8 = 15224.0 kN

Self weight of foundation @ 10% = 1522.0 kN

Total Load = 16746.00 kN

Sefe bearing capacity of soil at site = 250.00

\ Area required = 16746 / 250 = 67.00

Providing a raft slab with equal projections on either sideof a circular ring beam and if

= width of raft slab, then = 3.14 x 8 x b = 67.0 or b = 2.67 m

Adopting a raft slab having inner diameter = 8.00 - 3.00 = 5.00 m say b = 3.00 m

and Outer diameter = 8.00 + 3.00 = 11.00 m

Design of circular girder of raft slab

Total load on circular girder = 15224.00 kN

Load per meter run of girder = 15224.00 / ( p x 8 )= 607 kN/m

Refering to moment coeffiecents given in table 4.1, the maximum moment in the circul;ar girder is computed.

0.0083 x ### x 4 = 506 kN.m

0.0041 x ### x 4 = 250 kN.m

maximum Torsional moment (at 12.75 from support 0.0006 x ### x 4 = 37 kN.m

=607 x 4.00 x p/4

= 953 kN2.00

Shear force at section of maximum torsion is

V = 953 -607 x p x 4 x 12.75

= 413.00 kN180

The support section is designed for maximum moment

maximum negative moment M = 506.00 kN.m = 953.00 kN

Assuming the width of section = 750 mmM = 506.00 V = 953 kN

=506 x 1000000

= 868 mm0.897 x 750

Adopt depth = 870 mm cover = 70 mm Over all depth = 1000 mm

= =506 x 1000000

= 2793

mm2

tv N/mm2

tc N/mm2

tv

mm f

sv

mm F ,

kN/m2

m2

\ b

maximum negative moment at support. K1.W.R. =

maximum positive moment at MID span. K2.W.R. =

Shear force at support section is V

Shear force V

\ d

Ast

Mcmm2

Page 11: Intze Water Tank Based on K. Raju

= =230 x 0.906 x 870

= 2793

using ### mm bars A = =3.14 x 25 x 25

= 4914 x100 4 x 100No.of Bars = 2793 / 491 = 6 No.

Actual , Ast = 6 x 491 = 2944

tv =953 x 1000

= 1.27750 x 1000

% of steel used =100 Ast

=100 x 2944

= 0.393 % \ = 0.26b x d 750 x 1000

Since tc < Tv 0.26 < 1.27 Shear reinforcement required

Shear taken by concrete =0.26 x 750 x 1000

= 195 kN1000Balance shear = 953 - 195 = 758 kN

Using ### 4 legged strirups, spacing is,

=230 x 4 x 113.04 x 1000

= 137 mm758 x 1000

Hence Provided 12 130 mm c/c center near supports.

Steel required for mid span

= =250 x 1000000

= 1380230 x 0.906 x 870

But minimum steel Ast =0.85 x b.d

=1 x 750 x 870

= 1337fy 415

using ### mm bars A = =3.14 x 25 x 25

= 4914 x100 4 x 100No.of Bars = 1380 / 491 = 3 No.

Actual , Ast = 3 x 491 = 1472

The section subjected to maximum torsional moment and shear should be design for the following forces.T = 37 kN.m D = 1000 mmV = 413 kN b = 750 mmM = 0 d = 870 mm

T1 + D/b

= 37 x1 + 1000 / 750

= 51.00 kN.m1.7 1.7

= = 0 + 51 = 51 kN.m

= =51 x 1000000

= 281230 x 0.906 x 870

But minimum steel Ast =0.85 x b.d

=1 x 750 x 870

= 1337fy 415

using ### mm bars A = =3.14 x 25 x 25

= 4914 x100 4 x 100No.of Bars = 1337 / 491 = 3 No.

Actual , Ast = 3 x 491 = 1472

Equivalent shear Ve = V +1.65T/b = 413 + 1.6 x( 37 / 0.75 )= 492 kn

=492 x 1000

= 0.75750 x 870

% of steel used =100 Ast

=100 x 1337

= 0.205 % \ = 0.19b x d 750 x 870

Since tc < Tv 0.19 < 0.75 Shear reinforcement required

Shear taken by concrete =0.19 x 750 x 870

= 124 kN1000Balance shear = 492 - 124 = 368 kN

Using ### 4 legged strirups, spacing is,

=4 x 113.04 x 230

= 184 mm0.75 - 0.19 )x 1000

Hence Provided 12 4 legged strirrups @ 180 mm c/c center near supports.

Design of Raft Slab:-

Ast mm2

sst. j.d

3.14xdia2

mm2

mm2

N/mm2

tc N/mm2

[email protected]

mm f

sv

mm F bar, @

AstMc mm2

sst. j.d

mm2

3.14xdia2

mm2

mm2

Mt =

\ Me1 M + M1

AstMc mm2

sst. j.d

mm2

3.14xdia2

mm2

Tv N/mm2

tc N/mm2

mm f

sv

mm F

Page 12: Intze Water Tank Based on K. Raju

Maximum projection of raft slab from face of coloum

=3.00 - 0.75

= 1.123 m2

Siol pressure = =15224

= 203 kNp x( 5.50 2.5Considring one meter width of raft slab along the circular arc.

