1
100μm b) Investigation on thermomechanical properties of high nitrogen nickel-free austenitic stainless steels, commercially pure titanium and Ti - 6Al - 4V. Maïté BLANK, Andreas BLATTER 1 , Randoald MULLER 1 and Ludger WEBER 2 maite.blank@epfl.ch 1 PX Group, 2300 La Chaux-de-Fonds and 2 Laboratory of Mechanical Metallurgy, EPFL, 1015 Lausanne, Switzerland 1. GOAL OF THE PROJECT 2. EXPERIMENTAL METHOD TENSILE TESTS Determination of the appropriate warm rolling temperature WARM ROLLING TESTS Evaluation of process efficiency 5. TI GRADE 5 Challenge: At room temperature, Ti Grade 5 (or Ti - 6Al - 4V) possesses a high yield strength (> 900MPa) and limited ductility (A ~ 45%). Both roll mills power and surface defects are thus limiting factors. TEnsilE ProPErTiEs Vs. TEMPErATUrE High yield strength and low ductility even at 400°C WARM ROLLED WIRES Warm rolling temperature: 400°C Failure occured over the whole specimen length. Possible mechanism involved: tensile stresses due to material spreading create voids that pro- pagate along shear bands, thus causing failure 3 . Possible alternative: warm rol- ling with lateral constraints. 7. CONCLUSION 4. TI GRADE 2 Challenge: Ti Grade 2 (or commercially pure titanium) has limited ductility at room temperature (A ~ 60%). During cold rolling, edge cracks thus tend to appear at relatively low deformations. WARM ROLLED WIRES PossiBlE MECHAnisMs inVolVED 3. BIODUR108 Challenge: Biodur108 is a high nitrogen nickel-free stainless steel containing about 1.1wt%n. Consequently, it has a high yield strength at room temperature (~ 700MPa) and a high strain hardening rate. Cold deformation of Biodur108 tends to be difficult due to the limited power of the roll mills. YiElD sTrEnGTH Vs. TEMPErATUrE P proportional to σ y PoWEr rEQUirED Vs. PAss no more power gain over 200°C. WARM ROLLED WIRES Warm rolling temperature: 200°C Path performed: 10 - 7 - 5 - 3mm (no intermediary annealing) Maximum crack size (thickness 3mm): 17μm enables overcoming problems encountered during cold rolling. 6. WARM-ROLLING RELATED ISSUES inFlUEnCE oF niTriDEs on BioDUr108 Corrosion rEsisTAnCE 100μm a) 100μm c) 0 20 40 60 80 100 0 100 200 300 400 Area reduction [%] Temperature [°C] Ti Grade 5 PM (316L) ΔA ~20% 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 Yield Strength [MPa] Temperature [°C] Ti Grade 5 PM (316L) Δσ y ~500 MPa 626 MPa ! Shear bands 5mm 5mm 5mm Tensile reduction in area ln (A 0 /A) Cracking reduction ln(t 0 /t) 0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 Yield Strength [MPa] Temperature [°C] Biodur108 PM (316L) 0 1 2 3 4 5 6 7 8 0 2 4 6 8 10 Power [kW] Thickness [mm] 25°C 100°C 200°C 400°C Effect of ductility Effect of strain state Effect of reheating Possible stress relief at the vicinity of the sample surface during reheating (450 - 700°C). Effect of edge shape no influence due to the edge shape observed, similar un- der cold and warm condi- tions. oxygen-dislocations interaction Warm rolling temperature: 200°C For area reduction greater than 50%, maximum size of the edge crack is much lower, when using warm rolling. Warm rolling provides a substantial gain over cold rolling. 5mm 5mm Cold Warm 2h at 800°C 1h at 800°C 168h in FeCl 3 47h in FeCl 3 168h in FeCl 3 nitrides precipitation at 800°C Pitting corrosion tests Nitrides precipita- tion at grain boundaries Nitrides precipita- tion within grains Wire Flat oval 1. Process 2. Roll mill If roll mill power is a limitation: P σ y • if edge cracking is a limitation 2 : ln(t 0 / t) ln (A 0 / A) Warm flat rolling is advantageous for: Ti Grade 2 • Biodur108 Warm flat rolling is inefficient for: Ti Grade 5 issues related to warm rolling must be taken into account. For example: • Effect of nitrides precipitation on Biodur108 corro- sion resistance CHAllEnGEs Limiting factors in cold rolling Cold rolling is a well-suited shaping process for many metals and alloys (e.g. austenitic and ferritic stainless steels, copper, alumi- nium, etc). some problems may however arise for certain classes of materials. Two main issues are commonly encountered: METHODOLOGY How to overcome these issues? Measure the evolution of the properties as a func- tion of temperature for three problematic materials currently used by Précimet sA 1 . Compare the re- sults to a reference (here: 316L stainless steel). Evaluate, whether a slight increase in the rolling temperature (typically 200 - 400°C) could overco- me issues encountered during cold rolling. 1 www.pxgroup.com Roll mills overload: it typically occurs for alloys having high initial yield strength and / or high work hardening rate, and thus require high stresses to be plastically deformed. Surface defects: edge cracking is the most com- mon defect. it typically occurs in alloys having li- mited ductility. 2 Cockcroft & latham, The effect of stress systems on metals workability, 1966. 3 Kailas et al. Flow instabilities and fracture in Ti-6Al-4V de- formed in compression at 298K to 673K, 1994 0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 Area reduction [%] Temperature [°C] 0 100 200 300 400 500 600 0 100 200 300 400 500 600 Yield Strength [MPa] Temperature [°C] Ti Grade 2 Ti Grade 3 (litt) Ti Grade 4 (litt) Annealed 0.5h at 1100°C Ductility has a positive in- fluence for T > 200°C strain state has no influence, similar for both conditions This interaction strength de- crease facilitates deformation. A pass corresponds to a reduction from 10mm to the indicated thickness. 0 200 400 600 800 1000 1200 1400 0 20 40 60 80 Maximum crack size [μm] Area reduction [%] Maximum crack size Y cold Maximum crack size Y warm I 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Y2 Y1.5 Y1 Y0.5 0 True tensile strain [Y] True compressive strain [Y] Ti Grade 2 Y diam 10 Y cold Ti Grade 2 Y diam 10 Y warm Elongation Widening

