6
12/12/2009 1 1 2. 1. General The quantity of water, regardless of its source, required by crop in a given period of time for its normal growth under field conditions. CWR = ET or CU + application losses +conveyance losses+ special needs Is the total amount of water and the way in which a crop requires water from the time it is sown to the time of harvest. Different crops will have different water requirement and the same crops may have different water requirement at different place depending upon climate, type of soil method of cultivation and useful rainfall etc. Crop water requirement serves as the basis for the design of the capacity of reservoir and canal, irrigation scheduling and management. 2 Crop period and base period Crop period : time between instant of sowing to the instant of harvest Base period: time between the first watering of a crop to its last watering before harvesting Generally crop period is slightly more than the base period but for all particular purpose, they are taken as one and the same, expressed in days. 3 2. 2. Duty and delta of a crop Duty (D): Relationship between the volume of water and the area of the crop it matures. This volume of water is generally expressed by a unit discharge flowing for a time equal to the base period of the crop called Base of Duty. Duty represents the irrigation capacity of a unit water (ha/m3/s). A: command area and Q: continuous discharge required for the base period. The duty of water at the head of the water course will be less than the duty of water on the field; because when water flows from the head of the water course and reaches the field, some water is lost as transit losses. Duty of water, therefore, varies from one place to another and increases as we move downstream from the head of the main canal towards the head of branches or water courses. Q A D = 4 2. 2. Duty and delta of a crop Duty (D): EX. 1 A reservoir with a live storage capacity of 300 M m 3 is able to irrigate 40,000 hectares a year. The crop period is 60 days. What is the duty? Solution Discharge of water used for the base period = Duty of water / irrigation capacity of a unit water is s m Q T Vol Q / 870 . 57 2 ^ 60 * 24 * 60 10 * 300 3 6 = = = s m ha s m ha Q A D / / 2 . 691 / 870 . 57 000 , 40 3 3 = = =

Irrigation C 2 - Webs C 2 1 of 3.pdf2. 2. Duty and delta of a crop Duty (D): Relationship between the volume of water and the area of the crop it matures. This volume of water is generally

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Irrigation C 2 - Webs C 2 1 of 3.pdf2. 2. Duty and delta of a crop Duty (D): Relationship between the volume of water and the area of the crop it matures. This volume of water is generally

12/12/2009

1

1

2. 1. General

� The quantity of water, regardless of its source, required by crop in a

given period of time for its normal growth under field conditions.

CWR = ET or CU + application losses +conveyance losses+ special

needs

� Is the total amount of water and the way in which a crop requires water

from the time it is sown to the time of harvest.

� Different crops will have different water requirement and the same crops

may have different water requirement at different place depending upon

climate, type of soil method of cultivation and useful rainfall etc.

� Crop water requirement serves as the basis for the design of the capacity

of reservoir and canal, irrigation scheduling and management.

2

Crop period and base period

Crop period : time between instant of sowing to the instant of harvest

Base period: time between the first watering of a crop to its last watering before harvesting

Generally crop period is slightly more than the base period but for all particular purpose, they are taken as one and the same, expressed in days.

3

2. 2. Duty and delta of a crop

Duty (D):� Relationship between the volume of water and the area of the crop it matures.� This volume of water is generally expressed by a unit discharge flowing for a

time equal to the base period of the crop called Base of Duty.� Duty represents the irrigation capacity of a unit water (ha/m3/s).

A: command area and Q: continuous discharge required for the base period.� The duty of water at the head of the water course will be less than the duty of

water on the field; because when water flows from the head of the water courseand reaches the field, some water is lost as transit losses.

� Duty of water, therefore, varies from one place to another and increases as wemove downstream from the head of the main canal towards the head ofbranches or water courses.

Q

AD =

4

2. 2. Duty and delta of a crop

Duty (D):EX. 1

A reservoir with a live storage capacity of 300 M m3 is able to irrigate 40,000hectares a year. The crop period is 60 days. What is the duty?