Maximum Bending moment = =203 x 1.123

= 129 kN.m2 2

=129 x 1000000

= 380 mm0.897 x 1000

Adopt depth = 450 mm cover = 50 mm Over all depth = 500 mm

= =129 x 1000000

= 1376 say = 2064230 x 0.906 x 450

using ### mm bars A = =3.14 x 25 x 25

= 4914 x100 4 x 100

Spacing of bars = 1000 x 491 / 2064 = 238 say = 200 mm

Hence Provided 25 200 mm c/c to reduce shear stress Ast = 2454

actual steel used = = 1000 x 491 / 200 = 2454

Distribution steel =0.12 x 500 x 1000

= 600100

using ### mm bars A = =3.14 x 12 x 12

= 1134 x100 4 x 100Spacing of bars s = 1000 x 113 / 600 = 188 mm

Hence Provided 12 180 mm c/c to reduce shear stress

Shear force at a section 450 mm from face of columnsV = 203 x 0.673 x 1.000 = 137 kN.m

=137 x 1000

= 0.3041000 x 450

% of steel used =100 Ast

=100 x 2454

= 0.55 % \ = 0.31b x d 1000 x 450

Since tc > Tv 0.310 > 0.304 O.K.

Reinforcement shown in drawing

2 - 2)

w L 2 2

\ d

AstMc mm2 mm2

sst. j.d3.14xdia2

mm2

[email protected]

mm F bar, @ mm2

mm2

mm2

3.14xdia2

mm2

mm F bar, @

tv N/mm2

tc N/mm2

Page 14: Intze Water Tank Based on K. Raju

VALUES OF DESIGN CONSTANTSGrade of concrete M-15 M-20 M-25 M-30 M-35 M-40 Grade of concrete

Modular Ratio 18.67 13.33 10.98 9.33 8.11 7.18

5 7 8.5 10 11.5 13

93.33 93.33 93.33 93.33 93.33 93.33

0.4 0.4 0.4 0.4 0.4 0.4

0.867 0.867 0.867 0.867 0.867 0.867

0.867 1.214 1.474 1.734 1.994 2.254

0.714 1 1.214 1.429 1.643 1.857

0.329 0.329 0.329 0.329 0.329 0.329

0.89 0.89 0.89 0.89 0.89 0.89

0.732 1.025 1.244 1.464 1.684 1.903

0.433 0.606 0.736 0.866 0.997 1.127

0.289 0.289 0.289 0.289 0.289 0.289

0.904 0.904 0.904 0.904 0.904 0.904

0.653 0.914 1.11 1.306 1.502 1.698

0.314 0.44 0.534 0.628 0.722 0.816

0.253 0.253 0.253 0.253 0.253 0.253

0.916 0.916 0.916 0.914 0.916 0.916

0.579 0.811 0.985 1.159 1.332 1.506

0.23 0.322 0.391 0.46 0.53 0.599

bd M-15 M-20 M-25 M-30 M-35 M-40

0.18 0.18 0.19 0.2 0.2 0.2

0.25 0.22 0.22 0.23 0.23 0.23 0.230.50 0.29 0.30 0.31 0.31 0.31 0.320.75 0.34 0.35 0.36 0.37 0.37 0.381.00 0.37 0.39 0.40 0.41 0.42 0.421.25 0.40 0.42 0.44 0.45 0.45 0.461.50 0.42 0.45 0.46 0.48 0.49 0.491.75 0.44 0.47 0.49 0.50 0.52 0.522.00 0.44 0.49 0.51 0.53 0.54 0.552.25 0.44 0.51 0.53 0.55 0.56 0.572.50 0.44 0.51 0.55 0.57 0.58 0.602.75 0.44 0.51 0.56 0.58 0.60 0.62

3.00 and above 0.44 0.51 0.57 0.6 0.62 0.63

Grade of concrete M 15 20 25 30 35 40

1.6 1.8 1.9 2.2 2.3 2.5

Reiforcement % modification factore Table

tbd (N / mm2)

scbc N/mm2

m scbc

(a) sst = 140

N/mm2 (Fe 250)

kc

jc

Rc

Pc (%)

(b) sst = 190

N/mm2

kc

jc

Rc

Pc (%)

(c ) sst = 230

N/mm2 (Fe 415)

kc

jc

Rc

Pc (%)

(d) sst = 275

N/mm2 (Fe 500)

kc

jc

Rc

Pc (%)

Permissible shear stress Table tv in concrete (IS : 456-2000)

100A s Permissible shear stress in concrete tv N/mm2

< 0.15

Maximum shear stress tc.max in concrete (IS : 456-2000)

tc.max

Shear stress tc

Page 15: Intze Water Tank Based on K. Raju

M-20 M-20% fy 200 250 328

bd bd 0.00.14 0.17 0.17 0.14 0.050.15 0.18 0.18 0.15 0.100.16 0.18 0.19 0.18 0.150.17 0.18 0.2 0.21 0.200.18 0.19 0.21 0.24 0.25 20.19 0.19 0.22 0.27 0.30 1.850.2 0.19 0.23 0.3 0.35 1.75