Investigation on thermomechanical properties of high ... · TiG2_tiède_2.1mm_test4 Cold Warm 2h at 800°C 1h at 800°C → 168h in FeCl 3 → 47h in FeCl 3 → 168h in FeCl 3 nitrides

Embed Size (px)

Citation preview

1.*INTRODUCTION* 2.*EXPERIMENTAL*APPROACH* 3.*BIODUR*108* 4.*TI*GRADE*2*

23'

Biodur108*CORROSION*RESISTANCE*

5.*TI*GRADE*5* 6.*OTHERS* 7.*CONCLUSIONS*

100μm' 100μm'100μm'

Recuit_2

5mm800°C_1h_1

5mm800°C_2h

5mm

a)* c)*b)*

Figure*8:*Presence*of*nitrides*in*Biodur108*a)*in*the*annealed*state,**afer*a*heat4treatment*at*800°C*during*b)*1h*and*c)*2h*and*the*corresponding*resistance*to*piung*corrosion.**

Investigation on thermomechanical properties of high nitrogen nickel-free austenitic stainless steels,

commercially pure titanium and Ti - 6Al - 4V.Maïté BLANK, Andreas BLATTER1, Randoald MULLER1 and Ludger WEBER2

[email protected] Group, 2300 La Chaux-de-Fonds and 2Laboratory of Mechanical Metallurgy, EPFL, 1015 Lausanne, Switzerland

1. Goal of the project

2. experimental methodTENSILE TESTS

Determination of the appropriate warm rolling temperatureWARM ROLLING TESTSEvaluation of process efficiency

5. ti Grade 5Challenge: At room temperature, Ti Grade 5 (or Ti - 6Al - 4V) possesses a high yield strength (> 900MPa) and limited ductility (A ~ 45%). Both roll mills power and surface defects are thus limiting factors.

TEnsilE ProPErTiEs Vs. TEMPErATUrEHigh yield strength and low ductility even at 400°C

WARM ROLLED WIRESWarm rolling temperature: 400°C

Failure occured over the whole specimen length.

