51

ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design
Page 2: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design
Page 3: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

ISI KANDUNGAN M/S

THE EFFECT OF PROCESS PARAMETERS ON PENETRATION IN 1

GAS METAL ARC WELDING

Lian Bin Liun1, Ahmad Zuhardi Bin Hussain

2

Experimental Study on Geometries Energy Absorption of Fiber 10

Metal Laminated Mild Steel under Axial Compression.

Muhammad Izani Sahak1, a

, Ahmad Kamely Mohamad2,

b and Abdullah Atiq Ariffin

1, c

Study On Surface Roughness and Material Removal Rate Of Dry 18

Surface Grinding Repeat Method (Mirror).

Abdul Razak Mohd Daim1,a

Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30

Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana

Menggunakan Konsep Design Of Experiment (DOE). Abdul Razak Mohd Daim

1,a

IMPLEMENTATION OF LEAN CONCEPTS IN UNIMEKAR 43

METALS SDN. BHD.’s FOUNDRY SHOP SPIPZS 2012.

Ahmad Zuhardi Bin Hussain, Mohd Hasni Bin Angterian

dan Darman Bin Pawali.

EFFECT OF COMPOSITE WRAPPING ON CRASHWORTHINESS 48 1MUHAMMAD IZANI SAHAK, 2MUHAMMAD AHMAD KAMAL

Page 4: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

THE EFFECT OF PROCESS PARAMETERS ON PENETRATION IN GAS METAL ARC

WELDING

Lian Bin Liun1, Ahmad Zuhardi Bin Hussain

2

H/p: 019-8705231 Email: [email protected]

H/p: 012-4992070 Email: [email protected]

Jabatan Kejuruteraan Mekanikal

Politeknik Kota Kinabalu

1

Page 5: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

THE EFFECT OF PROCESS PARAMETERS ON PENETRATION IN GAS METAL ARC

WELDING

Lian Bin Liun1, Ahmad Zuhardi Bin Hussain

2

H/p: 019-8705231 Email: [email protected]

H/p: 012-4992070 Email: [email protected]

Jabatan Kejuruteraan Mekanikal

Politeknik Kota Kinabalu

ABSTRACT In this study, the effects of various welding parameters on welding penetration of Stainless Steel tube having 2.5

mm wall thickness welded by robotic gas metal arc welding (GMAW) were investigated. The welding current, arc

voltage and welding speed were chosen as variable parameters. The depth of penetration were measured for each

specimen after the welding operations and the effects of these parameters on penetration were analyzed. The

welding currents were 95, 105, and 115Amp, arc voltage were 14, 16, and 18V and the welding speeds were 10,

30, and 50 cm/min. As a result, increasing welding current will increase the depth of welding penetration. In

additions, arc voltage was another parameter affecting the increased in penetration. However, it effect was least

significant as compared to current. The highest penetration was observed in 10 cm/min welding speed.

Keywords: Gas Metal Arc Welding, Welding Parameters, Design of Experiment

1.0 Introduction Gas metal arc welding (GMAW) process is an important component in many industrial operations. The

(GMAW) welding parameters are important considerations for design and manufacturing engineer in the

fabrication industry.

Therefore, these parameters affecting the arc and welding bath should be estimated and their changing

conditions during process must be known in order to obtain optimum results. Former are welding current, arc

voltage and welding speed, and later are torch angle, free wire length, nozzle distance, welding direction, position

and the flow rate of gas.

Basically, sufficient penetration, high heating rate and right welding profile occur in the quality of welding

joint. These are affected from welding current, arc voltage, welding speed and protective gas parameters. Among

all, welding current intensity has the strongest effect on melting capacity, weld seals size and geometry and depth

of penetration.

When all parameters are held constant, weld seal area expands with increasing voltage. Relatively low

welding speeds cause accumulation of welding metal, large welding bath and so low penetration. The deepest

penetration values are obtained in optimum values of welding speed.

1.1 Problem Statement

Study was done by the manufacturer, but detailed study is not disclosed to the public review and not all

types of material available covered. Performance of Stainless Steel tube welded by (GMAW) welding process was

the focus of this studies and it will cover variables for parameters that are welding current, voltage and speed.

1.2 Objectives of Research

a. To study the effect of (GMAW) welding variable; welding current, arc voltage and welding speed on welding

penetration, of Stainless Steel tube.

b. To determine the most significant factor that influences penetration and welding geometry in (GMAW)

welding.

c. To suggest the best set of parameters for (GMAW) welding on Stainless Steel tube.

Page 6: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

1.3 Significance of Research

Area of study in these researches was:

a. To study the welding quality of stainless steel tube using robotic (GMAW) arc welding.

b. To investigate the penetration, bead height and bead width of welded Stainless Steel tube by using gas metal

(GMAW) arc welding.

2.1 Literature Review

The GMAW welding process is a welding process which yields coalescence of metals heating with a

welding arc between a continuous filler metal electrode and the workpiece. The continuous wire electrode which is

drawn from a reel by an automatic wire feeder and then fed through the contact tip inside the welding torch is

melted by the internal resistive power and heat transferred from the welding arc. Heat is concentrated by the

welding arc from the end of the melting electrode to the molten weld pool and by the molten metal that is being

transferred to the weld pool (Kim et. al, 2003).

Firstly applied this technique to the GMAW welding process and investigated relationship between the

process variables and bead geometry. These results showed that arc current has the greatest influence on bead

geometry, and that mathematical models derived from experimental results can be used to predict bead geometry

accurately. (Yang et al, (1993), (Karadeniz et. al, 2007).

Study by GMAW welding parameters are the most important factors affecting the quality, productivity and

cost of welding joint (Kim et. al, 2003), (Ming et. al, 2003).

The selection of the welding procedure must be specific to ensure that an adequate clad quality is obtained (Kim et.

al, 2001).

According to the effect of process parameters on weld penetration in gas metal arc welding processes was

studied by (Karadeniz et. al, 2007). Has extended their study to the weld deposit area and presented the effects of

electrode polarity, extension and diameter, welding current, arc voltage, travel speed, power source setting and flux

basicity on the weld deposited area (Kim et. al, 2003).

2.2 Stainless steel

Stainless steel has many desirable characteristics which can be exploited in a wide range of construction

applications. It is corrosion-resistant and long-lasting, making thinner and more durable structures possible. It

presents architects with many possibilities of shape, colour and form, whilst at the same time being tough,

hygienic, adaptable and recyclable. (Baddoo, 2008).

2.2.1 Welding of stainless steel

In each case, the appropriate welding parameters were for the production of air-pressure tubes from

stainless steel sheets having 2.5mm thicknesses by using GMAW robotic arc welding were as shown in Figure 2.1.

Figure 2.1: The welded pipe analysed in the study. (Sattari and Javadi, 2008)

Page 7: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

2.3 Effect of parameters in welding process

Voltage (V), Current (I) and Speed (S) are variables used as treatment variables for the experiment. In the

arc welding process increase in welding speed causes decrease in the heat input per unit length of the weld,

decrease in the electrode burn off rate and decrease in the weld reinforcement.

2.5 Welding Bead Geometry

The weld bead geometry which affects the load carrying capacity of the weldments and number of passes

needed to fill the groove of a joint. The bead geometry (figure 2.3) is specified by bead width, reinforcement,

penetration, penetration shape factor and reinforcement form factor.

Figure 2.3: A schematic illustration of bead geometry (Yang et. al, 2003)

3.1 Methodology The effects of process parameters on top bead width have been studied using the robotic GMAW welding.

Process parameters such as pass number, welding speed, welding current and arc voltage influence top bead width

for GMAW welding process.

3.2 Experiments. For the experimental studies, Stainless steel (Erdemir Steel) specimens having 60 × 30 × 2.5mm were used

as base-metal. This unalloyed steel is used in the production of pressure tubes. In addition, 1.2 mm diameter

electrode was used as filling metal. Gas metal arc welding operations were performed by means of a

DAIHEN Model Dr-4000 welding robot having a working capacity of 0–500 A and 0–50 V ranges. The welding

opening was fixed as 0.8 mm and the torch was centred. The welding robot and its apparatus were shown in Figure

3.1.

Figure 3.1: The welding robot and its apparatus used in experiments.

3.3 The Experimental Set-Up

The experimental set-up comprises a welding power source, a robot carrying a welding torch, a fixture, a

welding table, and an industrial personal computer (PC) for sampling and recording the welding current and

voltage. The welding current is measured by a Hall effects transducer. The welding voltage channel is connected to

the welding torch (electrode) and the base metal (work piece) by the low-pass filter with a voltage divider and peak

clipper. The current and voltage signals are continuously sampled by the computer at a sampling frequency of 100

kHz.

3.4. Design of Experiment

Page 8: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

In order to ensure more accurate, less costly and more efficient experiments, the experiment were done by

the specific design of experiments (DOE). In this research, the experimental is design by applying a full factorial

design (2k), where k is the number of controlled variables in the experiment. There are three controlled variables

investigated for the experiment namely; welding current, arc voltage and welding speed. The welding parameters

and their level that designed to investigates were shown in Table 3.2 and Table 3.3.

