ISTTT Tutorial Leclercq 20130716

Embed Size (px)

Citation preview

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    1/42

    L. Leclercq (2013)

    Traffic Flow Theory

    Ludovic Leclercq, University of Lyon, IFSTTAR / ENTPEJuly, 16th 2013

    ISTTT20 - Tutorials

    Mijn presentatie spreekt over de verkeersstroom theorie !

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    2/42

    L. Leclercq (2013)

    Outline

    Experimental evidences Traffic behavior on freeways The fundamental diagram

    Traffic modeling The three representation of traffic flow The three kinds of traffic models Equilibrium (first order) model

    Overview of first order model solutions The variational theory

    General basis Connections between the three traffic representations

    Some extensions to the theory

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    3/42

    L. Leclercq (2013)

    Experimental evidences

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    4/42

    L. Leclercq (2013)

    Traffic flow on a motorways (M6 in England)

    Vitesse[km

    /h]

    S"

    E!

    S"

    E!

    S"

    S"

    E!

    M7135

    M7125

    M7107

    20

    40

    60

    80

    100

    120

    Speed[km

    /h]

    Data were kindly provided by the Highway Agency

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    5/42

    L. Leclercq (2013)

    Traffic representation

    5

    t

    xNGSIM Data I80/lane 4 USA

    Vehicle dynamicspositionx

    speed v

    density kflow q

    Microscopic vision

    Macroscopic vision

    30 km/h

    Interactions

    spacingsHeadway h

    s

    h

    Shockwaves

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    6/42

    L. Leclercq (2013)

    Flow / occupancy plot on a motorway (M6)

    6

    0 10 20 30 40 50 60 700

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    TO (%)

    Dbit(veh

    /h)

    Occupancy [%] proxy for density

    Flow

    [veh/h]

    The fundamentaldiagram (FD)

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    7/42

    L. Leclercq (2013)

    Different definitions of the FD

    0 10 20 30 40 50 60 700

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    TO (%)

    Dbit(

    veh/h)

    Occupancy [%] proxy for density

    Flow

    [veh/h]

    FD for monitoring FD for simulationq

    k

    Aggregation / impacts of local behavior (lane-changing, traffic composition,!)

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    8/42

    L. Leclercq (2013)

    Impact of the lane agregation on the FD

    Simulations are figures were kindly provided by Prof. Jorge Laval

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    9/42

    L. Leclercq (2013)

    Traffic Modelling

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    10/42

    L. Leclercq (2013)

    From discrete to continuous representations

    q =! tN

    k =!"xN

    Space (X)Time (T)

    Vehnum

    ber(N) Eulerian coordinates

    N(t,x)

    T coordinatesT(t,n)

    Lagrangian coordinatesX(t,n)

    Moskowitzs surface

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    11/42

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    12/42

    L. Leclercq (2013)

    The three representation of traffic flow

    N(t,x) # of vehicles that have crossed locationxby time t

    X(t,n) position of vehicle nat time t

    T(n,x) time vehicle ncrosses locationx

    Eulerian T coordinates Lagrangian

    (Laval and Leclercq, 2013, part B)

    q !"#$%!'#$% !()%

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    13/42

    L. Leclercq (2013)

    Classical classification of traffic models

    Macroscopic models Continuous representation Mainly deterministic Global behavior (may be distinguished per class) Equilibrium (1storder) / + transition states (2ndorder)

    Microscopic models Discrete representation Mainly stochastic Local interactions (car-following)

    Mesoscopic models Discrete or semi-discrete representation Intermediate level for traffic representation

    (vehicle clusters or link servers)

    For further details see the model treefrom (van Wageningen-Kessels, PhD, 2013)

    *+,"-"."$,/ /%0(-

    12345

    Eulerian coordinates

    Lagrangian coordinates

    T coordinates

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    14/42

    L. Leclercq (2013)

    Equilibrium macroscopic model (1)

    The PDE expression in Eulerian coordinates

    in Lagrangian coordinates

    in T coordinates

    flow

    density

    speed

    spacing

    kt+Q(k)x = 0

    st+V(s)x = 0

    rt+H(r)x = 0headway

    pace

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    15/42

    L. Leclercq (2013)

    Equilibrium macroscopic model (2)

    The Hamilton-Jacobi (HJ) expression In Eulerian coordinates

    In Lagrangian coordinates

    In T coordinates

    q=Q(k)

    v=V(s)

    h=H(r)

    Appropriate expression ofthe FD

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    16/42

    L. Leclercq (2013)

    Overview of first order model solutions

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    17/42

    L. Leclercq (2013)

    17

    A

    A

    A

    B

    A

    CO

    t

    x

    flow

    density

    O

    C

    B

    A

    Solutions for an unsaturated traffic signal (1)

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    18/42

    L. Leclercq (2013)

    Solutions for an unsaturated traffic signal (2)