Possible mechanism involved: tensile stresses due to material spreading create voids that pro-pagate along shear bands, thus causing failure 3.

Possible alternative: warm rol-ling with lateral constraints.

7. conclusion

4. ti Grade 2Challenge: Ti Grade 2 (or commercially pure titanium) has limited ductility at room temperature (A ~ 60%). During cold rolling, edge cracks thus tend to appear at relatively low deformations.

WARM ROLLED WIRES PossiBlE MECHAnisMs inVolVED

3. Biodur108Challenge: Biodur108 is a high nitrogen nickel-free stainless steel containing about 1.1wt%n. Consequently, it has a high yield strength at room temperature (~ 700MPa) and a high strain hardening rate. Cold deformation of Biodur108 tends to be difficult due to the limited power of the roll mills.

YiElD sTrEnGTH Vs. TEMPErATUrEP proportional to σy

PoWEr rEQUirED Vs. PAssno more power gain over 200°C.

WARM ROLLED WIRESWarm rolling temperature: 200°C

Path performed: 10 - 7 - 5 - 3mm (no intermediary annealing)

Maximum crack size (thickness 3mm): 17μm

→ enables overcoming problems encountered during cold rolling.

6. Warm-rollinG related issuesinFlUEnCE oF niTriDEs on BioDUr108 Corrosion

rEsisTAnCE1.*INTRODUCTION* 2.*EXPERIMENTAL*APPROACH* 3.*BIODUR*108* 4.*TI*GRADE*2*

23'

Biodur108*CORROSION*RESISTANCE*

5.*TI*GRADE*5* 6.*OTHERS* 7.*CONCLUSIONS*

100μm' 100μm'100μm'

Recuit_2

5mm800°C_1h_1

5mm800°C_2h

5mm

a)* c)*b)*

Figure*8:*Presence*of*nitrides*in*Biodur108*a)*in*the*annealed*state,**afer*a*heat4treatment*at*800°C*during*b)*1h*and*c)*2h*and*the*corresponding*resistance*to*piung*corrosion.**

1.*INTRODUCTION* 2.*EXPERIMENTAL*APPROACH* 3.*BIODUR*108* 4.*TI*GRADE*2*

23'

Biodur108*CORROSION*RESISTANCE*

5.*TI*GRADE*5* 6.*OTHERS* 7.*CONCLUSIONS*

100μm' 100μm'100μm'

Recuit_2

5mm800°C_1h_1

5mm800°C_2h

5mm

a)* c)*b)*

Figure*8:*Presence*of*nitrides*in*Biodur108*a)*in*the*annealed*state,**afer*a*heat4treatment*at*800°C*during*b)*1h*and*c)*2h*and*the*corresponding*resistance*to*piung*corrosion.**

!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!P! ∝ !σ!!!!!!!!!

0!

20!

40!

60!

80!

100!

0! 100! 200! 300! 400!

Area!re

duction![%

]!

Temperature![°C]!

Ti!Grade!5!

PM!(316L)!

ΔA&~20%&

Rolling!temperature!:!400°C!

Rolling!temperature!:!200°C!

!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!

!!

0!

5!

10!

15!

20!

25!

0! 10! 20! 30! 40! 50! 60!

Crack&size&[μm]&

Area&reduction&[%]&

Maximum!crack!size!

0!

100!

200!

300!

400!

500!

600!

700!

800!

900!

1000!

0! 100! 200! 300! 400!Yield!Strength![M

Pa]!

Temperature![°C]!

Ti!Grade!5!

PM!(316L)!

Δσy&~500&MPa&

626&MPa&!&

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Shear&bands&

Tensile!reduction!in!area!ln!(A0/A)!

Cracking!reduction!ln(t0/t)!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Shear&bands&

Tensile!reduction!in!area!ln!(A0/A)!

Cracking!reduction!ln(t0/t)!