Table 3.2 Process parameters and the level Control factors Parameter Low High

95 Welding current 95 Ampere 115 Ampere

105 Arc voltage 14 Volt 18 Volt

115 Welding speed 10 cm/min 50 cm/min

Table 3.3 Full factorial 2

3design matrix

Std Run Block Factor 1

A: Current Amp

Factor 2

B: Voltage B

Factor 3

C: Welding Speed

3 1 1 95 18 10

11 2 1 105 16 30

5 3 1 95 14 50

6 4 1 115 14 50

8 5 1 115 18 50

1 6 1 95 14 10

2 7 1 115 18 10

10 8 1 105 16 30

4 9 1 115 18 10

7 10 1 95 18 50

9 11 1 105 16 30

The number of level is 2 levels of each factor were selected for the 2

3 experiment is welding current, arc

voltage and welding speed, depth of penetration result welding operation. The design matrix for the 23 experiment

is shown in Table 3.3. For the DOE, 3 factorial points, and added centre point repeated 3 times. So, there are 8

samples were conducted for arc voltage. The total samples had been run on these experiments were 11 samples. A

common experimental design is one with all input factors set at two levels each. These levels are called `high' and

`low' or `+1' and `-1', respectively. A design with all possible high or low combinations of all the input factors is

called a full factorial design in two levels.

3.5 Data Analysis

Design Expert software analyse were used to find the best welding parameter in robotic arc welding using

GMAW stainless steel.

3.6 Measurement of Penetration

The GMAW specimens were exposed to metallographic investigation prior to macro-structure survey

which was the tool for the penetration by a new vision program in 10x magnification. The resulted photographs

were given in appendix B and the light of Macro-structure photos, reliable bead height and depth of penetration

values were obtained in configurations shown in appendix A.

4.1 RESULTS This chapter presents the experimental results and discussion on the effect of welding parameter (current,

voltage and welding speed) on welding bead width, welding bead height and welding penetration. The

experimental plans for the process employed full factorial design and analyzed by Analysis of variance (ANOVA).

The experimental trials involve three factors and two levels 23 experimental designs, factors involved were welding

current, welding voltage, and welding speed. The analysis for the research is based on the bead width, bead height

and welding penetration as an output response. For the full factorial experimental design, it employed with 11

Page 9: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

experiments (8 specimens for randomize experiment) and added with 3 specimens as the centre point of the

welding parameter.

4.2 Experimental Parameter and Data

Design Expert software version 6.0 has been used to design the experimental runs and helped to analyze

the responses. The details of the factors and its level are given in Table 4.1 Factor and levels (23experimental

designs)

Table 4.1 Factor and levels (2

3experimental designs)

Factor

Coded

Name High

Coded Factor Units Type

Low level

(-1)

Centre

point (0)

High level

(+1)

A Current Ampere Numeric 95 105 115

B Voltage Volt Numeric 14 16 18

C Welding speed cm/min Numeric 10 30 50

Table 4.2 Experimental trial designed by design expert software applied randomization for welding.

Std Run Block Factor 1

A: Current Amp

Factor 2

B: Voltage B

Factor 3

C: Welding Speed

3 1 1 -1 1 -1

11 2 1 0 0 0

5 3 1 -1 -1 1

6 4 1 1 -1 1

8 5 1 1 1 1

1 6 1 -1 -1 -1

2 7 1 1 -1 -1

10 8 1 0 0 0

4 9 1 1 1 -1

7 10 1 -1 1 1

9 11 1 0 0 0

4.3 Experimental Result

There experiment specimens were 11 in total, with different welding current, arc voltage and welding

speed combinations were performed and the depth of penetration is measured for all cases. The results were

tabulated as in Table 4.3 below.

Table 4.3 Experimental Results of Robotic GMAW welding

Std Run

Welding

Current (Ampere)

Arc

Voltage (Volt)

Welding

Speed (cm/mm)

Bead Width

(mm)

Penetration

(mm)

Bead Height

(mm)

3 1 95 18 10 5.05 3.35 2.11

11 2 105 16 30 4.98 3.05 2.84

5 3 95 14 50 5.09 2.87 2.82

6 4 115 14 50 5.01 3.01 2.80

8 5 115 18 50 5.08 3.32 2.79

1 6 95 14 10 5.06 3.38 2.1

2 7 115 14 10 5.07 3.9 2.09

10 8 105 16 30 4.98 3.06 2.83

4 9 115 18 10 5.09 3.36 2.05

7 10 95 18 50 5.05 2.84 2.98

9 11 105 16 30 4.98 3.05 2.84

4.4 Factor that influences welding penetration

Page 10: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Based on the ANOVA analysis Table 4.4, A; represent welding current, B; represent welding voltage and

C; welding speed are the significant factor to determined the highest value penetration in GMAW welding.

ANOVA analysis proved that the model is significant with F value is 0.0003. The significant factor identified by

value that achieved probability below than 0.05.

Table 4.4 also shows that, the value of R-Squared is 0.9999 which represent 99% of the variable that has

been described by the model selected and adjusted R-Squared achieved 99.96%. The difference between R-squared

and adjusted R-squared is about 0.03% shows in small difference, referred that only significant term included in

the model.

Analysis from ANOVA clearly shows that in GMAW welding, all three selected parameter are the main

effects in determining welding penetration. To further analysis of the result, a graphic plot as shown in figure 4.17

has been used based on normal probability plot of effect. In figure 4.17 the graphical plot clearly support the

ANOVA analysis identified the significant factor where C, welding speed is the most far away from normal plot

followed by A, welding current and B, welding voltage. From the analysis, it shows that the most significant

parameter in GMAW welding is welding speed followed by welding current and then welding voltage.

Table 4.4 ANOVA table for welding penetration

Response: Penetration

ANOVA for Selected Factorial Model

Analysis of variance table [Partial sum of squares] Sum of Mean F

Source Squares DF Square Value Prob > F

Model 0.83 7 0.12 3575.79 0.0003 significant

A 0.16 1 0.16 4873.50 0.0002 B 0.011 1 0.011 337.50 0.0029

C 0.47 1 0.47 14113.50 < 0.0001

AB 4.050E-003 1 4.050E-003 121.50 0.0081 AC 1.250E-003 1 1.250E-003 37.50 0.0256

BC 0.092 1 0.092 2773.50 0.0004

ABC 0.092 1 0.092 2773.50 0.0004 Curvature 0.087 1 0.087 2596.41 0.0004 significant

Pure Error 6.667E-005 2 3.333E-005

Cor Total 0.92 10

Std. Dev. 5.774E-003 R-Squared 0.9999

Mean3.20 Adj R-Squared 0.9996

C.V.0.18 Pred R-Squared N/A

PRESS N/A Adeq Precision 202.975

4.6 Factor that influences welding geometry

For analysis of welding geometry (bead height), the ANOVA analysis shows that the experimental model

is significant with Probe >F is 0.0002. All three factors are listed to be significant, welding current, welding

voltage and welding speed are listed as main effect for the model, each of them are represented by probability

0.0034, 0.0180 and 0.0001 respectively as shown in Table 4.5.

Page 11: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Table 4.5 ANOVA table for welding geometry (bead height)

Response: Bead height ANOVA for Selected Factorial Model

Analysis of variance table [Partial sum of squares]

Sum of Mean F Source Squares DF Square Value Prob >F

Model1.18 7 0.17 5062.07 0.0002

A 9.800E-003 1 9.800E-003 294.00 0.0034 B 1.800E-003 1 1.800E-003 54.00 0.0180

C 1.16 1 1.16 34656.00 < 0.0001 AB 6.050E-003 1 6.050E-003 181.50 0.0055

AC 2.450E-003 1 2.450E-003 73.50 0.0133 BC 4.050E-003 1 4.050E-003 121.50 0.0081

ABC 1.800E-003 1 1.800E-003 54.00 0.0180

Curvature 0.30 1 0.30 8920.41 0.0001 Pure Error 6.667E-005 2 3.333E-005

Cor Total 1.48 10

Std. Dev. 5.774E-003 R-Squared 0.9999

Mean2.57 Adj R-Squared 0.9997

C.V.0.22 Pred R-Squared N/A

PRESSN/A Adeq Precision 178.081

4.7 The best parameter setting in GMAW welding

In the numerical optimization test, the desired goals for the factors and response were set using the feature

provided by Design Expert Software.