0.21 0.2 0.24 0.32 0.4 1.650.22 0.2 0.25 0.35 0.5 2.0 1.50.23 0.2 0.26 0.38 0.6 1.75 1.40.24 0.21 0.27 0.41 0.7 1.90 1.65 1.350.25 0.21 0.28 0.44 0.8 1.80 1.55 1.300.26 0.21 0.29 0.47 0.9 1.70 1.5 1.250.27 0.22 0.30 0.5 1.0 1.60 1.45 1.20.28 0.22 0.31 0.55 1.1 1.55 1.4 1.160.29 0.22 0.32 0.6 1.2 1.50 1.35 1.130.3 0.23 0.33 0.65 1.3 1.50 1.3 1.1

0.31 0.23 0.34 0.7 1.4 1.45 1.3 1.10.32 0.24 0.35 0.75 1.5 1.40 1.25 1.070.33 0.24 0.36 0.82 1.6 1.35 1.2 1.050.34 0.24 0.37 0.88 1.7 1.35 1.2 1.030.35 0.25 0.38 0.94 1.8 1.30 1.18 1.010.36 0.25 0.39 1.00 1.9 1.30 1.16 1.00.37 0.25 0.4 1.08 2.0 1.25 1.14 0.990.38 0.26 0.41 1.16 2.1 1.25 1.13 0.970.39 0.26 0.42 1.25 2.2 1.20 1.12 0.960.4 0.26 0.43 1.33 2.3 1.18 1.1 0.95

0.41 0.27 0.44 1.41 2.4 1.17 1.1 0.940.42 0.27 0.45 1.50 2.5 1.16 1.08 0.930.43 0.27 0.46 1.63 2.6 1.15 1.06 0.920.44 0.28 0.46 1.64 2.7 1.14 1.05 0.920.45 0.28 0.47 1.75 2.8 1.13 1.04 0.910.46 0.28 0.48 1.88 2.9 1.12 1.03 0.910.47 0.29 0.49 2.00 3.0 1.11 1.02 0.900.48 0.29 0.50 2.13 3.1 1.11 1.01 0.870.49 0.29 0.51 2.25 3.2 1.11 1.00 0.860.5 0.30

0.51 0.300.52 0.300.53 0.300.54 0.30 Value of angle

0.55 0.31 Degree sin cosine tangent sec cosec

0.56 0.31 1.0 0.017 0.999 0.017 1.001 57.3070.57 0.31 1.5 0.026 0.999 0.262 1.001 38.4620.58 0.31 2.0 0.035 0.999 0.035 1.001 28.6620.59 0.31 2.5 0.044 0.999 0.044 1.001 22.9360.6 0.32 3.0 0.052 0.998 0.052 1.002 19.109

0.61 0.32 3.5 0.061 0.998 0.061 1.002 16.3930.62 0.32 4.0 0.070 0.997 0.070 1.003 14.3470.63 0.32 4.5 0.078 0.996 0.079 1.004 12.7470.64 0.32 5.0 0.087 0.996 0.087 1.004 11.4810.65 0.33 5.5 0.096 0.995 0.096 1.005 10.434

100A s 100A s

Page 16: Intze Water Tank Based on K. Raju

0.66 0.33 6.0 0.104 0.994 0.105 1.006 9.6150.67 0.33 6.5 0.113 0.993 0.114 1.007 8.834

0.68 0.33 7.0 0.122 0.992 0.123 1.008 8.2100.69 0.33 7.5 0.131 0.991 0.132 1.009 7.6630.7 0.34 8.0 0.139 0.990 0.141 1.010 7.189

0.71 0.34 8.5 0.148 0.989 0.149 1.011 6.7660.72 0.34 9.0 0.156 0.987 0.158 1.013 6.3940.73 0.34 9.5 0.165 0.986 0.168 1.014 6.0460.74 0.34 10.0 0.174 0.984 0.176 1.016 5.7600.75 0.35 10.5 0.182 0.983 0.185 1.017 5.4880.76 0.35 11.0 0.191 0.981 0.194 1.019 5.2410.77 0.35 11.5 0.199 0.979 0.204 1.021 5.0160.78 0.35 12.0 0.208 0.978 0.213 1.022 4.8100.79 0.35 12.5 0.819 0.976 0.839 1.025 1.2210.8 0.35 13.0 0.225 0.974 0.231 1.027 4.446