1.*INTRODUCTION* 2.*EXPERIMENTAL*APPROACH* 3.*BIODUR*108* 4.*TI*GRADE*2*

23'

Biodur108*CORROSION*RESISTANCE*

5.*TI*GRADE*5* 6.*OTHERS* 7.*CONCLUSIONS*

100μm' 100μm'100μm'

Recuit_2

5mm800°C_1h_1

5mm800°C_2h

5mm

a)* c)*b)*

Figure*8:*Presence*of*nitrides*in*Biodur108*a)*in*the*annealed*state,**afer*a*heat4treatment*at*800°C*during*b)*1h*and*c)*2h*and*the*corresponding*resistance*to*piung*corrosion.**

1.*INTRODUCTION* 2.*EXPERIMENTAL*APPROACH* 3.*BIODUR*108* 4.*TI*GRADE*2*

23'

Biodur108*CORROSION*RESISTANCE*

5.*TI*GRADE*5* 6.*OTHERS* 7.*CONCLUSIONS*

100μm' 100μm'100μm'

Recuit_2

5mm800°C_1h_1

5mm800°C_2h

5mm

a)* c)*b)*

Figure*8:*Presence*of*nitrides*in*Biodur108*a)*in*the*annealed*state,**afer*a*heat4treatment*at*800°C*during*b)*1h*and*c)*2h*and*the*corresponding*resistance*to*piung*corrosion.**

1.*INTRODUCTION* 2.*EXPERIMENTAL*APPROACH* 3.*BIODUR*108* 4.*TI*GRADE*2*

23'

Biodur108*CORROSION*RESISTANCE*

5.*TI*GRADE*5* 6.*OTHERS* 7.*CONCLUSIONS*

100μm' 100μm'100μm'

Recuit_2

5mm800°C_1h_1

5mm800°C_2h

5mm

a)* c)*b)*

Figure*8:*Presence*of*nitrides*in*Biodur108*a)*in*the*annealed*state,**afer*a*heat4treatment*at*800°C*during*b)*1h*and*c)*2h*and*the*corresponding*resistance*to*piung*corrosion.**

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Shear&bands&

Tensile!reduction!in!area!ln!(A0/A)!

Cracking!reduction!ln(t0/t)!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

0!

100!

200!

300!

400!

500!

600!

700!

800!

900!

0! 100! 200! 300! 400!

Yiel

d!St

reng

th![M

Pa]!

Temperature![°C]!

Biodur108!

PM!(316L)!

0!

1!

2!

3!

4!

5!

6!

7!

8!

0!2!4!6!8!10!

Pow

er![k

W]!

Thickness![mm]!

25°C!100°C!200°C!400°C!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

0!

100!

200!

300!

400!

500!

600!

700!

800!

900!

0! 100! 200! 300! 400!

Yiel

d!St

reng

th![M

Pa]!

Temperature![°C]!

Biodur108!

PM!(316L)!

0!

1!

2!

3!

4!

5!

6!

7!

8!

0!2!4!6!8!10!

Pow

er![k

W]!

Thickness![mm]!

25°C!100°C!200°C!400°C!

Effect of ductility Effect of strain state

Effect of reheatingPossible stress relief at the vicinity of the sample surface during reheating (450 - 700°C).

Effect of edge shapeno influence due to the edge shape observed, similar un-der cold and warm condi-tions.

oxygen-dislocations interaction

Warm rolling temperature: 200°C

For area reduction greater than 50%, maximum size of the edge crack is much lower, when using warm rolling.

→ Warm rolling provides a substantial gain over cold rolling.

!

5mm

Biodur_tiède_3mm_test3

5mm

TiG2_froid_2.1mm_test3

5mm

TiG2_tiède_2.1mm_test4

!

5mm

Biodur_tiède_3mm_test3

5mm

TiG2_froid_2.1mm_test3

5mm

TiG2_tiède_2.1mm_test4

Cold Warm

2h a

t 800

°C1h

at 8

00°C

→ 168h in FeCl3

→ 47h in FeCl3

→ 168h in FeCl3

nitrides precipitation at 800°C Pitting corrosion tests

N i t r i d e s prec ip i ta -tion at grain boundaries

N i t r i d e s prec ip i ta -tion within grains

1. INTRODUCTION 2. EXPERIMENTAL APPROACH 3. BIODUR 108 4. TI GRADE 2

7

FLAT ROLLING TESTS

5. TI GRADE 5 6. OTHERS 7. CONCLUSIONS

Typical cold rolling path: 10 – 8 – 7 – 6 – 5 – 4 – 3 !Typical warm rolling path: 10 – 7 – 5 – 3

