IT1201S&sQBank-1

Embed Size (px)

Citation preview

  • 8/20/2019 IT1201S&sQBank-1

    1/16

      1

    SIGNALS & SYSTEMS

    Unit II 

    1.  Define complex Fourier series expansion of continuous-time periodic signals.

    2.  What are the Dirichlet conditions?

    3. 

    Expand the following signals in complex Fourier series.(i)

     

    x(t)=sinω0t(ii)

     

    x(t)=1+sinω0t+2cosω0t+cos[2ω0t+(π/4)]

    1, |t|

  • 8/20/2019 IT1201S&sQBank-1

    2/16

      2

     T/2− T/2

    A1

    −A2

    Fig(c)

    x(t)

    t

     

    A

    Fig(d)

     T1

    − T1

    −4T1   −2T1   4T12T1

    x(t)

    t

     

     T− T

    A

    Fig(e)

    x(t)

    t0

     

     T− T

    A

    Fig(f)

    x(t)

    t0

     

  • 8/20/2019 IT1201S&sQBank-1

    3/16

      3

     T− T

    A

    Fig(g)

    x(t)

    t0

     [Hint: Fig(a): x(t)=[2A/T]t, −T/2

  • 8/20/2019 IT1201S&sQBank-1

    4/16

      4

     T1

    − T2

    A

    Fig(b)

    x(t)

    t

     

     T/2− T/2A1

    −A2

    Fig(c)

    x(t)

    t

     

    A

    Fig(d)

     T1− T1−4T1   −2T1   4T12T1

    x(t)

    t

     

     T− T

    A

    Fig(e)

    x(t)

    t0

     

  • 8/20/2019 IT1201S&sQBank-1

    5/16

      5

     T− T

    A

    Fig(f)

    x(t)

    t0

     

     T− T

    A

    Fig(g)

    x(t)

    t0

     [Hint: Fig(a): x(t)=[2A/T]t, −T/2

  • 8/20/2019 IT1201S&sQBank-1

    6/16

      6

    7.  Compute the inverse Fourier transform of the following aperiodic continuous-time

    signals

    1

    (i)  X(ω)= ------------[(a+jω)]

    (ii)  H(ω)=jω (iii)

     

    X(ω)=2πδ(ω−ω0)

    ∞ 

    (iv) X(ω)=(2π/T)Σ δ(ω−k ω0) k= −∞ 

    1, |ω|W

    2sinωT1(vi)

     

    X(ω)= -----------ω 

    (vii) X(ω)=1(viii)  X(ω)=2πδ(ω)+πδ(ω−4π)+2πδ(ω+4π)

    2, 0≤ω≤2(ix)

     

    X(ω)= −2, −2≤ω2

    (x)  Y(ω)=[1/(a+jω)(b+jω)] for b≠a & b=a.8.  Verify the Linearity, Time shifting, Frequency shifting, Time scaling, Time reversal,

    Duality, Differentiation in time domain, Differentiation in frequency domain,

    Integration in time domain, Convolution, Multiplication & Parseval’s theorem for the

    CT Fourier transform.

    9.  Compute Fourier transform of x(t)=sinbt+cosbt. Use linearity property.

    10.  Compute Fourier transform of x(t)=δ(t)−e−2tu(t). Use linearity & frequency shifting

     property.11.  Compute the spectrum of the output of the system with impulse response h(t)=e−atu(t) to

    the input x(t)=e− btu(t). [Hint: Find H(ω)X(ω)]12.  Compute the spectrum of the output of the system with impulse response h(t)=e−atu(t) to

    the input x(t)=u(t). [Hint: Find H(ω)X(ω)]13.

     

    Compute the Laplace transforms of the following signals.

    n

    (i)  dn[f(t)]/dt⇔sF(s)−Σ sn−i f i−1(0−)

    i=1

    (ii)  (−t)nf(t)⇔dn[F(s)]/dsn (iii)

     

    eatf(t)⇔F(s−a)(iv)  e−atf(t)⇔F(s+a)

  • 8/20/2019 IT1201S&sQBank-1

    7/16

      7

    (v)  δ(t)⇔1(vi)  dn[δ(t)]/dsn⇔sn (vii)  u(t)⇔1/s(viii)  tn/n!⇔1/sn+1 (ix)  eat⇔1/(s−a)(x)

     

    e−at⇔1/(s+a)(xi)  sinbt⇔ b/(s2+b2)(xii)  cosbt⇔s/(s2+b2)(xiii)  sinhbt⇔ b/(s2− b2)(xiv)  coshbt⇔s/(s2− b2)(xv)

     

    eatsinbt⇔ b/[(s−a)2+b2](xvi)

     

    eatcosbt⇔(s−a)/[(s−a)2+b2](xvii)

     

    e−atsinbt⇔ b/[(s+a)2+b2](xviii)

     

    e−atcosbt⇔(s+a)/[(s+a)2+b2](xix)  eat[tn/n!]⇔1/(s−a)n+1 (xx)

     

    e−at[tn/n!]⇔1/(s+a)n+1 14.  Prove the Linearity, Time shifting, Frequency shifting, Time scaling, Time reversal,

    Differentiation in time domain, Differentiation in frequency domain, Integration in time

    domain & Convolution for the Laplace transform.