0.81 0.35 13.5 0.233 0.972 0.240 1.029 4.2840.82 0.36 14.0 0.242 0.970 0.249 1.031 4.1340.83 0.36 14.5 0.250 0.968 0.259 1.033 3.9950.84 0.36 15.0 0.259 0.965 0.268 1.036 3.8640.85 0.36 15.5 0.259 0.963 0.269 1.038 3.8640.86 0.36 16.0 0.276 0.961 0.287 1.041 3.6280.87 0.36 16.5 0.284 0.958 0.296 1.044 3.5210.88 0.37 17.0 0.292 0.956 0.306 1.046 3.4210.89 0.37 17.5 0.301 0.953 0.316 1.049 3.3260.9 0.37 18.0 0.309 0.951 0.325 1.052 3.236

0.91 0.37 18.5 0.317 0.948 0.335 1.055 3.1520.92 0.37 19.0 0.326 0.945 0.344 1.058 3.0720.93 0.37 19.5 0.334 0.942 0.354 1.062 2.9960.94 0.38 20.0 0.342 0.939 0.364 1.065 2.9240.95 0.38 20.5 0.350 0.936 0.374 1.068 2.8560.96 0.38 21.0 0.358 0.933 0.384 1.072 2.7910.97 0.38 21.5 0.367 0.930 0.394 1.075 2.7290.98 0.38 22.0 0.375 0.927 0.404 1.079 2.6700.99 0.38 22.5 0.383 0.923 0.415 1.083 2.6131.00 0.39 23.0 0.391 0.920 0.425 1.087 2.5601.01 0.39 23.5 0.399 0.917 0.435 1.091 2.5081.02 0.39 24.0 0.407 0.913 0.445 1.095 2.4591.03 0.39 24.5 0.415 0.909 0.456 1.100 2.4111.04 0.39 25.0 0.422 0.906 0.466 1.104 2.3701.05 0.39 25.5 0.431 0.905 0.476 1.105 2.3231.06 0.39 26.0 0.438 0.897 0.489 1.115 2.2821.07 0.39 26.5 0.446 0.894 0.499 1.119 2.2411.08 0.4 27.0 0.454 0.891 0.510 1.122 2.2031.09 0.4 27.5 0.462 0.887 0.521 1.127 2.1661.10 0.4 28.0 0.469 0.882 0.532 1.134 2.1301.11 0.4 28.5 0.477 0.878 0.543 1.139 2.0961.12 0.4 29.0 0.485 0.874 0.555 1.144 2.0631.13 0.4 29.5 0.492 0.870 0.566 1.149 2.0311.14 0.4 30.0 0.500 0.866 0.577 1.155 2.0001.15 0.4 30.5 0.508 0.861 0.589 1.161 1.9701.16 0.41 31.0 0.515 0.857 0.601 1.167 1.9421.17 0.41 31.5 0.522 0.852 0.613 1.174 1.9141.18 0.41 32.0 0.530 0.848 0.625 1.179 1.8871.19 0.41 32.5 0.537 0.843 0.637 1.186 1.862

Page 17: Intze Water Tank Based on K. Raju

1.20 0.41 33.0 0.545 0.838 0.650 1.193 1.8361.21 0.41 33.5 0.552 0.833 0.663 1.200 1.8121.22 0.41 34.0 0.559 0.829 0.675 1.206 1.7881.23 0.41 34.5 0.566 0.824 0.687 1.214 1.7661.24 0.41 35.0 0.573 0.819 0.700 1.221 1.7451.25 0.42 35.5 0.581 0.814 0.713 1.229 1.7221.26 0.42 36.0 0.588 0.809 0.726 1.236 1.7021.27 0.42 36.5 0.595 0.803 0.741 1.245 1.6811.28 0.42 37.0 0.602 0.798 0.754 1.253 1.6621.29 0.42 37.5 0.609 0.793 0.768 1.261 1.6431.30 0.42 38.0 0.616 0.788 0.781 1.269 1.6241.31 0.42 38.5 0.623 0.782 0.796 1.279 1.6061.32 0.42 39.0 0.629 0.777 0.810 1.287 1.5891.33 0.43 39.5 0.636 0.771 0.825 1.297 1.5721.34 0.43 40.0 0.643 0.766 0.839 1.305 1.5551.35 0.43 40.5 0.649 0.760 0.854 1.316 1.5401.36 0.43 41.0 0.656 0.754 0.870 1.326 1.5241.37 0.43 41.5 0.663 0.748 0.886 1.337 1.5091.38 0.43 42.0 0.669 0.743 0.901 1.346 1.4951.39 0.43 42.5 0.676 0.737 0.917 1.357 1.4801.40 0.43 43.0 0.682 0.731 0.933 1.368 1.4661.41 0.44 43.5 0.688 0.725 0.949 1.379 1.4531.42 0.44 44.0 0.695 0.719 0.966 1.391 1.4401.43 0.44 44.5 0.701 0.713 0.983 1.403 1.4271.44 0.44 45.0 0.707 0.707 1.000 1.414 1.4141.45 0.44 45.5 0.713 0.700 1.019 1.429 1.4021.46 0.44 46.0 0.719 0.694 1.036 1.441 1.3901.47 0.44 46.5 0.725 0.688 1.054 1.453 1.379