Wire Flat oval

1. Process 2. Roll mill

• If roll mill power is a limitation:

P σy

• if edge cracking is a limitation2:

ln(t0 / t) ln (A0 / A)

Warm flat rolling is advantageous for:

• Ti Grade 2• Biodur108

Warm flat rolling is inefficient for:

• Ti Grade 5

issues related to warm rolling must be taken into account. For example:

• Effect of nitrides precipitation on Biodur108 corro-sion resistance

CHAllEnGEsLimiting factors in cold rolling

Cold rolling is a well-suited shaping process for many metals and alloys (e.g. austenitic and ferritic stainless steels, copper, alumi-nium, etc). some problems may however arise for certain classes of materials. Two main issues are commonly encountered:

METhODOLOGyhow to overcome these issues?

• Measure the evolution of the properties as a func-tion of temperature for three problematic materials currently used by Précimet sA1. Compare the re-sults to a reference (here: 316L stainless steel).

• Evaluate, whether a slight increase in the rolling temperature (typically 200 - 400°C) could overco-me issues encountered during cold rolling.

1 www.pxgroup.com

• Roll mills overload: it typically occurs for alloys having high initial yield strength and / or high work hardening rate, and thus require high stresses to be plastically deformed.

• Surface defects: edge cracking is the most com-mon defect. it typically occurs in alloys having li-mited ductility.

2 Cockcroft & latham, The effect of stress systems on metals workability, 1966.

3Kailas et al. Flow instabilities and fracture in Ti-6Al-4V de-formed in compression at 298K to 673K, 1994

!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!

0!

200!

400!

600!

800!

1000!

1200!

1400!

0! 20! 40! 60! 80!

Maxim

um!crack!size![μ

m]!

Area!reduction![%]!

Maximum!crack!size!Y!cold!

Maximum!crack!size!Y!warm!I!

0!

10!

20!

30!

40!

50!

60!

70!

80!

90!

100!

0! 100! 200! 300! 400!

Area!re

duction![%

]!

Temperature![°C]!

!!!

!!!!!!!!!!!!!!!!!!!!!!!

!!!

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

Y2! Y1.5! Y1! Y0.5! 0!

True

!tens

ile!st

rain

![Y]!

True!compressive!strain![Y]!

Ti!Grade!2!Y!diam!10!Y!cold!

Ti!Grade!2!Y!diam!10!Y!warm!

0!

100!

200!

300!

400!

500!

600!

0! 100! 200! 300! 400! 500! 600!

Yiel

d!St

reng

th![M

Pa]!

Temperature![°C]!

Ti!Grade!2!

Ti!Grade!3!(litt)!

Ti!Grade!4!(litt)!

Ann

eale

d0.

5h a

t 110

0°C

Ductility has a positive in-fluence for T > 200°C

strain state has no influence, similar for both conditions

This interaction strength de-crease facilitates deformation.

A pass corresponds to a reduction from 10mm to the indicated thickness.

!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!

0!

200!

400!

600!

800!

1000!

1200!

1400!

0! 20! 40! 60! 80!

Maxim

um!crack!size![μ

m]!

Area!reduction![%]!

Maximum!crack!size!Y!cold!

Maximum!crack!size!Y!warm!I!

0!

10!

20!

30!

40!

50!

60!

70!

80!

90!

100!

0! 100! 200! 300! 400!

Area!re

duction![%

]!

Temperature![°C]!

!!!

!!!!!!!!!!!!!!!!!!!!!!!

!!!

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

Y2! Y1.5! Y1! Y0.5! 0!

True

!tens

ile!st

rain

![Y]!

True!compressive!strain![Y]!

Ti!Grade!2!Y!diam!10!Y!cold!

Ti!Grade!2!Y!diam!10!Y!warm!

0!

100!

200!

300!

400!

500!

600!

0! 100! 200! 300! 400! 500! 600!

Yiel

d!St

reng

th![M

Pa]!

Temperature![°C]!

Ti!Grade!2!

Ti!Grade!3!(litt)!

Ti!Grade!4!(litt)!

Elongation

Widening