Table 4.6 The best solution as suggest by Design Expert

Solutions

Num Current Voltage Speed Penetration height Desirability 1 115.00 14.00 10.00 3.89999 2.09 0.978 Selected 2 115.00 14.01 10.00 3.89797 2.08985 0.977

3 114.56 14.00 10.00 3.88851 2.09022 0.973

4 115.00 14.37 10.00 3.84851 2.08626 0.956 5 112.33 14.00 10.00 3.83061 2.09133 0.945

6 115.00 14.00 12.65 3.84103 2.13704 0.925

7 107.15 14.00 10.00 3.69587 2.09392 0.877 8 96.06 17.27 10.00 3.36052 2.10548 0.680

8 Solutions found

Using Design Expert software, there are seven solutions offers as shown in table 4.6 with desirability

above 0.9 in GMAW welding and the selected best combination solution with regards to the overall objective,

penetration and bead geometry were expected to achieve the maximum value of 3.89999 mm with 0.978

desirability value as the first suggested solution. The best parameter setting to get the highest penetration value in

GMAW welding was combination of welding setting at welding current is 115.00 Ampere, welding voltage is

14.00 Volt and welding speed is 10.00 cm/min.

5.1 DISCUSSION The effect of welding current on penetration as stated in chapter 4 was commented according to the table

4.3, the depth of penetration is increase with the increasing of welding current. It can be seen that the penetration

increase with the increment of welding current for 14, 16, and 18 V values. The biggest penetration value was

obtained as 3.38mm in 115 A and 14 V condition, while the smallest one as 2.84 mm in 95 A and 18 V. (Karadeniz

et. al, 2007).

5.2 Factor that influences welding penetration and welding geometry

The result is different with (Karadeniz, 2007) finding which state that the effect of welding current

approximately 2.5 times greater than that of arc voltage and welding speed on penetration. The possible reason for

the different result are the range of arc voltage and welding speed used in this experiment is different with the

experiment done by (Karadeniz, 2007) and due to the working capacity of robotic GMAW welding machine used

in this study is different with previous study.

Page 12: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

5.3 The best parameter setting in GMAW welding

The best parameter for GMAW welding obtained using Design Expert software analysis. The selected

combination of the best parameter setting is obtains from the highest value of desirability, in this case the highest

desirability value is 1.000. The combination factor for the best parameter in GMAW; welding speed is 10 cm/min,

welding current is 115 A and arc voltage is 14V.

From the best selected parameter, it is observed that in order to obtain the highest depth of penetration, the

welding speed must be set to minimum, and welding current must be in maximum. These result is agree with the

finding of previous research. Base on (Karadeniz, 2007) study, it stated that to obtain high depth of penetration in

GMAW welding, welding current should be completed at high welding current and low welding speed.

REFERENCES

Baddoo.N.R, (2008). Journal of contruction steel research; November 2008, pages 1199-1206 international

stainless steel expert seminar.

E.Karadeniz et. al, (2007). Modenesi PJ, Avelar RC. The influence of small variations of wire characteristics on

gas metal arc welding process stability. J Mater Process Technology 1999;86:226–32.

Kim IS et al. (2003). A study on relationship between process variables and bead penetration for robotic CO2

arc welding. J Mater Process Technol;136:139–45.

Ming HG et al. (2003). Acquisition and pattern recognition of spectrum information of welding metal transfer.

Mater Des;24:699–703.

Yang LJ et al.(1993). The effects of process variables on the weld deposit area of submerged arc welds. Weld

J;72:11–8.

Kim. Ill-Soo; Son, Joon-Sik; and Jeung, Young-Jae, (2001). "Control and optimisation of bead width for nmlti-

pass welding in robotic arc welding processes." Australasian Welding Journal (v46, 3rd

qtr), pp43-46.

Page 13: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design
Page 14: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Experimental Study on Geometries Energy Absorption of Fiber Metal Laminated Mild Steel under Axial Compression

Muhammad Izani Sahak1, a, Ahmad Kamely Mohamad2, b and Abdullah Atiq Ariffin1, c

1Department of Mechanical Engineering, Politeknik Kota Kinabalu Sabah, 88450, Malaysia

2Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76109, Malaysia

[email protected], [email protected], [email protected]

10

Page 15: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Experimental Study on Geometries Energy Absorption of Fiber Metal Laminated Mild Steel under Axial Compression

Muhammad Izani Sahak1, a, Ahmad Kamely Mohamad2, b and Abdullah Atiq Ariffin1, c

1Department of Mechanical Engineering, Politeknik Kota Kinabalu Sabah, 88450, Malaysia

2Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76109, Malaysia

[email protected], [email protected], [email protected]

Keywords: Energy absorption, Fiber metal laminated mild steel, Circular and square tube, Axial compression

Abstract. Crashworthiness is the ability of a structure to protect its occupants during an impact.

Depending on the nature of the impact and the vehicle involved, different criteria are used to

determine the crashworthiness of the structure. The combination of metal and composite layers

is known to displays plastics deformation and failure mode composite layered. The capable of

structures to absorb large amount of energy are great interest in an effort to reduce the impact of

collision. In this experimental study, an investigation will be carried out on geometries behavior

of fiber metal laminated mild steel under axial compression. For structures subjected to

compression, energy absorption is highly desirable and will depend on its physical shape. The

efficiency is measured in term of the absorption performance that is higher in hybrid composites

than in metallic and composite structures. Much of the working assessing the energy absorbing

capability of composite materials and structures under compressive loading has been to a greater

extent restricted to axis metric tubes. Therefore, it will contribute knowledge on how to design

hybrid composite material tubes to develop a stable or controlled compression response under

sustained axial loading.

Introduction

Energy absorption capacities play an important factor for engineers in designing

structures for transportation vehicles such as automobiles, trains, and airplanes. Higher safety

requirements for vehicles are being demanded to protect passengers involved in accidents.

Structures of the vehicle must absorb sufficient energy and reduce the impact load even when the

vehicle collides with each other at high velocities. Many materials used in designing

crashworthy structures are rate sensitive were energy absorption capability is dependent on the

speeds at which they are crushed [1] and the axial displacement of the tubes [2]. Thin wall tubes

have been used as impact energy absorbers due to its behavior of progressively buckle like

bending plastic hinges to absorb energy under axial low-velocity impacts. The peak axial loads

in the impact test were approximately constant under the range of testing velocities, and therefore

several geometries of thin-walled circular tubes can be predicted by the ones in the static tests

[3]. The most common shapes are circular, square and rectangular and these tubes are used as

front and side impact beams in vehicles. Experimental and analytical results have shown that

energy absorption depend on various tube parameters such as geometry, material properties,

boundary, length [4], thickness [5,6] and loading conditions of the tubes where it buckle in

different modes of deformation, namely concertina, diamond and Euler collapsing modes.

Taking consideration of these design parameters, and its methods can improve energy absorption

characteristics of the tubes under axial loads significantly [7]. It is also found out that the

specific energy absorption for circular tube is higher than square and rectangular tubes [8].

Composite structures in the other hand have a wide range of applications because of their

high stiffness and strength with respect to their weight. It also provides ductile, and a stable

Page 16: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

plastic collapse mechanism as they progressively deform which eventually increases the energy

absorption during collision of the vehicles [9]. Composite structures could stand high loads and

provide a significant increase in the energy absorption when compared to similar metal

structures. The energy absorption capability of composite structures is dependent upon the

mechanism by which the structures collapse.

The E-glass fiber/resin composite tubes reinforced by carbon fiber have a significant

increase in energy absorption when collision compared to the fully glass fiber/epoxy tubes [10].

The impact force displacement relationships of E-glass fiber/resin composites increased due to

increasing impact energy of great specimen deflection related with significant membrane

tensions [11]. In recent years, fiber composite materials have been increasingly used in the

development of advanced metal shell structures. Due to their superior strength-to-weight ratio,

hybrid structures are excellent for energy absorption and have been extensively used in such

engineering structures. As a result, several researchers have recently addressed metal tubes that

are wrapped with a fiber-reinforced plastic composite where overwrapping the metal tubes with

composite is an effective means of increasing energy absorption capacity and improving the

crushing characteristics of such tubes [12].

Specimen Fabrication

Commercially available conventional mild steel (CMS) were prepared according to the

required shape, size, and quantity (refer Fig. 1). The dimensions of the conventional mild steel

(CMS) were given in Table 1. The E-glass fiber/polyester resin laminated mild steel (LMS)

specimens were fabricated by hand lay-up process. Scratches were made over the outer shell

surface of the conventional mild steel (CMS) specimen with fine sand paper (Grade 800) for

better adhesion between mild steel metal surface and E-glass fiber/polyester resin laminate.

Three sets of laminated mild steel (LMS) were overwrapped on the outer surface of the

conventional mild steel (CMS) by hand lay-up method to form a laminated mild steel (LMS) or

hybrid shell. Percentage of glass fiber on the composite is maintained at 60%. The specimen

will then left to cure for about five hours at room temperature and the thickness of the shell was

maintained at 2.60-3.70 mm. The specimens are shown in Fig.2 and the dimensions of the

hybrid shells are given in Table 2.

Fig. 1 Geometrical details of (a) conventional mild steel (CMS), (b) laminated mild steel (LMS).

(a)

(b)

No Ni

No Ni

No Ni

No Ni

t1 t1

t2 t2

Page 17: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

(a) (b)

Fig. 2 Conventional mild steel (CMS) and laminated mild steel (LMS) for (a) Circular shape, and

(b) Square shape.

Table 1 Dimensions of conventional mild steel (CMS) specimens.