1.48 0.44 47.0 0.731 0.681 1.074 1.468 1.3671.49 0.44 47.5 0.737 0.675 1.092 1.481 1.3561.50 0.45 48.0 0.742 0.669 1.109 1.495 1.3481.51 0.45 48.5 0.749 0.662 1.131 1.511 1.3351.52 0.45 49.0 0.755 0.656 1.150 1.524 1.3251.53 0.45 49.5 0.760 0.649 1.172 1.541 1.3151.54 0.45 50.0 0.766 0.642 1.193 1.558 1.3051.55 0.45 50.5 0.772 0.636 1.213 1.572 1.2961.56 0.45 51.0 0.777 0.629 1.235 1.590 1.2871.57 0.45 51.5 0.786 0.622 1.263 1.608 1.2731.58 0.45 52.0 0.788 0.615 1.281 1.626 1.2691.59 0.45 52.5 0.793 0.608 1.305 1.645 1.2611.60 0.45 53.0 0.799 0.601 1.329 1.664 1.2521.61 0.45 53.5 0.804 0.594 1.353 1.684 1.2441.62 0.45 54.0 0.809 0.587 1.378 1.704 1.2361.63 0.46 54.5 0.814 0.580 1.404 1.724 1.2281.64 0.46 55.0 0.819 0.573 1.429 1.745 1.2211.65 0.46 55.5 0.824 0.566 1.456 1.767 1.2131.66 0.46 56.0 0.829 0.559 1.483 1.789 1.2061.67 0.46 56.5 0.834 0.551 1.513 1.815 1.1991.68 0.46 57.0 0.839 0.544 1.542 1.838 1.1921.69 0.46 57.5 0.843 0.537 1.570 1.862 1.1861.70 0.46 58.0 0.848 0.529 1.603 1.890 1.1791.71 0.46 58.5 0.853 0.522 1.633 1.916 1.1731.72 0.46 59.0 0.857 0.515 1.664 1.942 1.1671.73 0.46 59.5 0.862 0.507 1.699 1.972 1.161

Page 18: Intze Water Tank Based on K. Raju

1.74 0.46 60.0 0.866 0.500 1.732 2.000 1.1551.75 0.47 60.5 0.870 0.492 1.769 2.033 1.1491.76 0.47 61.0 0.875 0.484 1.807 2.066 1.1431.77 0.47 61.5 0.879 0.477 1.842 2.096 1.1381.78 0.47 62.0 0.883 0.469 1.883 2.132 1.1331.79 0.47 62.5 0.887 0.461 1.924 2.169 1.1271.80 0.47 63.0 0.891 0.453 1.967 2.208 1.1221.81 0.47 63.5 0.895 0.446 2.007 2.242 1.1171.82 0.47 64.0 0.899 0.438 2.052 2.283 1.1131.83 0.47 64.5 0.903 0.430 2.099 2.326 1.1081.84 0.47 65.0 0.906 0.422 2.148 2.370 1.1031.85 0.47 65.5 0.910 0.414 2.198 2.415 1.0991.86 0.47 66.0 0.914 0.406 2.250 2.463 1.0951.87 0.47 66.5 0.917 0.398 2.304 2.513 1.0911.88 0.48 67.0 0.921 0.390 2.360 2.564 1.0861.89 0.48 67.5 0.924 0.382 2.418 2.618 1.0821.90 0.48 68.0 0.927 0.374 2.479 2.674 1.0791.91 0.48 68.5 0.930 0.367 2.539 2.729 1.0751.92 0.48 69.0 0.934 0.358 2.608 2.793 1.0711.93 0.48 69.5 0.937 0.350 2.674 2.856 1.0681.94 0.48 70.0 0.940 0.342 2.747 2.924 1.0641.95 0.48 70.5 0.943 0.333 2.831 3.003 1.0611.96 0.48 71.0 0.946 0.326 2.904 3.072 1.0581.97 0.48 71.5 0.948 0.317 2.989 3.152 1.0551.98 0.48 72.0 0.951 0.309 3.078 3.236 1.0521.99 0.48 72.5 0.954 0.301 3.172 3.326 1.0492.00 0.49 73.0 0.956 0.292 3.271 3.420 1.0462.01 0.49 73.5 0.959 0.284 3.376 3.521 1.0432.02 0.49 74.0 0.961 0.276 3.488 3.628 1.0402.03 0.49 74.5 0.964 0.267 3.606 3.743 1.0382.04 0.49 75.0 0.966 0.259 3.732 3.864 1.0352.05 0.49 75.5 0.968 0.250 3.868 3.995 1.0332.06 0.49 76.0 0.970 0.242 4.011 4.134 1.0312.07 0.49 76.5 0.982 0.233 4.209 4.284 1.0182.08 0.49 77.0 0.974 0.225 4.332 4.446 1.0262.09 0.49 77.5 0.976 0.216 4.511 4.621 1.0242.10 0.49 78.0 0.978 0.208 4.705 4.810 1.0222.11 0.49 78.5 0.980 0.199 4.915 5.016 1.0212.12 0.49 79.0 0.982 0.191 5.145 5.241 1.0192.13 0.50 79.5 0.983 0.182 5.396 5.488 1.0172.14 0.50 80.0 0.985 0.174 5.673 5.760 1.0152.15 0.50 80.5 0.986 0.165 5.977 6.061 1.0142.16 0.50 81.0 0.988 0.156 6.315 6.394 1.0132.17 0.50 81.5 0.989 0.148 6.691 6.766 1.0112.18 0.50 82.0 0.999 0.139 7.178 7.185 1.0012.19 0.50 82.5 0.991 0.131 7.597 7.663 1.0092.20 0.50 83.0 0.993 0.122 8.145 8.206 1.0082.21 0.50 83.5 0.994 0.113 8.777 8.834 1.0072.22 0.50 84.0 0.995 0.105 9.517 9.569 1.0062.23 0.50 84.5 0.995 0.096 10.389 10.438 1.0052.24 0.50 85.0 0.996 0.087 11.431 11.474 1.0042.25 0.51 85.5 0.997 0.078 12.716 12.755 1.0032.26 0.51 86.0 0.998 0.070 14.302 14.337 1.0022.27 0.51 86.5 0.998 0.061 16.362 16.393 1.002

