26
Iron Pyrite (FeS 2 ) Iron Pyrite (FeS 2 ) Fool’s gold Electronic Crystal structure Electronic structure suitable bandgap (0.95 eV) very strong light absorption adequate diffusion lengths extremely cheap infinitely abundant P it t h t li t f thi fil t il bl f http://cfse.uci.ps.edu http://cfse.uci.ps.edu 1 Pyrite tops a short list of thin film materials capable of scaling to multiple TWs without resource limitations

Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

Iron Pyrite (FeS2)Iron Pyrite (FeS2)

Fool’s gold ElectronicCrystal structure

Electronic structure

• suitable bandgap (0.95 eV)• very strong light absorption• adequate diffusion lengths • extremely cheap• infinitely abundant

P it t h t li t f thi fil t i l bl f

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu1

Pyrite tops a short list of thin film materials capable of scaling to multiple TWs without resource limitations

Page 2: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

Pyrite suffers from a low voltagePyrite suffers from a low voltage

Pyrite tends to be sulfur deficient, and sulfur defects create states in the bandgap, limiting the voltageg p, g g

Performance: 40 mA cm-2 , < 0.2 V, 3.3%

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu2Passivating surface defects is the key to boosting cell efficiency

Page 3: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

Pyrite growth updatePyrite growth update

Our goal: Powerpoint Perfect Pyrite g p y

pyrite film

substratesubstrate

• uniform dense pinhole free uniform, dense, pinhole free • largest possible grains• tunable thickness (50–2000 nm)

fl t• flat• stoichiometric • scalable processing

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu3

p g• substrate independent

Page 4: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

Team PyriteTeam Pyrite

Nick – CVD James – nanocrystal inks Sean – NC & molecular inks

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu44

Amanda – molecular inksKrys – CdS CBD Yinglei – ZnS CBD

Page 5: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

Pyrite growth capabilitiesPyrite growth capabilities

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu5

Page 6: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

Chemical vapor deposition (CVD) routeChemical vapor deposition (CVD) route

300°Cglass

pyrite thin film

Fe(acac)3 (solid) TBDS (liquid)

+300°CAr flow

othermarcasite + pyrite

( )3 ( ) TBDS (liquid)substrate

Films are annealed in S2 to convert marcasite to pyrite and improve grain structure.

on glass (pure pyrite) 500°C S2 annealed (pure pyrite)

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu6

Page 7: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

on glass (pure pyrite) 500°C S2 annealed (pure pyrite)g (p py ) 2 (p py )

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu7

Page 8: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

on silicon (marcasite/pyrite) 650°C S2 annealed (pure pyrite)

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu8

Page 9: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

Nanocrystal approach (James, Sean)Nanocrystal approach (James, Sean)

Nanocrystali k

100 nm

ink

Synthesize NCs Dip coat to make NC film

Sinter in sulfur

Procedure• FeCl2 + sulfur in octadecylamine at 220°C.

Li d h d l h i

y D p coat to make NC f lm

• Ligand exchange to octadecylxanthate to improve solubility.

Dip coating in glove box (up to 3 um thick) from 100

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu9

• Dip coating in glove box (up to 3 um thick) from NCs in chloroform and 1 M hydrazine in CH3CN

• Final anneal at 500-600°C in sulfur-filled ampoule.

100 nm

Page 10: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

Pyrite nanocrystals: A challengePyrite nanocrystals: A challenge

Early results: aggregates• multiple Fe-S phases• difficult to crystallize• tends to aggregatetends to aggregate

I lfid hPyrite (FeS2) cubic, Eg = 0.95 eV (indirect; 1.01 eV direct gap)

diamagnetic semiconductor (Van Vleck paramagnet) M it (F S ) th h bi E 0 4 V (i di t)

Iron sulfide phases

Marcasite (FeS2) orthorhombic, Eg = 0.4 eV (indirect) diamagnetic semiconductor

Greigite (Fe3S4) cubic, Eg = 0.4 eV, ferrimagneticPyrrhotite hexagonal or monoclinic E ≈ 0 2 eV