Model Shape

Inner

diameter/

base

length

(Ni)(mm)

Outer

diameter/

base

length

(No)(mm)

Height

(Hc)(mm)

Mild steel

thickness

(average)

(t1)(mm)

Total thickness

(average)

t = (t1 + t2)(mm)

CMS1 Circular 44.84 48.04 120 1.6 1.6

CMS2 Square 47.04 50.24 120 1.6 1.6

CMS3 Circular 44.27 48.07 120 1.9 1.9

CMS4 Square 46.27 50.07 120 1.9 1.9

Table 2 Dimensions of laminated mild steel (LMS) specimens.

Model Shape

Inner

diameter/

base

length

(Ni)(mm)

Outer

diameter/

base

length

(No)(mm)

Height

(Hc)(mm)

Mild steel

thickness

(average)

(t1)(mm)

Composite

laminate

thickness

(average)

(t2)(mm)

Total thickness

(average)

t = (t1 + t2)(mm)

LMS1 Circular 44.84 50.30 120 1.6 2.73 4.33

LMS2 Square 47.04 53.40 120 1.6 3.18 4.78

LMS3 Circular 44.27 50.90 120 1.9 3.32 5.22

LMS4 Square 46.27 53.60 120 1.9 3.67 5.57

Experimental Setup

The axial compression test was conducted on samples with the cross head speed of 5

mm/min on a Universal Testing Machine (UTM) of 20 ton capacity and it is integrated with the

load displacement data recordable device. The specimens are placed in coaxial between top and

Page 18: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

bottom rigid platen and proper seating is ensured. The axial load is applied progressively from

top end of

truncated specimen. The mode of collapse of conventional mild steel (CMS) and laminated mild

steel (LMS) was observed and also corresponding load displacement dataset were recorded up to

80 mm axial compression of the specimen. Three specimens were tested for each category of

samples to ensure the repeatability of the results. The load displacement curve obtained from the

experiment for conventional mild steel (CMS) and laminated mild steel (LMS) is shown in Fig.

3a and b respectively. The energy absorption capabilities of the specimens were estimated from

the area under the load displacement characteristic curves.

(a) (b)

Fig. 3 Load displacement curve for (a) conventional mild steel (CMS) and (b) laminated mild

steel (LMS).

Results and Discussion

The axial compression loading experiment on conventional mild steel (CMS) and

laminated mild steel (LMS) were then studied. From the analysis, it was observed that the top

end of the specimen shell initially buckles towards outward where the specimens moves laterally

and shortens under a load it can no longer support when it undergoes quasi-static axial

compression loading. Due to continuous loading, the specimen deforms further by rolling plastic

mode of collapse and generates stationary hinges. It was observed that the formation of number

of stationary hinges were always in perpendicular to the direction of loading. The main failure

Page 19: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

mechanisms that contribute to energy dissipation in the case of unstable brittle collapse mode are

buckling of tube wall, crack propagation, and splitting of the tube wall where metal absorb most

of the energy in the plastic deformation mode.

In the load displacement curve (Fig. 3), the rise and fall of load denotes the influence of

stationary hinges and plastic collapse of failure. In order to analyses the change of energy

absorption levels, the specimens were grouped into four different categories based on their shape,

thickness and height as shown in Table 3. To study the effect of specimens geometrical on the

load displacement curve for the benefit of higher energy absorption capability, the load

displacement curve obtained from experimental results were considered from specimens under

Group 2 and Group 4 of Table 3. The specimens belong to this group having different geometry

but same in shell thickness and height. The load displacement curve obtained from experimental

of Group 2 and Group 4 specimens are shown in Fig. 4. It was observed that for specimens

under Group 2 (CMS3 & LMS3) will have higher energy absorption capability compared to

specimens under Group 4 (CMS4 & LMS4). These prove that circular tube specimen gains

higher energy absorption compared to square tube specimen.

Table 3 Groups of specimens based on shape, thickness and height.

Group Specimen model Shape Mild steel thickness

(average)(mm) Height (mm)

Group 1 CMS1 & LMS1 Circular 1.6 120

Group 2 CMS3 & LMS3 Circular 1.9 120

Group 3 CMS2 & LMS2 Square 1.6 120

Group 4 CMS4 & LMS4 Square 1.9 120

Page 20: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

(a) (b)

Fig. 4 Load displacement curve for (a) conventional mild steel (CMS) and (b) laminated mild

steel (LMS) under different geometries but same in thickness and height.

Conclusion

The energy absorption capacity of conventional mild steel (CMS) and laminated mild

steel (LMS) shell were analyses by experimental methods. The modes of failure and load

displacement graphs were extracted from experimental data. The performance in terms of energy

absorption rate of the specimen was observed by the load displacement curve. Both conventional

mild steel (CMS) and laminated mild steel (LMS) specimens shows similar trend in load

displacement curve but the laminated mild steel (LMS) has higher initial crush and greater

average load than conventional mild steel (CMS). The geometries of both conventional mild

steel (CMS) and laminated mild steel (LMS) also contribute to the capability of specimens in

absorbing energy where the circular specimens gains higher crushing performance compared to

square specimens. The E-glass fiber/polyester resin laminated mild steel (LMS) shows higher

initial collapse load, higher average load, and high ultimate peak load than of conventional mild

steel (CMS) specimens and it absorbs more energy. The ability of this family of hybrid to absorb

more energy due to combination of two materials with different properties that is significantly

better than any materials currently on the market.

Page 21: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Acknowledgment

The authors gratefully acknowledged Department of Polytechnic Education,

Ministry of Higher Education Malaysia for all the support and fund and to all the

technical support from the Mechanical Engineering Department’s research members and

Research Unit of Politeknik Kota Kinabalu, Sabah.

References

[1] S. Ramakrishna, and H. Hamada, Energy Absorption Characteristic of Crashworthy

Structural Composite Materials, Key Engineering Material. Vol. 141-143 (1998) pp. 585-620.

[2] M. Miyazaki, and H. Negishi, Deformation and Energy Absorption of Aluminum Square

Tubes with Dynamic Axial Compressive Load, Material Transaction. Vol. 44(8) (2003) pp.

1566-1570.

[3] M. Higuchi, S. Suzuki, and T. Adachi, Dynamic Axial Crushing of Circular Tubes

Subjected to High Velocity Impact, 2nd

International Symposium on Experimental Mechanics.

(2012).

[4] S. Ataollahi, S. T. Taher, R. A. Eshkoor, A. K. Ariffin, and C. H. Azhari, Energy

Absorption and Failure Response of Silk/Epoxy Composite Square Tubes: Experimental,

Composite Part B: Engineering. Vol. 43(2) (2012) pp. 542-548.

[5] A. M. S. Hamouda, R. O. Saied, and F. M. Shuaeib, Energy Absorption Capacities of

Square Tubular Structures, Journal of Achievements in Materials and Manufacturing

Engineering. Vol. 24(1) (2007).

[6] A. Dadrasi, An Investigation on Crashworthiness Design of Aluminium Columns with

Damage Criteria, Research Journal of Recent Sciences. Vol. 1(7) (2012) pp. 19-24.

[7] S. Salehghaffari, M. Tajdari, and F. Mokhtarnexhad, Attempts to Improve Energy

Absorption Characteristics of Circular Metal Tubes Subjected to Axial Loading, Thin-Walled

Structures. Vol. 48 (2012) pp. 379-390.

[8] R. Velmurugan, and R. Muralikannan, Energy Absorption Characteristics of Annealed

Steel Tubes of Various Cross Sections in Static and Dynamic Loading, Latin American Journal

of Solids and Structures. Vol. 6 (2009) pp. 385-412.

[9] M. Kathiresan, K. Manisekar, and V. Manikandan, Performance analysis of fibre metal

laminated thin conical frusta under axial compression, Composite Structures. Vol. 94 (2012) pp.

3510-3519.

[10] K. Asad, Finite Element and Experimental Analysis for the Performance of Hybrid

Composite Tubes under Crushing. Pakistan Journal of Applied Sciences. Vol. 1(3) (2001) pp.

438-442.

[11] A. Kersys, N. Kersiene, and A. Ziliukas, Experimental Research of the Impact Response

of E-Glass/Epoxy and Carbon/Epoxy Composite Systems, Materials Science. Vol. 16(4) (2010)

pp. 1392-1320.

[12] Y. S. Tai, M. Y. Huang, and H. T. Hu, Numerical Modeling of Steel-Composite Hybrid

Tubes Subject to Static and Dynamic Loading, World Academy of Science, Engineering and

Technology. Vol. 65 (2012).

Page 22: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Study On Surface Roughness and Material Removal Rate Of Dry

Surface Grinding Repeat Method (Mirror)

Abdul Razak Mohd Daim

1,a

1Dept. of Mechanical Engineering, Politeknik Kota Kinabalu, Jalan

Politeknik, 88450 Sapanggar, Kota Kinabalu, Sabah, Malaysia.