SolutionDischarge of water used for the base period =

Duty of water / irrigation capacity of a unit water is

smQ

T

VolQ

/870.57

2^60*24*60

10*300

3

6

=

==

smhasm

ha

Q

AD //2.691

/870.57

000,40 33

===

Page 2: Irrigation C 2 - Webs C 2 1 of 3.pdf2. 2. Duty and delta of a crop Duty (D): Relationship between the volume of water and the area of the crop it matures. This volume of water is generally

12/12/2009

2

5

2. 2. Duty and delta of a crop…

Delta (∆):� Each crop requires certain amount of water depending up on the area

to be cultivated. If area to be cultivated is large the water required will

be large, the reverse is also true.

� The total depth of water required by the crop for its full growth may be

expressed in cm is called Delta.

� Suppose certain amount of water is applied to a crop from a time of

sowing till the crop matures and if the applied water is not lost or used

up by any means then there will be a thick layer of water standing all

over the field. The depth or height of this water layer is known as delta

for the crop.

A

V=∆

V is total volume of water required for the base period and A is command area. 6

2. 2. Duty and delta of a crop

Delta (∆):EX. 2

If rice requires about 15 cm depth of water at un average interval of 12 days,and the cropping period of rice is 132 days , find the delta of rice.

Solutionwater is required at an interval of 12 days for a period of 132 days

∴ The rice will be watered 132/12 times = 11 times∴ Each time 15 cm depth of water is requiredTherefore Delta / total depth of water required will be

∆ = 15 * 11 = 165 cm

7

2. 2. Duty and delta of a crop

Delta (∆):EX. 3

Water is released at a rate of 7m3/s at u/s of the headwork, if the duty at thefield is 120 ha/cumec and the loss of water in the transit is 30%, find the area ofthe land that can be irrigated.

Solutionarea of land to be irrigated = 7*.7*120 = 588 ha

8

2. 2. Duty and delta of a crop…

Relation between Duty and Delta� Assume a crop of base period B in days, D duty of water in hectare per

cumec and ∆ be the depth of water for a crop in meter.

� From the definition of delta, duty and base period 1m3/s flowing

continuously for B days mature D hectares of land under the crop or

1m3/s continuously for B days gives a depth ∆, over D hectares of land.The total amount of water applied to this crop during B days. By definition

of duty:

The depth of water applied on this land 1ha = 104m2

Where: B in days, ∆ delta in m and D in ha/cumec

( ) 33 *400,86,*24*60*60*1 BmVmBV ==

mD

Bm

D

B

A

V 46.8

10*

864004

===∆

D=A/Q, ∆=V/A

Page 3: Irrigation C 2 - Webs C 2 1 of 3.pdf2. 2. Duty and delta of a crop Duty (D): Relationship between the volume of water and the area of the crop it matures. This volume of water is generally

12/12/2009

3

9

2. 3. Optimum utilization of irrigation water� If a crop is sown under absolutely identical conditions, using different

amounts of water depths, the resulting yield will not be the same.

� The yield increases with water and reaches a certain maximum value

and then after falls down, see figure below.

� The quantity of water at which the yield is maximum, is called the

optimum water depth.

� Optimum utilization irrigation generally means, getting maximum yield with any amount of water.

Water depth mm

Yie

ld k

g

Optimum water depth

Max. Yield

10

2. 4. Irrigation efficiency� Efficiency is the ration of the water output to the water input, and is

usually expressed as percentage.

� The design of the irrigation system, the degree of land preparation, and

the skill and care of the irrigator are the principal factors influencing

irrigation efficiency.

� Loss of irrigation water occurs in the conveyance and distribution

system, non-uniform distribution of water over the field, percolation

below crop root zone, and with sprinkler irrigation evaporation from the

spray and retention of water on the foliage.

� Water is lost in irrigation during various processes and, therefore, there

are different kinds of irrigation efficiencies as shown below:

� Conveyance efficiency (ηc): it is the ratio of the water delivered into

the field from the outlet point of the channel, to the water pumped into

the channel at the starting point.

11

2. 4. Irrigation efficiency…� Application efficiency (ηa): it is the ratio of the quantity of water stored

in to the root zone of the crops to the quantity of water actually

delivered into the field.