Page 19: Intze Water Tank Based on K. Raju

2.28 0.51 87.0 0.999 0.052 19.083 19.109 1.0012.29 0.51 87.5 0.999 0.044 22.913 22.936 1.0012.30 0.51 88.0 0.999 0.035 28.637 28.654 1.0012.31 0.51 88.5 1.000 0.026 38.299 38.314 1.0002.32 0.51 89.0 0.9998 0.017 57.295 57.307 1.0002.33 0.51 89.5 0.9999 0.009 114.931 114.943 1.0002.34 0.51 90.0 1.000 0.000 1.000 1.0002.35 0.512.36 0.512.37 0.512.38 0.51 cos Degree 2.39 0.51 0.000 90.02.40 0.51 0.009 89.52.41 0.51 0.017 89.02.42 0.51 0.026 88.52.43 0.51 0.035 88.02.44 0.51 0.044 87.52.45 0.51 0.052 87.02.46 0.51 0.061 86.52.47 0.51 0.070 86.02.48 0.51 0.078 85.52.49 0.51 0.087 85.02.50 0.51 0.096 84.52.51 0.51 0.105 84.02.52 0.51 0.113 83.52.53 0.51 0.122 83.02.54 0.51 0.131 82.52.55 0.51 0.139 82.02.56 0.51 0.148 81.52.57 0.51 0.156 81.02.58 0.51 0.165 80.52.59 0.51 0.174 80.02.60 0.51 0.182 79.52.61 0.51 0.191 79.02.62 0.51 0.199 78.52.63 0.51 0.208 78.02.64 0.51 0.216 77.52.65 0.51 0.225 77.02.66 0.51 0.233 76.52.67 0.51 0.242 76.02.68 0.51 0.250 75.52.69 0.51 0.259 75.02.70 0.51 0.267 74.52.71 0.51 0.276 74.02.72 0.51 0.284 73.52.73 0.51 0.292 73.02.74 0.51 0.301 72.52.75 0.51 0.309 72.02.76 0.51 0.317 71.52.77 0.51 0.326 71.02.78 0.51 0.334 70.52.79 0.51 0.342 70.02.80 0.51 0.350 69.52.81 0.51 0.358 69.0

Page 20: Intze Water Tank Based on K. Raju

2.82 0.51 0.366 68.52.83 0.51 0.374 68.02.84 0.51 0.382 67.52.85 0.51 0.390 67.02.86 0.51 0.398 66.52.87 0.51 0.406 66.02.88 0.51 0.414 65.52.89 0.51 0.422 65.02.90 0.51 0.430 64.52.91 0.51 0.438 64.02.92 0.51 0.446 63.52.93 0.51 0.453 63.02.94 0.51 0.461 62.52.95 0.51 0.469 62.02.96 0.51 0.477 61.52.97 0.51 0.484 61.02.98 0.51 0.492 60.52.99 0.51 0.500 60.03.00 0.51 0.507 59.53.01 0.51 0.515 59.03.02 0.51 0.522 58.53.03 0.51 0.529 58.03.04 0.51 0.537 57.53.05 0.51 0.544 57.03.06 0.51 0.551 56.53.07 0.51 0.559 56.03.08 0.51 0.566 55.53.09 0.51 0.573 55.03.10 0.51 0.580 54.53.11 0.51 0.587 54.03.12 0.51 0.594 53.53.13 0.51 0.601 53.03.14 0.51 0.608 52.53.15 0.51 0.615 52.0

0.622 51.50.629 51.00.636 50.50.642 50.00.649 49.50.656 49.00.662 48.50.669 48.00.675 47.50.681 47.00.688 46.50.694 46.00.700 45.50.707 45.00.713 44.50.719 44.00.725 43.50.731 43.00.737 42.50.743 42.0