[email protected]

18

Page 23: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Study On Surface Roughness and Material Removal Rate Of Dry

Surface Grinding Repeat Method (Mirror)

Abdul Razak Mohd Daim1,a

1Dept. of Mechanical Engineering, Politeknik Kota Kinabalu, Jalan

Politeknik, 88450 Sapanggar, Kota Kinabalu, Sabah, Malaysia.

[email protected]

ABSTRACT

Grinding process is the finishing process in a process of smoothing the surface to

get the lowest surface roughness by removing a small amount of material on the surface

of the work piece. The purpose of this study is to find the most significant cutting

parameters on surface roughness and MRR(Material Removal Rate) in one conditions,

namely by dry. By using the repeat method (mirror) the data was analyzed using Design

Expert software version 6 with the analysis of variance ( ANOVA ) to analyzed the data

obtained such as surface roughness and MRR. The study found that the most significant

cutting parameter for the surface roughness in the dry condition velocity table with F

value 0.0112. For Material Removal Rate (MRR), the velocity table is the main cutting

parameter in dry conditions with value 0.0008. Results of the study to obtain surface

roughness is, velocity table give most influence on the surface roughness in dry

conditions.

Key words : Surface Grinding, Cutting parameter, Full factorial, surface roughness and

Material Removal Rate.

1.0 INTRODUCTION

Surface grinding process is a final machining process producing a product. According to

Malkin S [9], grinding is the most common collective name for a process that uses hard

abrasives particles as cutting medium. At present, the grinding process is a major

manufacturing accounts for about 20-25% of total operating expenses machining in

industrial countries.

Page 24: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Rising raw materials in China led to a high demand. Strong demand in China's economy

is stable enough to produce more than one hundred million kg (more than 200 million

pounds) of steel products per year. Most of gray cast iron is reserved for military use in

crafting weapons and armor soldiers, but some have been used for many steel products,

such as fashion car cylinder head, block, iron, motors and much more is needed to fill the

growing demand in the real market.

Less energy is used when we can get a cut depth in the grinding process. The industry

uses grinding process such as automotive, aircraft, shipbuilding, engines, turbines and

others can benefit from it. The grinding process is necessary to produce accurate and

precise measurements. It also aims to create a better quality of surface condition he not

only benefit the industry but also improve the quality of the material.

Type parameter in the grinding process will affect the characteristics of the workpiece,

such as surface roughness, temperature, energy and others. There are many types of

parameters in the grinding process. Surface quality produced in the grinding surface is

influenced by various parameters such as the parameter wheel, workpiece parameters,

process parameters and machine parameters in writing Mustafa [11].

In this study, researchers conducted a study of gray cast iron after a surface grinding

process cutting parameters for the relationship of the surface roughness and material

removal rate. Other researchers parameters which is controlled, such as machinery,

grinding wheels, skill workers, materials, machine calibration and the like. Cutting

parameters studied were cutting depth, feed rate and cutting speed table and use a dry

grinding. Using a different example, it can determine which have a significant parameter

to the workpiece surface roughness and material removal rate.

Surface finishing and metal removal rate is greatly influenced by cutting parameters.

Interaction in cutting parameters such as cutting depth, feed rate and cutting speed table

are various parameters to be considered for production of a product that has a proper

surface, saving materials, and energy costs and help the delivery of products to

customers on time due to the selection of cutting parameters the correct and appropriate.

[3,5,8,10].

Thus the study of an experimental and data analysis using Design Expert Software

Version 6. Experiment shaped multi factor will be analyzed by ANOVA variance cutting

Page 25: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

parameters studied as described by Henderson [2]. Selection of the proper combination

of cutting parameters can produce surface finish that meets the standards prescribed

standard.

2.0 METHODOLOGY

In this experiment using design of experiment (DOE), which is 23 by 8 work piece

Repeat to use and apply the method (mirror). Repeat method (mirror) will make the

work piece is rolled into as many as 16 overall number of work piece. 2 values in the

DOE shows minimum and maximum values in coordinating one variable, while the

third, namely the index of the value 2 indicates the number of variable cutting

parameters studied in the experiment. Variable cutting parameters studied were as table

velocity, depth of cut and feed of rate. Selection of experimental design requires

knowledge of the process to be carried out and the choice of factors and levels may

significantly affect the response of materials, by article Zurita et al [12]. Gray studied

material is cast iron (SAE G29000 F10008), this material is widely used in the

production of vehicle components. In this study is to obtain the best cutting parameters

of the material being studied. Grinding machine used is a brand Seedtex 52 Model A1S.

Machine calibration has been performed which includes works such as balancing,

dressing and leveling. Spark has also set out a total of 5 times each time the spark out of

the feed rate is done. Similarly, work is also done every time dressing for the grinding of

each work piece with step 7, 5,3 and 1. The diamond is used for grinding stainless 2.5

sized grinding wheel for every new piece work. From Table 1 shows the Design Matrix

is used in this study which included 16 specimens. The equation of full factorial design

is stated in Equation 1.

Full Factorial Equation = 2k

(1)

Where k denotes as the number of factors, i.e., depth of cut, feed of rate and velocity

table being investigated in this experiment and 2 is level of experiment, i.e., low(-1) and

high (+1). The analysis of ANOVA is employed in order to indicate the mathematical

models of Surface Grinding machining characteristic using design expert software

version 6. Table 2 shows the setting parameters for Surface grinding machine.

Page 26: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Table 1 : Combination parameter in arrays Design Matrix ( 23 ) – Two Level

Fig. 1 : Surface Grinding Machine Seedtex Model 52A1S

All of the grinding experiments were carried out on a Surface Grinding Machine,

Model YSG 52 A1S manufactured by Seedtex Precision Machinery in Taiwan

Fig 1.

Page 27: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Table 2 : Experimental parameters setting for Surface Grinding Machine

From Table 2 shows the Design Matrix is used in this study which included 16

specimens.

3.0 RESULT AND DISCUSSION

3.1 Significant Ra and MRR

Analysis of Variance (ANOVA) for Surface Roughness : Three parameter cutting of

surface roughness (Ra) in dry condition analysis are given in the design expert, there are

Feed of rate, Depth Of Cut and Velocity Table.

Fig. 2 : ANOVA for surface roughness (Ra) in dry condition

The result are significant Prob>F = (0.0209). According to data analysis of variance

table (ANOVA), The values of (Prob>F) less than 0.0500 indicate model terms are

significant. While, values more higher than 0.1000 indicate the model term are not

significant. The most effect of parameter surface grinding are velocity table, c with the

values Prob >F (0.0112), shown on Fig.2

Factor Low ( - 1) High (+ 1)

Velocity table (m/s) 4 12

Feed of rate (mm/s) 0.50 1.00

Depth of cut (μm) 10.00 20.00

Feed of rate

movement

Page 28: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Verification of Mathematical Model for Ra : Verification of mathematical models for

each response was performed in order to ensure whether the predicted value that given

by software is correct or not. Calculation was carried out using the equation given by

software. The calculation was based on the parameters used in the confirmation test in

running on sample 4 as shown in table 3. Verification on Ra equation in term of coded

factor generated by design expert software is shown in Equation 2.

Ra = 0.19 + 1.87 x 10-4

x A + 3.812 x 10-3

x B – 0.033 x C + 0.020 x A x B – 0.043 x A

x C – 6.562 x 10-3

x B x C + 3.437 x 10-3

x A x B x C

(2)

Where :

Factor A = 1, B = 1, C = -1

Hence ;

Ra = 0.19 + 1.87 x 10-4

x (1) + 3.812 x 10-3

x (1) – 0.033 x (-1) + 0.020 x (1) x (1) –

0.043 x (1) x (-1) – 6.562 x 10-3

x (1) x (-1) + 3.437 x 10-3

x (1) x (1) x (-1)

Ra = 0.19 + 0.000187 + 0.003812 + 0.033 + 0.020 +0.043 + 0.006562 – 0.003437 =

0.2931 𝜇m

Percentage of difference between calculated value and experimental value of Ra is 2%

as indicated in Equation 3. It is confirmed that mathematical model generated by Design

Expert software is reliable and acceptable.

(3)

Confirmation differential between calculated and experimental similar trend shows

table 3. It is confirmed that experimental result is acceptable.

Page 29: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Analysis of Variance (ANOVA) for MRR : Three parameter cutting of Material

Removal Rate (MRR) in dry condition analysis are given in the design expert, there

are Feed of rate, Depth Of Cut and Velocity Table.

Fig. 3 : ANOVA for Material Removal Rate (MRR) in dry condition.

From Fig. 3 shows, result are significant Prob>F = 0.0032. According to data analysis of

variance table (ANOVA), The values of (Prob>F) less than 0.0500 indicate model terms

are significant. While, values more higher than 0.1000 indicate the model term are not

significant. The most effect of parameter surface grinding are velocity table, c with the

values Prob >F (0.0008). According by Klocke and Eisenblatter [6] the dry grinding using

wheel was also investigated with high cutting speed and for external cylindrical grinding.

It is found that with increasing the grinding speed it is possible to increase the mass

removal rate in the grinding process.