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu10

Pyrrhotite(Fe1-xS, with x ≤ 0.2)

hexagonal or monoclinic, Eg ≈ 0.2 eV diamagnetic or ferromagnetic semiconductor

Troilite (FeS) hexagonal, Eg = 0.04 eV, antiferromagnetic semiconductor

Page 11: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

Pyrite nanocrystal inksPyrite nanocrystal inks

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu11

Page 12: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

Reaction progression

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu

Page 13: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

Film formation

• temperaturetime

Grain growth depends on:

• time• heating/cooling rates• substrate

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu13

• amount of sulfur

Page 14: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

On glass

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu14

Page 15: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

On potential device substrates

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu15

Page 16: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

Molecular ink approachesMolecular ink approaches

F SFe S

cast & cook

DMSOethanolamineMolecular

ink

• simple and scalablelow/no impurities• low/no impurities

• tunable composition• easy doping/alloying

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu16

• low toxicity

Page 17: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

Molecular ink approach #1Molecular ink approach #1

1. Fe(acac)3 route (Sean)P dProcedure• 0.8 M Fe(acac)3 + 1.2 M sulfur in pyridine.• Spin coat 200 nm layers, with 350°C bake in between each layer.• Final anneal at ~550°C in sulfur filled ampoule• Final anneal at ~550 C in sulfur-filled ampoule.

Progress• single-anneal films show unconnected grainssingle anneal films show unconnected grains• “2 + 2” process gives moderately dense, medium grain films (rough top layer)

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu17

Page 18: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

On glass substratesOn glass substrates

2 layers, 1 sinter step2 x 2

2 22 x 2

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu18

Page 19: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

On quartz substratesOn quartz substrates

“2 2”“2 + 2” process350°C bakes in air650°C S anneal650 C S2 anneal

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu19

Page 20: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

Growth on FTOGrowth on FTO

h l S S l t f F S Ohttp://cfse.uci.ps.eduhttp://cfse.uci.ps.edu20

hexagonal SnS2 plates form on F:SnO2

Page 21: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

Molecular ink approach #2Molecular ink approach #2

2. Iron route (Amanda)Procedure• Fe + sulfur in DMSO/ethanolamine.• Spin coat ~150 nm layers, with 200°C bake in between each layer.• Final anneal at 400-600°C in sulfur-filled ampoule.

Progress• 7 layer films give nicely connected grains

on glass (but rough surface)on glass (but rough surface)• >8 layers?• “7 + 2” process?

on glass:

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu21

Page 22: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

Iron route on glassIron route on glass

sodium incorporationsodium incorporation almost a certainty (SIMS)

l f di i

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu22

role of sodium in microstructure?

Page 23: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

glass vs. quartz glass vs. quartz

role of sodium in microstructure?

glass:

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu23

Page 24: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

probably ~2 um thick

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu24

Page 25: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

First H2S sintering results First H2S sintering results

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu25

Page 26: Iron Pyrite (FeS2lawm/Law 10-14-10.pdf · 2010. 12. 12. · Pyrite (FeS 2) cubic, E g = 0.95 eV (indirect; 1.01 eV direct gap) diamagnetic semiconductor (Van Vleck paramagnet) Mit(F

ConclusionsConclusions

• CVD gives nice pyrite films (annealing needed on non-glass substrates). Slow growthrate. Films now being used for XPS. Mobilities appear too small for Hall measurements.

• We have stable pyrite nanocrystal inks and pyrite films from same. Sintered films haveWe have stable pyrite nanocrystal inks and pyrite films from same. Sintered films havelarge grain size but usually disconnected grains and rough surfaces. Reproducibility is a nagging problem.

• Fe-acac molecular route gives moderately connected, medium grain films with rough surfaces. Multiple spin/sinter steps results in layered films. Carbon deposition duringsintering may be hindering grain growthsintering may be hindering grain growth.

• Iron molecular route gives best morphology so far with most promising stoichiometry• Iron molecular route gives best morphology so far, with most promising stoichiometry. Large (500-1000 nm), well connected grains. Process is reproducible. Substrate effects are apparent. Films are rough. H2S sintering gives smoother films @ 100-300 nm grain size.

http://cfse.uci.ps.eduhttp://cfse.uci.ps.edu26