Page 21: Intze Water Tank Based on K. Raju

0.748 41.50.754 41.00.760 40.50.766 40.00.771 39.50.777 39.00.782 38.50.788 38.00.793 37.50.798 37.00.803 36.50.809 36.00.814 35.50.819 35.00.824 34.50.829 34.00.833 33.50.838 33.00.843 32.50.848 32.00.852 31.50.857 31.00.861 30.50.866 30.00.870 29.50.874 29.00.878 28.50.882 28.00.887 27.50.891 27.00.894 26.50.897 26.00.905 25.50.906 25.00.909 24.50.913 24.00.917 23.50.920 23.00.923 22.50.927 22.00.930 21.50.933 21.00.936 20.50.939 20.00.942 19.50.945 19.00.948 18.50.951 18.00.953 17.50.956 17.00.958 16.50.961 16.00.963 15.50.965 15.0

Page 22: Intze Water Tank Based on K. Raju

0.968 14.50.970 14.00.972 13.50.974 13.00.976 12.50.978 12.00.979 11.50.981 11.00.983 10.50.984 10.00.986 9.50.987 9.00.989 8.50.990 8.00.991 7.50.992 7.00.993 6.50.994 6.00.995 5.50.996 5.00.996 4.50.997 4.00.998 3.5

0.9986 3.00.9990 2.50.999 2.0

0.9996 1.50.9998 1.0

Page 23: Intze Water Tank Based on K. Raju

Grade of concreteM-10 M-15 M-20 M-25 M-30 M-35 M-40 M-45

-- 0.6 0.8 0.9 1 1.1 1.2 1.3

Development Length in tension

Plain M.S. Bars H.Y.S.D. Bars

M 15 0.6 58 0.96 60

M 20 0.8 44 1.28 45

M 25 0.9 39 1.44 40

M 30 1 35 1.6 36

M 35 1.1 32 1.76 33

M 40 1.2 29 1.92 30

M 45 1.3 27 2.08 28

M 50 1.4 25 2.24 26

(N/mm2) (N/mm2) (N/mm2)M 10 3.0 300 2.5 250 -- --M 15 5.0 500 4.0 400 0.6 60M 20 7.0 700 5.0 500 0.8 80M 25 8.5 850 6.0 600 0.9 90M 30 10.0 1000 8.0 800 1.0 100M 35 11.5 1150 9.0 900 1.1 110M 40 13.0 1300 10.0 1000 1.2 120M 45 14.5 1450 11.0 1100 1.3 130M 50 16.0 1600 12.0 1200 1.4 140

Grade of concrete M-15 M-20 M-25 M-30 M-35 M-40

1.6 1.8 1.9 2.2 2.3 2.5

modification factore Table

Permissible Bond stress Table tbd in concrete (IS : 456-2000)

tbd (N / mm2)

Grade of concrete tbd (N / mm2) kd = Ld F tbd (N / mm2) kd = Ld F

Permissible stress in concrete (IS : 456-2000)

Grade of concrete

Permission stress in compression (N/mm2) Permissible stress in bond (Average) for plain bars in tention (N/mm2)Bending acbc Direct (acc)

Kg/m2 Kg/m2 in kg/m2

Maximum shear stress tc.max in concrete (IS : 456-2000)

tc.max

Page 24: Intze Water Tank Based on K. Raju

415 5002.001.801.65

1.90 1.501.80 1.401.70 1.351.60 1.301.50 1.201.40 1.161.30 1.081.20 1.001.15 0.951.05 0.901.02 0.861.20 0.840.98 0.820.96 0.810.94 0.800.92 0.790.91 0.780.90 0.770.89 0.760.86 0.750.86 0.740.85 0.730.84 0.720.83 0.720.83 0.720.82 0.710.82 0.710.81 0.710.81 0.700.81 0.700.81 0.690.81 0.690.81 0.680.81 0.68

Table Carpentors's coefficents for cylenlidrical tank (Reyolndhand book)Value of angle

cotangent Degree Factors F

57.249 1.0 10 20 30 40 1056.300 1.5

Va

lue

of

H/D

0.2 0.046 0.028 0.022 0.015 -28.633 2.0 0.3 0.032 0.019 0.014 0.01 0.5522.913 2.5 0.4 0.024 0.014 0.01 0.007 0.519.071 3.0 0.5 0.02 0.02 0.009 0.006 0.4516.361 3.5 1.0 0.012 0.006 0.005 0.003 0.3714.304 4.0 2.0 0.006 0.003 0.002 0.002 0.312.696 4.5 4.0 0.004 0.002 0.002 0.001 0.2711.435 5.010.382 5.5

K1

H+dA

Page 25: Intze Water Tank Based on K. Raju

9.558 6.0 TABLE 20.18.772 6.5 Cofficent for bending moment and twisting moment in circular beam