From Table. 3 shows, Ra value of the minimum is no specimen. 14 ie 0.086 um and the

highest was 0.3 um specimen no. 2. While the highest MRR no.9 specimen of 1.005 mg /

second and the lowest value of 0.019 mg / second specimen no. 6.

Ra value obtained from the average of the three readings of surface roughness machine

utilization. While the MRR is from equation 4 as shown below.

𝑀𝑅𝑅 =𝑊𝑎−𝑊𝑏

tm (mg/second) (4)

Where :

Wa = Material weight before machining

Page 30: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Wb = Material weight after machining

tm = Machining Time

Table 3: Result Ra and MRR for dry grinding

3.2 Mean Analysis Ra and MRR

Surface Roughness (Ra)

From Anova analysis, mean value of A is 1.052, B is 0.15 and C is 10.75. The higher

percentage of parameter cutting surface roughness (Ra) is C (velocity table) 89.5%,

second higher is A (feed of rate) 8.8% and the lower is B (depth of cut) 1.3%, shown Fig.

4.

Material Removal Rate (MRR).

From Anova analysis, mean value of A is 20.68, B is 3.01 and C is 27.15. The higher

percentage of parameter cutting surface roughness (Ra) is C (velocity table) 53.4%,

second higher is A (feed of rate) 40.7% and the lower is B (depth of cut) 5.9%, shown

Fig. 5.

Page 31: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Fig.4 : F Value parameter cutting Surface Roughness (Ra)

Fig. 5 : F Value interaction parameter cutting Surface Roughness (Ra)

According by Kamal et al [4], it says that the mass removal rate (MRR) is mainly

affected by cutting speed and feed of rate of dry grinding process. With the increase in

cutting speed the mass removal rate is increase. The paramter considered in the

experiment are the best parameter cutting process to attain maximum mass removal rate.

3.3 The best value parameter cutting setting

The selected value of the best parameter cutting setting is number 1, it use 0.55 feed of

rate, 10.00 depth of cut and 12.00 velocity table. Another selected method is surface

Page 32: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

roughness 0.215403 μm, material removal rate (MRR) 0.196454 mg/sec and desirability

0.782. This can be referred to Fig. 6 the software has been analyzed as below.

Fig. 6 : The best value parameter cutting setting

4.0 CONCLUSION

4.1 Surface Roughness Dry Condition

The analysis for dry surface roughness has determined that the most effective of grinding

surface is velocity table with prob > 0.0112 and the percentage is 89.5%. It has proven

through 16 specimen repeated method with average of surface roughness 0.05μm. From

the main effect plotted, it is observed that there is decrease of surface roughness when

the parameter for velocity table is decrease. The percentages value affecting of surface

roughness are in the following order. Feed of rate (8.8%), depth of cut (1.3%) and

velocity table (89.5%). Velocity table are significant for cutting parameter effecting

surface roughness, this fact is also supported by Babu et al [1] based on their ANOVA

velocity table are the most significant parameters for affecting multi response

characteristics. The feed of rate and depth of cut value are not significant. Based on the

curve, the reason why these two parameter cutting is not significant because of the

minimum and maximum value are not in best position to get the significant mean value.

Fig. 7 shows the adjustment of the cutting parameters that need to be adjusted for future

Page 33: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

studies.

According by M. Kiyak and Carkib [7] study on surface roughness in External Cylinder

Grinding, researcher prove that in dry grinding process, an increase on work piece speed

will decreased surface roughness. The researcher result was opposite in the application of

cutting fluid that increase on work piece speed produced a higher surface roughness.

Fig. 7 : Mean value curve

4.2 Material Removal Rate (MRR)

In dry condition, the best cutting parameter for the output process of MRR in terms of

machining cutting parameter are velocity table, feed of rate also significant, only depth

of cut are not significant. This have been identified on cast iron on surface grinding

machine using design expert software. The values of prob>F less than 0.05 μm are

significant with the value 0.0032 μm.

Page 34: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

5.0 REFERENCES

1. Babu Autherson. P, Sundaram . S Sivapragash. M, and Shanawaz. A.W. (2012).

"Optimizing the Process Parameters of ELID Grinding Using Grey Relation

Analysis ". Advances in Production Engineering & Management,Vol.7 pp113-122.

2. Henderson G.R, (2006). Six Sigma : Quality Improvement With MINITAB. John

Wiley & Sons. England, ISBN : 10: 0470011556. pp:452.

3. Jae-Seob Kwak(2005). "Application of Taguchi and Response Surface

Methodologies For Geomatric Error in Surface Grinding Process",

International Journal on Machine Tools and Manufacture, vol. 45, No.33 pp.

327-324.

4. Kamal Hassan, Anish Kumar and M.P Garg (2012). "Experimental Investigation of

Material Removal Rate in CNC Turning using Taguchi Method". Lecturer, Haryana

Engineering College.

5. M Janardhan and A. Gopala Krishna (2012), “Multi Objective Optimization of

Cutting Parameter for Surface Roughness and Metal Removal Rate in Surface

Grinding using Response Surface Methodology”. University College of Engineering,

JNTU, India.

6. Klocke. F and Eisenblatter (1997)."Dry cutting, Annals of the CIRP". Vol. 46/2

Pages 519-525.

7. M.Kiyak and O Carkib E Altana (2006), “Study on Surface Roughness in External

Cylinder Grinding”. Technical University, 34390 Istanbul, Turkey.

8. Maheswari S.K, Misra V and Metha N.K (1991). "A New Approach To Parameters

Selection: Integration Of Quality: Computers and Industrial Engineering". 21(1-

4), 57-62.

9. Malkin,.S. (1989), “ Grinding of metal: Theory and Application, Applied

Metalworking”. American Society for Metals, vol. 3, No. 2.

10. Muhamad Afiq bin Razali (2010), “Effect of wheel Grinder on the Surface

Roughness when Grinding Aluminium Alloy”, Faculty of Mechanical Engineering,

Universiti Malaysia Pahang.

11. Mustafa Kemal Kulekci (2012). "Surface Grinding Process Based in the Taguchi

Method". Mersin University, Turkey.

Page 35: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

12. Zurita, O., Acosta, A. and Moreno, D. (2002). Superficial Hardening in the Plane

Grinding of 1055 - 1045 Steel, ASM International.

Page 36: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan Basah

Dan Kering Terhadap Keluli lembut Berkarbon Sederhana

Menggunakan Konsep Design Of Experiment (DOE).

Abdul Razak Mohd Daim

1,a

1Dept. of Mechanical Engineering, Politeknik Kota Kinabalu, Jalan

Politeknik, 88450 Sapanggar, Kota Kinabalu, Sabah, Malaysia.

[email protected]

30

Page 37: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Abstrak— Kemasan Akhir sesuatu permukaan yang baik adalah berdasarkan nilai yang minimum kekasaran

permukaan, diukur dalam nilai micrometer. Dalam kajian ini mesin canai permukaan jenama Seedtex telah

digunakan untuk mencanai benda kerja (keluli lembut berkarbon sederhana). Proses mencanai ini menggunakan dua

situasi itu basah dan kering. Dengan menggunakan kaedah Design of Experiment (DOE) sebanyak 16 benda kerja

telah dicanai untuk basah dan 16 lagi untuk kering. Benda kerja yang telah dicanai, diukur menggunakan alat

pengukur kekasaran permukaan untuk mendapatkan bacaan. Bagi kadar pembuangan bahan, alat penimbang

digunakan dan bagi kekerasan, alat pengukur Vickers telah digunapakai. Setelah data mentah diperolehi, data

tersebut dimasukkan ke dalam software design expert version 6.0 untuk menganalisa data secara ANOVA, bagi

mendapatkan parameter pemotongan seperti kedalaman pemotongan, kadar suapan dan halaju meja yang signifikan

dengan Ra, MRR dan Hardness. Hasil daripada kajian didapati kekasaran permukaan dan kadar pembuangan bahan

adalah signifikan iaitu kurang daripada 0.05 bagi keadaan basah dan kering. Manakala untuk kekerasan bahan tidak

signifikan dengan kerja mencanai permukaan yang hanya membuang sebahagian kecil bahan, iaitu hanya 0.005 mm.

Bagi keadaan basah dan kering untuk kekasaran permukaan, didapati mencanai permukaan secara kering lebih baik

berbanding dengan basah. Data yang diperolehi boleh digunapakai oleh pihak industri pemesinan untuk

mendapatkan nilai kekasaran permukaan yang minimum bagi meningkatkan kualiti sesuatu benda kerja (produk).

Walaubagaimanapun, untuk kajian akan datang pembolehubah parameter pemotongan perlu dilaraskan semula

seperti kadar suapan dan kedalaman pemotongan bagi mendapatkan optimization cutting parameter dalam proses

mencanai permukaan tanpa menggunakan bahan penyejuk (dry situation).

Kata Kunci : Kedalaman Pemotongan, Kadar Suapa, Halaju Meja, Kekasaran Permukaan, Kadar

Pembuangan Bahan dan kekerasan bahan.

