28
Investigation of Nonlinear DPSK Fading Due to Cross- Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT BERLIN Dario Setti http://www.marcuswinter.de/publications/ ofc2009

Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

Embed Size (px)

Citation preview

Page 1: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation

Marcus WinterKlaus Petermann

Hochfrequenztechnik-Photonik

TECHNISCHEUNIVERSITÄTBERLIN

Dario Setti

http://www.marcuswinter.de/publications/ofc2009

Page 2: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

what are we talking about?

Page 3: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

a typical system

Page 4: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

selective upgrade of an existing 10 Gbps NRZ infrastructure with DPSK channels (10 / 40 Gbps)

worst case for interchannel nonlinearities

Page 5: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

cross-polarization modulation(XPolM)

Page 6: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

XPolM is very similar to XPM

nonlinear variation of the

birefringence refractive index

proportional to sum of interfering channel

Stokes vectors powers

results in the modulation of signal

polarization phase

Page 7: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

nonlinear polarization effects only

XPolM demonstration / quantification setup

Page 8: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

polarization states (SOPs) of the CW probe at the transmitter

500 × 256 bits

Page 9: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

polarization states (SOPs) of the CW probe at a receiver

500 × 256 bits

Page 10: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

DPSK fading

Page 11: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

the balanced detector output current depends on the relative polarization between the interfering bits

I cos(Δθ/2)

(Δθ is the angle between Stokes vectors of the two symbols)

Page 12: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

exemplary SOP evolution over 100 bits @ 10 Gbps

adjacent bits are not completely uncorrelated

the angle Δθ remains relatively small

Page 13: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

how can we quantify fading?

Page 14: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

the autocorrelation function (ACF) of thetime series of SOPs

ACF(T) = E[Ŝ(t) · Ŝ(t-T)] = E[cos Δθ(T)]

is an average function of the angle Δθ between SOPs with time interval T

Page 15: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

every iteration of a fixed system (with random initial parameters) will yield a different set of output SOPs

these result in individual sample ACF(T)

the ensemble of all possible initial parametersis described by ACF(T)

Page 16: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

average signal fading: ~1.5%

BUT: probability for 15% fading is approximately 10-4

Page 17: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

systems with high symbol rates are less affectedthan low-rate systems

• T is smaller • ACF(T) is monotonously decreasing

Page 18: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

systems with residual dispersion per span (RDPS)have higher ACFs than those without (at equal DOP)

• RDPS correlates the distortions in neighboring bits

typical 10G systems have significant RDPSto suppress XPM

Page 19: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

SOP evolution over 100 bits @ 10 Gbps (systems with equal average DOP)

no RDPS 25% RDPS

there is less “motion” with RDPS

Page 20: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

what is the (relative) impact on systems?

Page 21: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

CW probe + 10 × 10 Gbps NRZ interferers

determine the ROSNR of the CW probe as if it were a10 Gbps DPSK signal (all zeros)

Page 22: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

by using an all-zero DPSK data sequence, we minimize any influence of GVD, PMD, SPM on the result

by correlating the sample ACF(T) and the sample ROSNR penalty for each iteration, we can extrapolate the contribution of XPolM to the interchannel penalty

Page 23: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

ROSNR penalty (dispersion map 1)

25% RDPS, 0.5 ps/km1/2, Pch = 4 mW

no statistical correlation penalty (distribution) is XPM-related

Page 24: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

NLT for XPM penalty ~ 1dB is only 1 mWalso no statistical correlation

ROSNR penalty (dispersion map 2)

no RDPS, 0.1 ps/km1/2, Pch = 1 mW

Page 25: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

XPolM should not be ignored completely

Page 26: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

ROSNR penalty in a PolDM subchannel

Winter et al., LEOS Annual Meeting 2008, WH3

Page 27: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

summary

Page 28: Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT

TECHNISCHEUNIVERSITÄTBERLIN

Fachgebiet Hochfrequenztechnik

XPolM induces polarization changesbetween adjacent bits

such polarization misalignment leads to fadingof the detected DPSK signal

the effect is very small compared to XPM distortions

scalar simulations are sufficient(regarding nonlinear DPSK fading)