8.144 7.0 No of support

7.594 7.5 4 90 0.137 0.077.117 8.0 5 72 0.108 0.0546.691 8.5 6 60 0.089 0.0456.311 9.0 8 45 0.066 0.035.961 9.5 9 40 0.06 0.0275.668 10.0 10 36 0.054 0.0235.395 10.5 12 30 0.045 0.0175.142 11.04.911 11.54.704 12.01.192 12.54.331 13.04.165 13.54.010 14.0 TABLE 4.1 for (Krishna Raju) intze tank design 3.867 14.5 Cofficent for bending moment and twisting moment in circular beam3.729 15.03.721 15.53.487 16.03.373 16.53.271 17.0 4 90 0.0342 0.01763.169 17.5 6 72 0.148 0.00753.078 18.0 8 60 0.0083 0.00412.988 18.5 10 45 0.0054 0.00232.903 19.0 12 40 0.0037 0.00142.822 19.52.746 20.02.673 20.52.604 21.02.538 21.52.475 22.02.412 22.52.355 23.02.300 23.52.245 24.02.192 24.52.147 25.02.102 25.52.047 26.02.004 26.51.963 27.01.921 27.51.879 28.01.840 28.51.803 29.01.767 29.51.732 30.01.697 30.51.664 31.01.631 31.51.600 32.01.569 32.5

2f C1 C2

No of support 2f

Negative bending

moment at support

K1

Positive bending

moment at center of span K2

Page 26: Intze Water Tank Based on K. Raju

1.539 33.01.509 33.51.483 34.01.455 34.51.429 35.01.402 35.51.377 36.01.350 36.51.326 37.01.303 37.51.280 38.01.256 38.51.235 39.01.212 39.51.191 40.01.170 40.51.149 41.01.129 41.51.110 42.01.091 42.51.072 43.01.053 43.51.035 44.01.017 44.51.000 45.00.981 45.50.965 46.00.949 46.5

0.931 47.00.916 47.50.901 48.00.884 48.50.869 49.00.853 49.50.838 50.00.824 50.50.809 51.00.792 51.50.780 52.00.766 52.50.753 53.00.739 53.50.726 54.00.712 54.50.700 55.00.687 55.50.674 56.00.661 56.50.649 57.00.637 57.50.624 58.00.612 58.50.601 59.00.588 59.5

Page 27: Intze Water Tank Based on K. Raju

0.577 60.00.565 60.50.553 61.00.543 61.50.531 62.00.520 62.50.508 63.00.498 63.50.487 64.00.476 64.50.466 65.00.455 65.50.444 66.00.434 66.50.424 67.00.414 67.50.403 68.00.394 68.50.384 69.00.374 69.50.364 70.00.353 70.50.344 71.00.335 71.50.325 72.00.315 72.50.306 73.00.296 73.50.287 74.00.277 74.50.268 75.00.259 75.50.249 76.00.238 76.50.231 77.00.222 77.50.213 78.00.203 78.50.194 79.00.185 79.50.176 80.00.167 80.50.158 81.00.149 81.50.139 82.00.132 82.50.123 83.00.114 83.50.105 84.00.096 84.50.087 85.00.079 85.50.070 86.00.061 86.5

Page 28: Intze Water Tank Based on K. Raju

0.052 87.00.044 87.50.035 88.00.026 88.50.017 89.00.009 89.50.000 90.0

Page 29: Intze Water Tank Based on K. Raju

M-50

1.4

2.0fs = 120 =fy200

fs =145 =fy250

1.6

1.2

0.8

0.4

0 0.4 0.8 1.2

Modification factore

Fs= steel stress of service load =0.58fy

for steeel

fy 500 = Fs 290

fy 415 = Fs 240

fy 328 = Fs 190

fy 250 = Fs 145

fy 207 = Fs 120

in concrete (IS : 456-2000)

N/mm2

N/mm2

N/mm2

N/mm2

N/mm2

Page 30: Intze Water Tank Based on K. Raju

Table Carpentors's coefficents for cylenlidrical tank (Reyolndhand book)

20 30 40 10 20 30 400.5 0.45 0.4 0.32 0.46 0.53 0.5

0.43 0.38 0.33 0.35 0.53 0.6 0.660.39 0.35 0.3 0.44 0.58 0.65 0.70.37 0.32 0.27 0.48 0.63 0.69 0.730.28 0.24 0.21 0.62 0.73 0.74 0.830.22 0.19 0.16 0.73 0.81 0.85 0.880.2 0.17 0.14 0.8 0.85 0.87 0.9

K1 K2

Page 31: Intze Water Tank Based on K. Raju

Cofficent for bending moment and twisting moment in circular beam

0.021 19.250.014 15.250.009 12.750.005 9.50.004 8.50.003 7.250.002 6.25

TABLE 4.1 for (Krishna Raju) intze tank design Cofficent for bending moment and twisting moment in circular beam

0.0053 19.250.00015 15.250.0006 12.75

0.00003 9.50.0017 8.5

C3 fm

Maximum twesting

moment or torqu K3

fm

Page 32: Intze Water Tank Based on K. Raju

fs =145 =fy250

fs =190 =fy328

fs =240 =fy415

fs = 290 =fy500

1.2 1.6 2.0 2.4 2.8

Fig 7.1

Page 33: Intze Water Tank Based on K. Raju

3.2