PENGENALAN

Proses mencanai permukaan adalah satu proses akhir sesuatu produk sebelum produk tersebut dihantar ke

bahagian kualiti sebelum ianya dipasarkan. Oleh itu, pengkaji ingin memahami lagi proses ini bagi mendapatkan

kualiti permukaan bahan selepas melalui proses mencanai permukaan ini.

Proses Mencanai Permukaan adalah satu proses yang paling kompleks dalam proses pemesinan. Proses ini adalah

amat penting untuk mendapatkan ketepatan dan ukuran yang tepat untuk permukaan produk atau yang berkualiti

tinggi keadaan permukaannya [7]. Dalam kajian ini pengkaji mengkaji satu bahan iaitu keluli berkarbon sederhana

untuk memahami proses pencanaian ini. Selain itu juga, pengkaji menggunakan dua kaedah pencanaian iaitu

pemesinan menggunakan bahan penyejuk dan satu tidak menggunakan bahan penyejuk. Parameter pemotongan

(penyebab) yang dikaji adalah terdiri daripada halaju meja pemotongan, kadar suapan dan kedalaman pemotongan

terhadap bahan yang dikaji iaitu keluli lembut berkarbon sederhana. Proses Mencanai Permukaan, adalah satu proses

yang paling biasa digunakan dalam Sektor Pembuatan untuk menghasilkan kemasan licin pada permukaan yang rata,

[5]. Kualiti permukaan dan kadar pembuangan logam adalah dua ciri-ciri prestasi yang perlu dipertimbangkan dalam

proses pencanaian. Kadar penjimatan proses pencanaian bergantung kepada parameter pemotongan yang terdiri dari

kedalaman pemotongan, kadar suapan, kelajuan meja pemotongan, selain daripada itu gred roda pencanai dan sifat

bahan itu sendiri.

Page 38: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Oleh yang demikian juga, pengkaji ingin mengetahui adakah proses mencanai permukaan ini mempengaruhi

kekerasan bahan tersebut selepas proses pencanaian tersebut dilakukan. Maka dengan itu, pengkaji

mengklasifikasikan Parameter Pemotongan iaitu Kadar Suapan, Kedalaman Pemotongan dan Kelajuan Meja

pemotongan adalah pembolehubah tak bersandar dan Kekasaran Permukaan, Kadar Pembuangan Bahan dan

Kekerasan Bahan adalah pembolehubah yang bersandar. Dengan itu, objektif kajian ini adalah untuk :

i. Mengenalpasti parameter pemotongan yang manakah signifikan dengan Kekasaran Permukaan, Kadar

Pembuangan Bahan dan Kekerasan Permukaan.

ii. Mengenalpasti faktor utama parameter pemotongan yang mempengaruhi Benda Kerja.

Skop kajian ini, adalah untuk mengkaji benda kerja keluli lembut berkarbon sederhana, parameter pemotongan

serta proses pencanaian didalam dua keadaan basah dan kering. Dapatan kajian, diharapkan boleh digunapakai oleh

pihak industri untuk mendapatkan setting variable cutting yang dapat meningkatkan kualiti produk dan seterusnya

untuk mengurangkan waste time, energy dan sebagainya untuk memenuhi kehendak pelanggan.

METODOLOGI

Dalam kajian ini, rekabentuk eksperimen adalah menggunakan Software Design Expert Version 6 dalam

merekabentuk kajian. Kaedah ulangan digunakan untuk mendapatkan nilai kebolehpercayaan data yang tinggi dan

kesahihan maklumat semasa kajian dilakukan. Dengan mengetahui nilai tinggi dan nilai rendah setiap pembolehubah

Parameter Pemotongan, rekabentuk eksperimen dapat dilakukan. Pemilihan rekabentuk eksperimen adalah

memerlukan kefahaman yang tinggi dalam sesuatu proses yang ingin dijalankan dan pemilihan faktor dan tahap yang

ketara boleh memberi kesan kepada tindak balas sesuatu bahan, [1].

Oleh itu, daripada Jadual 1 menunjukkan Matrix Design yang digunakan dalam kajian ini memerlukan 16

spesimen. Persamaan reka bentuk Faktorial lengkap dinyatakan dalam persamaan 1.

Persamaan Faktorial Lengkap = 2k

(1)

Di mana k menandakan sebagai bilangan faktor, iaitu, kedalaman pemotongan, kadar suapan dan halaju meja

disiasat dalam eksperimen ini dan 2 adalah tahap eksperimen, iaitu, rendah (-1) dan tinggi (1). Analisis ANOVA

digunakan untuk mendapatkan nilai signifikan iaitu kurang dari 0.05 bagi Pencanaian Permukaan yang bercirikan

pemesinan menggunakan Design Expert Software versi 6. Jadual 2 menunjukkan parameter setting untuk rekabentuk

proses pencanaian permukaan. Rajah 1 menunjukkan Mesin Canai Permukaan yang digunakan.

Page 39: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Jadual 1: parameter Gabungan dalam tatasusunan Design Matrix (23) - Dua Tingkat

Jadual 2: Penetapan Parameter Eksperimen dalam Proses Pencanaian Permukaan.

Rajah. 1: Mesin Canai Permukaan Seedtex Model 52A1S

Dalam mendapatkan kualiti permukaan sesuatu produk, peringkat awal adalah dengan mengintegrasikan

pembolehubah parameter pemotongan seperti Kadar Suapan, Kedalaman Pemotongan dan Kelajuan Meja

Pemotongan. Parameter yang lain dianggap terkawal seperti kecekapan mesin, kemahiran individual, roda pencanai

dan penentukuran pemesinan [4]. Hasil kajian, mendapati dengan melakukan kadar suapan yang rendah kualiti

permukaan sesuatu produk dapat ditingkatkan, [9]. Ini bermakna kadar suapan yang tinggi akan meningkatkan nilai

kekasaran permukaan sesuatu spesimen. Penggunaan perisian yang bersesuaian akan membantu merekabentuk

Factor Low ( - 1) High (+ 1)

Velocity table (m/s) 4 12

Feed of rate (mm/s) 0.50 1.00

Depth of cut (μm) 10.00 20.00

Page 40: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

eksperimen dan seterusnya mengoptimumkan proses dan produk yang ingin dihasilkan, [8]. Dengan bantuan

perisian seperti Design Expert dapat membantu membuat analisa secara ANOVA iaitu signifikan parameter

pemotongan terhadap kekasaran permukaan. ANOVA digunakan untuk mengenalpasti pembolehubah yang paling

penting dan untuk mengetahui kesan interaksi parameter, [2]. Pemilihan kombinasi yang betul dalam pemilihan

parameter pemesinan akan menghasilkan kemasan permukaan dan kadar penyingkiran logam yang diingini, [3].

DAPATAN KAJIAN

Hasil kajian ini boleh dikategorikan kepada tiga bahagian utama, iaitu kesan parameter pemotongan terhadap

bahan iaitu kekasaran permukaan, yang keduanya kesan kadar pembuangan bahan dan yang ketiga adalah kekerasan

bahan selepas melalui proses pencanaian permukaan. Bahagian Pertama : Berikut adalah hasil eksperimen yang

telah dibuat selepas melakukan pemesinan dan ujikaji makmal seperti yang ditunjukkan pada Jadual 3 di bawah, tanpa

bahan penyejukan. Jadual 4 di bawah menunjukkan hasil analisa ANOVA bagi kesan parameter pemotongan

terhadap kekasaran permukaan (kering) dan Rajah 3(a), 3(b) dan 3(c) adalah menunjukkan graf yang berkaitan

Parameter Pemotongan dengan nilai Ra (roughness average) berkeadaan kering.

Jadual 3 : Hasil Data Eksperimen Selepas Pemesinan dan Ujikaji Makmal (kering).

Jadual (4) : Analisa ANOVA di antara parameter pemotongan dengan kekasaran permukaan tanpa bahan penyejuk.

Page 41: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

3(a) : Kadar Suapan

Page 42: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

3 (b) : Kedalaman Pemotongan

3 (c) : Halaju Meja

Rajah 3(a), 3(b) dan 3(c) adalah menunjukkan graf yang berkaitan Parameter Pemotongan dengan nilai Ra (roughness average) berkeadaan kering.

Seterusnya hasil dapatan bahagian Parameter Pemotongan yang menggunakan bahan penyejukan (basah) terhadap

kekasaran permukaan (Ra) mendapati kadar suapan adalah siginifikan dengan nilai 0.0385. Berikut adalah hasil

eksperimen yang telah dibuat selepas melakukan pemesinan dan ujikaji makmal seperti yang ditunjukkan pada Jadual

5 di bawah, dengan menggunakan bahan penyejukan. Jadual 6 menunjukkan hasil analisa ANOVA bagi kesan

parameter pemotongan terhadap kekasaran permukaan (basah) dan Rajah 4(a), 4(b) dan 5(c) adalah menunjukkan graf

yang berkaitan Parameter Pemotongan dengan nilai Ra (roughness average) berkeadaan basah.