� Water storage efficiency (ηs): is the ratio of water stored into the root

zone during irrigation to the water needed in the root zone prior to

irrigation (i.e field capacity – existing moisture content).

� Water use efficiency (ηu): is the ratio of water beneficially used,

including leaching water, to the quantity of water delivered.

� Uniformity coefficient or distribution efficiency (ηd): represents the

extent to which the water has penetrated to a uniform depth, through

out the field. When the water has penetrated uniformly throughout the

field, the deviation from the mean depth is zero and the water

distribution efficiency is 100%.Where D mean depth of water stored during irrigation

d average of absolute values of deviation from the mean

−=D

dd 1η

12

2. 4. Irrigation efficiency…Ex 4

A stream of 12 l/s was diverted from a headwork and 10.5 l/s is delivered to the field. An area of 1.2ha was irrigated in 6hrs. The effective root zone depth was 1.2m. the runoff loss in the field was 50m3. The depth of water penetration varied linearly from 1.2 at the head end of the field to 0.9m at the tail end. It is required to determine the water conveyance efficiency, water application efficiency and water distribution efficiency.

Solution

%5.87%100*12

5.10

intsup

==

=

c

c headthefromcanaltheopliedwater

fieldsthetodeliveredwater

efficiencyConveyance

η

η

%95.77%100*226.8

176.8

8.17650226.8m

226.8m1000/2^60*6*5.106sup333

3

==

=−=

==

=

a

a

mmzoneroottheinstoredwater

hrsduringpliedwater

fieldthetodeliveredwater

zoneroottheinstoredwater

efficiencynApplicatio

η

η

%7.85%100*05.1

15.01

15.02

05.19.005.12.11

05.12

9.02.1

%100*1

1

1

=

−=

=−+−

=−=

=+==

−=

∑=

=

=

=

d

ni

iim

ni

iim

d

DDn

d

DD

D

d

efficiencyonDistributi

η

η

Page 4: Irrigation C 2 - Webs C 2 1 of 3.pdf2. 2. Duty and delta of a crop Duty (D): Relationship between the volume of water and the area of the crop it matures. This volume of water is generally

12/12/2009

4

13

2. 5. Crop water requirement (CWR)� It includes the loss due to evapotranspiration (ET) or consumptive use

(CU) plus the losses during the application and conveyance of irrigation

water and the quantity of water required for special operation such as

land preparation, leaching etc.

Consumptive use of water (Evapotranspiration) (CU)� Is the total amount of water used by the plant in transpiration (building

of plant tissues, etc) and evaporation from adjacent soils or from plant

leaves in any specified time.

� The values of consumptive use (CU) can be different for different crops,

and may be different for same crop at different time and places.

� Values of monthly consumptive use over the entire crop period are then

used to determine the irrigation requirement of the crop.

needsSpeciallossConveyancelossesnApplicatioCUorETCWR +++=

14

2. 5. Crop water requirement (CWR)…Evaporation� Evaporation is the process whereby liquid water is converted to water

vapour (vaporization) and removed from the evaporating surface

(vapour removal).

� Water evaporates from a variety of surfaces, such as lakes, rivers,

pavements, soils and wet vegetation.

� Energy is required to change the state of the molecules of water from

liquid to vapour are direct solar radiation and, to a lesser extent, the

ambient temperature of the air provide this energy.

� The driving force to remove water vapour from the evaporating surface

is the difference between the water vapour pressure at the evaporating

surface and that of the surrounding atmosphere.� As evaporation proceeds, the surrounding air becomes gradually saturated and

the process will slow down and might stop, if the wet air is not transferred to the atmosphere. The replacement of the saturated air with drier air depends greatly

on wind speed.

15

2. 5. Crop water requirement (CWR)…Evaporation…� Hence, solar radiation, air temperature, air humidity and wind speed are

climatological parameters to consider when assessing the evaporation

process.

� Where the evaporating surface is the soil surface, the degree of

shading of the crop canopy and the amount of water available at the

evaporating surface are other factors that affect the evaporation

process.