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    19/42

    L. Leclercq (2013)

    The Variational Theory

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    20/42

    L. Leclercq (2013)

    General considerations on the variations of N

    y(t)

    tA tB

    "

    A

    Bx !NAB = dtN

    tA

    tB

    " = #tN+y '(t)#nNtA

    tB

    "

    !NAB = Q k(t)( )$y '(t)k(t)r(y '(t),k)

    ! "### $###tA

    tB

    "

    t

    k

    q

    k0

    q0 y(t)

    r(y(t),k0)-w

    u

    Same costs

    Legendres transformation:

    r(y '(t),k) !R(y '(t))=supk

    r(y '(t),k)( )

    y(t)R(y(t))

    This makes costs independent from trafficstates but no longer from the paths

    Equality is observed on the optimal wave paths

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    21/42

    L. Leclercq (2013)

    Variational theory (VT) in Eulerian

    General basis

    q = Q(k) ! "tk = Q # "x k( )HJ Equation:

    t

    y(t)

    tO(") tP

    "

    O(")

    Px #

    NP =min!"DP

    NO !( ) +

    # !( )( )

    # !( ) = r(y '(t),k)dttO !( )

    tP

    $General expression for the solutions:

    NP =min!"DP

    NO !( ) + # ' !( )( )

    # ' !( ) = R(y '(t))dttO !( )

    tP

    $

    Key VT result usingthe Legendres transformation

    VT is really useful with PWL FD(and especially triangular one)

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    22/42

    L. Leclercq (2013)

    VT in Eulerian The Highway Problem

    Link

    x

    t

    N(x,t)

    u

    -w

    N(xu,t-(x-xu)/u)

    6 7

    N(xd,t-(xd-x)/w)

    6 !1"#$"5

    N(x,t) = min N xu,t!

    (x!xu)

    u

    "

    #$%

    &'

    free!flow! "### $###

    ,N xd,t!

    (xd!x)w

    "

    #$%

    &'+((x

    d!x)

    congestion

    ! "##### $#####

    )

    *

    ++++

    ,

    -

    .

    .

    .

    .

    Newells model (1993) !!!

    Triangular FD

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    23/42

    L. Leclercq (2013)

    23

    NNux(t)

    Ny(t)(y-x)/w

    (y-x).!

    Nx(t)

    t

    x yxNx(t)

    q

    -wu

    !

    k

    (x-x)/u

    Classical formulation of the Newells N-curve model

    Well-known as the three dectectors problem

    Ndx(t)

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    24/42

    L. Leclercq (2013)

    VT in Lagangian - the IVP problem

    t

    n

    i-1

    i

    #Vehicle i-1 trajectory

    B"0

    "w!

    XB =min X

    O(!0)+ "(!0),XO(!w#) + "(!w#)( )

    t0

    XB = X(t,i) =min X t0 ,i( )+ u.(t! t0 )free!flow

    ! "### $###

    ,X t!1 / (w"),i!1( )!w.(1/ w"congestion

    ! "##### $#####

    )#

    $%%

    &

    '((

    Newells model again !!! (2002)

    speed

    spacing

    u

    w!

    1/!

    -w

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    25/42

    L. Leclercq (2013)

    Classical formulation of Newells car-following model

    t

    x

    Leader veh i-1

    veh i u!

    w 1 / (w!),"1 /!( )

    !w Effective trajectory

    (Newell, 2002)

    The simplest car-following ruleAccount for driver reaction time

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    26/42

    L. Leclercq (2013)

    VT in T coordinates

    headway

    pace

    n

    x

    xu

    xd

    T(x,n)

    Passing time

    T(xu,n)

    T(xd,n-!(xd-x))

    6 1"8"&59&

    6 1"#$"59'

    T(x,n) =max T xu ,n( )+(x!xu)

    ufree!flow

    ! "### $###

    ,T xd,n !"(xd!x)( )!(xd! x)

    wcongestion

    ! "##### $#####

    #

    $

    %%

    &

    '

    ((

    Mesoscopic model(Mahut, 2000; Leclercq & Becarie, 2012)

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    27/42

    L. Leclercq (2013)

    The mesoscopic LWR model

    !

    !

    "#$%

    "

    #

    $$

    "!

    %&&'"

    !&&'!'

    !((

    )*+&

    )*+&'

    !