Page 43: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Jadual 5 : Hasil Data Eksperimen Selepas Pemesinan dan Ujikaji Makmal (basah).

Jadual (6) : Analisa ANOVA di antara parameter pemotongan dengan kekasaran permukaan dengan bahan penyejuk.

Page 44: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Rajah 4 (a) : Kadar Suapan

Rajah 4 (b) : Kedalaman Pemotongan

Rajah 4 (c) : Halaju Meja

Page 45: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Rajah 4(a), 4(b) dan 4(c) adalah menunjukkan graf yang berkaitan Parameter Pemotongan dengan nilai Ra (roughness average) berkeadaan basah.

Bahagian Kedua (MRR) kadar pembuangan bahan : Berikut adalah hasil dapatan kajian selepas proses

pemesinan dan ujikaji makmal bagi keadaan kering (tanpa bahan penyejukan) iaitu analisa ANOVA seperti yang

ditunjukkan pada Jadual 7 di bawah.

Jadual 7 : Analisa ANOVA bagi Parameter Pemotongan terhadap MRR

Rajah 5 : Graf menunjukkan MRR melawan Halaju Meja yang signifikan.

Graf MRR melawan halaju meja adalah pembolehubah parameter pemotongan yang signifikan dengan MRR bagi

proses pemesinan tanpa menggunakan bahan penyejukan seperti yang ditunjukkan seperti pada Rajah 5 di atas.

Page 46: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Jadual 8 di bawah pula adalah hasil analisa ANOVA bagi proses pemesinan dengan menggunakan bahan

penyejuk (basah).

Jadual 8 : Analisa ANOVA bagi parameter pemotongan terhadap MRR (basah)

Rajah 6 (a) dan (b) di bawah menunjukkan pembolehubah parameter pemotongan iaitu kedalaman pemotongan

dan halaju pemotongan yang signifikan dengan MRR bagi proses pemesinan yang menggunakan bahan penyejukan.

Rajah 6 (a) : Kedalaman Pemotongan

Page 47: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Rajah 6 (b) : Halaju Meja

Rajah 6 (a) dan (b) : MRR melawan kedalaman pemotongan dan halaju meja yang signifikan dalam proses pemesinan (basah).

Bahagian Ketiga iaitu pembolehubah parameter pemotongan terhadap kekerasan permukaan bahan. Jadual 9 di

bawah menunjukkan pemesinan berkeadaan kering.

Jadual 9 : Analisa ANOVA parameter pemotongan terhadap kekerasan permukaan bagi proses pemesinan kering

Bagi proses pemesinan yang menggunakan bahan penyejukan seperti yang ditunjukkan pada Jadual 10 di antara

Parameter Pemotongan dengan kekerasan permukaan bahan.

Page 48: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

Jadual 10 : Analisa ANOVA parameter pemotongan terhadap kekerasan permukaan bagi proses pemesinan basah

PERBINCANGAN DAN RUMUSAN

Hasil daripada kajian yang dibuat dapatlah dibincangkan bahawa bagi ketiga-tiga pembolehubah yang bersandar

yang terdiri daripada Kekasaran Permukaan (Ra), Kadar Pembuangan Bahan (MRR) dan Kekerasan Permukaan

didapati hanya dua pembolehubah yang signifikan terhadap Parameter Pemotongan iaitu (Ra) dan (MRR). Di antara

(Ra) pula yang dibahagikan kepada dua iaitu proses pemesinan kering dan basah didapati pemesinan kering yang

signifikan dengan model F iaitu 0.026 iaitu kurang daripada 0.05 mengikuti ketetapan analisa ANOVA yang telah

dibuat. Ini menunjukkan dapatan kajian ini selari dengan M.Kiyak et. al [6], iaitu hasil daripada proses pemesinan

kering didapati dengan peningkatan kelajuan meja pemotongan kualiti kekasaran permukaan dapat ditingkatkan dan

jika menggunakan proses pemesinan dengan bahan penyejukan pula adalah sebaliknya. Selain itu, bagi pemesinan

kering didapati kedalaman pemotongan adalah paling sedikit mempengaruhi kekasaran permukaan dengan peratus

8.5% berbanding kadar suapan (18.8%) dan halaju meja (72.7%). Kenyataan ini selari dengan Taranvir Singh et.al

[10], dalam kajian tersebut mendapati bahawa kedalaman pemotongan adalah parameter yang paling kurang

mempengaruhi kekasaran permukaan berbanding parameter yang lain seperti saiz bijian roda pencanai, halaju meja,

halaju roda pencanai dan sebagainya.

Sementara itu pula, Kadar Pembuangan Bahan (MRR) juga signifikan untuk kedua-dua proses pemesinan basah

dan kering. Menurut M. Janardhan dan A.Gopala Krishna [5], menyatakan bahawa peningkatan kadar halaju meja

pemotongan akan meningkatkan kadar pembuangan bahan. Ini boleh dilihat pada analisa ANOVA, mendapati

bahawa pada proses pemesinan basah model F adalah bernilai 0.0073 iaitu lebih rendah daripada 0.05 mengikut

piawai yang ditetapkan. Bagi pemesinan kering pula pembolehubah parameter pemotongan iaitu halaju meja adalah

signifikan terhadap kadar pembuangan bahan.

Bagi pembolehubah bersandar iaitu kekerasan permukaan bahan selepas proses pemesinan kering dan basah

yang melalui pelbagai interaksi pembolehubah yang tak bersandar didapati tidak signifikan. Ini kerana proses

pemesinan permukaan adalah proses kerja kemasan akhir yang mana kedalaman pemotongan adalah sangat kecil

yang kedalaman yang minimum untuk mesin yang digunakan ini adalah 0.005 micrometer.

Page 49: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

PENUTUP

Dengan itu, dapat disimpulkan bahawa untuk kekasaran permukaan dan kadar pembuangan bahan adalah

signifikan dengan parameter pemotongan, manakala kekerasan pula adalah sebaliknya. Kajian akan datang untuk

mendapat Optimization Cutting Parameter pembolehubah seperti kedalaman pemotongan dan kadar suapan perlu

dilaraskan semula untuk mendapati setting yang terbaik bagi meningkatkan lagi kualiti permukaan dan seterusnya

produktiviti sesuatu produk dapat ditingkatkan disamping mengurangkan waste time, waste energy dan sebagainya.

Proses pencanaian permukaan yang melalui proses pencanaian kering menjadi keutamaan.

Rujukan

[1] Drew S.J, Mannan M.A, Ong K..L, and Stone B.J. (2001). “ The Measurement of Force in Grinding in The Presence of

Vibration”, INT J MACH, 41(4), 2001, pp.509-520.

[2] Henderson G.R, (2006). Six Sigma : Quality Improvement With MINITAB. John Wiley & Sons, Englan, ISBN : 10:

0470011556, pp: 452.

[3] Jae-Seob Kwak (2005). “Application of Taguchi and Response Surface Methodologies for Geometric Error in Surface

Grinding Process”, International Journal oh Machine Tools and Manufacture, Vol. 45, No.3, pp. 327-324.

[4] Maheshwari S.K Misra V. and Metha N.K (1991). “A New Apporoach To Parameters Selection: Integration Of

Quality; Computers and Industrial Engineering”.

[5] M. Janardhan and A. Gopala Krishna (2012).” Multi-Objective Optimization of Cutting Parameter for Surface

Roughness and Metal Removal Rate in Surface Grinding Using Response Surface Methodology”. University College

of Engineering, JNTU. India.

[6] M. Kiyak, and O Carkib E Altana (2006). “Study on Surface Roughness in External Cylinder Grinding”. Techical

University, 34390 Istanbul, Turkey.

[7] Mohd Ifwat Bin Jomrah, Muhammad Firdaus bin Apdal, Nazrin bin Mirhan, Mohd Nazreen bin Jamaldin, and Rizwan

bin Gapar (2012). “Comparison Study on Surface Roughness of Dry and Wet Surface Grinding”. Center Point Method

Politeknik Kota Kinabalu, Sabah.

[8] Mustafa Kemal Kulekci (2012). “Analysis of Process Parameters for a Surface-Grinding Process Based in the Taguchi

Method”. Mersin University, Turkey.

[9] P.Chockalinham, and Lee Hong Wee. (2012). “Surface Roughness and Tool Wear Study on Milling of AISI 304

Stainless Steel Using Different Cooling condition.” Multimedia University, Melaka, Malaysia.

[10] Singh. T, Kumar. P, & Goyal. K (2014). “Optimization of Process Parameters for Minimum Out-of-Roundness

of Cylindrical Grinding of Heat Treated AISI 4140 Steel. American Journal Mechanical Engineering, 2(2), 34-

40.

Page 50: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

43

Page 51: ISI KANDUNGAN M/S · 2019-10-10 · Kajian Mengenai Proses Mencanai Permukaan Dalam Keadaan 30 Basah Dan Kering Terhadap Keluli lembut Berkarbon Sederhana Menggunakan Konsep Design

48