16

2. 5. Crop water requirement (CWR)…Transpiration� Transpiration consists of the vaporization of liquid water contained in

plant tissues and the vapour removal to the atmosphere.

� Crops predominately lose their water through stomata. These are small

openings on the plant leaf through which gases and water vapour pass

� Nearly all water taken up is lost by transpiration and only a tiny fraction

is used within the plant.

� Transpiration, like direct evaporation, depends on the energy supply,

vapour pressure gradient and wind.

� The transpiration rate is also influenced by crop characteristics,

environmental aspects and cultivation practices. Different kinds of

plants may have different transpiration rates. Not only the type of crop,

but also the crop development, environment and management should

be considered when assessing transpiration.

Page 5: Irrigation C 2 - Webs C 2 1 of 3.pdf2. 2. Duty and delta of a crop Duty (D): Relationship between the volume of water and the area of the crop it matures. This volume of water is generally

12/12/2009

5

17

2. 5. Crop water requirement (CWR)…

Evapotranspiration (ET)� Evaporation and transpiration occur simultaneously and there is no

easy way of distinguishing between the two processes.

� Apart from the water availability in the topsoil, the evaporation from a

cropped soil is mainly determined by the fraction of the solar radiation

reaching the soil surface. This fraction decreases over the growing

period as the crop develops and the crop canopy shades more and

more of the ground area.

� When the crop is small, water is predominately lost by soil evaporation,

but once the crop is well developed and completely covers the soil,

transpiration becomes the main process.

18

2. 5. Crop water requirement (CWR)…

LAI is the ratio of total upper leaf surface divided by the surface area of the land

Growth stages

evapotranspiration into evaporation and transpiration over the growing period

19

2. 5. Crop water requirement (CWR)…Evapotranspiration (ET) Units� The evapotranspiration rate is normally expressed in millimeters (mm)

per unit time.

� Water depths can also be expressed in terms of energy received per

unit area, energy required to vaporize free water known as latent heat

of vaporization (λ), is a function of the water temperature.

Conversion factors for evapotranspiration

20

2. 6. Factors affecting evapotranspiration

Weather parameters: radiation, air temperature, humidity and wind

speed. The evaporation power of the atmosphere is expressed by the

reference crop evapotranspiration (ETo).

Crop factors: The crop type, development stage, crop height, crop roughness,

reflection and ground cover. Crop evapotranspiration under standard conditions (ETc) refers to the evaporating demand from crops

Management and environmental conditions: soil salinity, poor land fertility,

the presence of impenetrable soil horizons and pests and poor soil management

may limit the crop development and reduce the evapotranspiration.

Weather parameters, crop

characteristics, management and

environmental aspects are factors

affecting evaporation and

transpiration.

Page 6: Irrigation C 2 - Webs C 2 1 of 3.pdf2. 2. Duty and delta of a crop Duty (D): Relationship between the volume of water and the area of the crop it matures. This volume of water is generally

12/12/2009

6

21

2. 6. Factors affecting evapotranspiration

Reference (ETo)

evaporation power of the atmosphere

Crop evapotranspiration under standard (ETc)excellently managed, large, well-watered fields

non- standard conditions (ETc adj)non-standard conditions generally requires a correction.

22

2. 7. Reference crop evapotranspiration (ETo)

� The evapotranspiration rate from a reference surface, not short of water is called ETo

� The reference surface is a hypothetical grass reference crop with specific characteristics "with an assumed crop height of 0.12 m, a fixed surface resistance of 70 s m-1 and an albedo of 0.23 ."

� Eto is used to estimate evaporative demand of the atmosphere independently of crop type, crop development and management practices.

� The crop evapotranspiration under standard conditions, denoted as ETc, is the evapotranspiration from disease-free, well-fertilized crops, grown in large fields, under optimum soil water conditions, and achieving full productionunder the given climatic conditions.

23

2. 7. Reference crop evapotranspiration (ETo)

� Average ETo for different agroclimatic regions in mm/ day from 1 to 9