    "!&&-' "

    !&&-./'

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    28/42

    L. Leclercq (2013)

    Variational theory - summary

    Variational theory exhibits the connections between thethree traffic representations for the LWR model

    A unique model that leads to three solution methods(numerical scheme) corresponding to the three different

    vision on traffic flow(macroscopic / mesoscopic / microscopic)

    Some previous models appears to be particular cases forthe LWR model and a triangular fundamental diagram in

    different systems of coordinates

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    29/42

    L. Leclercq (2013)

    Extensions to the theory

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    30/42

    L. Leclercq (2013)

    Diverge: Newells FIFO model30

    Nx(t)N

    t

    Dy(t) Dy1(t)

    Dy2(t)

    1

    Ny1(t)

    m1

    80%

    20%x y

    1

    2

    1

    Ny2(t)q2

    q'2

    FIFO => Travel times should be equal whatever the destination is

    (Newell, 1993)

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    31/42

    L. Leclercq (2013)

    Merge: Daganzos model31

    "1

    2

    "2

    "

    y1

    2

    Free-flow

    congestion

    (Daganzo, Transportation Research part B, 1995)

    Priority to link 1

    Priority to link 2

    Shared priority

    This model has been proved consistent with experimentalobservations a multitude of times

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    32/42

    L. Leclercq (2013)

    Other extensions

    :%,;0(0'##(-($''";F($)(#

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    33/42

    L. Leclercq (2013)

    The network fundamental diagram

    (Daganzo & Geroliminis, 2008)

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    34/42

    L. Leclercq (2013)

    Thank you for your attention

    LICIT Ifsttar/Bron and ENTPE

    25, avenue Franois Mitterand

    69675 Bron Cedex - FRANCE

    [email protected]

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    35/42

    L. Leclercq (2013)

    References

    Daganzo, C.F., 2006b. In traffic flow, cellular automata = kinematic waves. Transportation Research B, 40(5), 396-403. Daganzo, C.F., 2005. A variational formulation of kinematic waves: basic theory and complex boundary conditions.

    Transportation Research B, 39(2), 187-196.

    Daganzo, C.F., 2005b. A variational formulation of kinematic waves: Solution methods. Transportation Research B, 39(10),934-950.

    Daganzo, C.F., 1995. The cell transmission model, part II: network traffic. Transportation Research B, 29(2), 79-93. Daganzo, C.F., 1994. The cell transmission model: A dynamic representation of highway traffic consistent with the

    hydrodynamic theory. Transportation Research B, 28(4), 269-287.

    Daganzo, C.F., Menendez, M., 2005. A variational formulation of kinematic waves: bottlenecks properties and examples. In:Mahmassani H.S. (Ed.), 16

    th

    ISTTT, Elsevier, London, 345-364. Edie, L.C., 1963. Discussion of traffic stream measurements and definitions. In: J. Almond (Ed.), 2ndISTTT, OECD, Paris,

    139-154.

    Laval, J.A., Leclercq, L. The Hamilton-Jacobi partial differential equation and the three representations of traffic flow,Transportation Research part B, 2013, accepted for publication.

    Leclercq, L., Laval, J.A., Chevallier, E., 2007. The Lagrangian coordinates and what it means for first order traffic flowmodels. In: Allsop, R.E., Bell, M.G.H., Heydecker, B.G. (Eds), 17thISTTT, Elsevier, London, 735-753.

    Gerlough, D.L. et Huber M.J. Traffic flow theory a monograph. Special report n165, Transportation Research Board,Washington. 1975.

    Lighthill, M.J et Whitham, J.B. On kinematic waves II. A theory of traffic flow in long crowded roads. Proceedings of the RoyalSociety, 1955, VolA229, p. 317-345.

    Newell, G.F., 2002. A simplified car-following theory: a low-order model. Transportation Research B, 36(3), 195-205. Newell, G.F., 1993. A simplified theory of kinematic waves in highway traffic, I general theory; II queuing at freeway; III multi-

    destination. Transportation Research B, 27(4), 281-313.

    Richards, P.I., 1956. Shockwaves on the highway. Operations Research, 4, 42-51.

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    36/42

    L. Leclercq (2013)

    Exercices

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    37/42

    L. Leclercq (2013)

    Problem statement

    Let consider a freeway with two lanes and the following FD:u=30 m/s ; w=4.28 m/s ; !=0.28 veh/m. Two points a et bare respectively located atx=0 m andx=3600 m.

    The flow at ais constant and equal to 3000 veh/h. At timet=120 s, the capacity at is reduced from 1800 veh/h during10 minutes.

    Draw the fundamental diagram Determine the N-curve atx=3600,x=1800,x=600 and

    x=0 m

    Provide an estimate for the maximal length of thecongestion

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    38/42

    L. Leclercq (2013)

    The fundamental diagram

    0 50 100 150 200 250 3000

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    density [veh/km]

    flow[

    veh/h]

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    39/42

    L. Leclercq (2013)

    N-curve atx=3600 m

    0 500 1000 1500 20000

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    Time [s]

    N[

    veh]

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    40/42

    L. Leclercq (2013)

    N-curve atx=1800 m

    0 500 1000 1500 20000

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    Time [s]

    N[

    veh]

    Nx

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    41/42

    L. Leclercq (2013)

    N-curve atx=600 m

    0 500 1000 1500 20000

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    Time [s]

    N[

    veh]

    Nx

  • 8/12/2019 ISTTT Tutorial Leclercq 20130716

    42/42

    L. Leclercq (2013)

    N-curve atx=0 m

    0 500 1000 1500 20000

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    Time [s]

    N[

    veh]

    Nx