    15. 

    Compute the inverse Laplace transforms of the following functions.

    (i) 

    X(s)=[s+1]/[s2−1](ii)

     

    X(s)=[s3−1]/[s2+s+1](iii)  H(s)=[1/(s+2)]

    (iv)  H(s)=[1/(s2+16)]

    (v)  H(s)={1/[(s+0.1)2+9]}

    (vi)  H(s)={(s+0.2)/[(s+0.2)2+9]}

    (vii) 

    H(s)={1/[(s+1)(s+2)]}

    (viii)  H(s)={1/[(s+0.5)(s2+0.5s+2)]}

    (ix) 

    H(s)={2/[(s+1)(s+2)]}

    (x) 

    H(s)=[Ωc/(s+Ωc)](xi)  H(s)=[1/(s+1)2]

    (xii)  H(s)={(2s2+3s+3)/[(s+1)(s

    2+2s+2)]}

    (xiii) 

    H(s)=[2s/(s2+0.2s+1)]

    (xiv)  H(s)={s3/[(s+1)(s2+s+1)]}

    (xv)  H(s)=[Ωc2/(s

    2+bk Ωcs+Ωc

    2)]

    (xvi) 

    H(s)=[1/(s2+(2)1/2s+1)]

    (xvii) 

    H(s)={(3s2

    +4)/[(s+2)(s2

    +0.5s+1)]}(xviii)  X(s)=[s

    2+2s+5]/[s+3][s+5]

    (xix)  X(s)=[s3+2s2+6]/[s2+3s]

  • 8/20/2019 IT1201S&sQBank-1

    8/16

      8

    SIGNALS & SYSTEMS

    Unit III 

    1.  Compute the transfer function of the following LTI systems.

    (i)  [dy(t)/dt]+3y(t)=x(t)

    (ii) 

    RC[dy(t)/dt]+LC[d2y(t)/dt2]+y(t)=x(t)(iii) [d2y(t)/dt2]+3[dy(t)/dt]+2y(t)= [dx(t)/dt]+3x(t)

    (iv) [dy(t)/dt]+(1/RC)y(t)=(1/RC)x(t)(v)

     

    y/(t)+2y(t)=x(t)+x/(t)

    (vi) y//(t)+y/(t)−2y(t)=x(t)2.  Suppose that if the input to an LTI system is x(t)=u(t), then the output is y(t)=2e−3tu(t).

    Compute its transfer function.

    3.  Suppose that if the input to an LTI system is x(t)=e−3t

    u(t), then the output is

    y(t)=[e−t−e−2t]u(t). Compute its transfer function.

    4.  Compute the impulse response of the following LTI system.

    (i) 

    [dy(t)/dt]+3y(t)=x(t)(ii) 

    RC[dy(t)/dt]+LC[d2y(t)/dt2]+y(t)=x(t)

    (iii)  [d2y(t)/dt2]+3[dy(t)/dt]+2y(t)= [dx(t)/dt]+3x(t)

    (iv)  [dy(t)/dt]+(1/RC)y(t)=(1/RC)x(t)

    (v)  y/(t)+2y(t)=x(t)+x/(t)

    (vi)  y//(t)+y/(t)−2y(t)=x(t)5.  Suppose that if the input to an LTI system is x(t)=u(t), then the output is y(t)=2e−3tu(t).

    Compute its impulse response.

    6.  Suppose that if the input to an LTI system is x(t)=e−3t

    u(t), then the output is

    y(t)=[e−t−e−2t]u(t). Compute its impulse response.

    7.  Compute the impulse response of the following LTI system

    [d3y(t)/dt3]+6[d2y(t)/dt2]+11[dy(t)/dt]+6y(t)=x(t)8.  Compute the output of the LTI system with impulse response h(t)=e

    −atu(t) to the

    following input x(t)=|t|e−2|t|.

    9.  Compute the unit step response of the LTI system

    [d2y(t)/dt

    2]+3[dy(t)/dt]+2y(t)= [dx(t)/dt]+3x(t).

    10. 

    Compute the convolution of the following signals.

    (i)  x(t)=e−atu(t) & h(t)=u(t)

    (ii)  x(t)=e2tu(−t) & h(t)=u(t−3)(iii)  x(t)=t+1, 0≤t≤1, 2−t, 1

  • 8/20/2019 IT1201S&sQBank-1

    9/16

      9

    SIGNALS & SYSTEMS

    Unit IV 

    1.  Define unit sample, unit step, ramp & exponential sequences.

    2.  Express the following sequence in terms of unit sample sequence x(n)={1,−1,1,1−1},

    −2 ≤ n ≤ 2.3.  Express the following sequence in terms of unit sample sequence

    x(n)={1,1,−1,−1,−1,1,−1,1,−1,−1,1,1}.

    4.  Express the unit sample sequence in terms of unit step sequence.

    5.  Express the following sequence in terms of unit sample sequence x(n) = (1/2)n u(n).

    6. 

    Express the following sequence in terms of unit sample sequence x(n) = u(n) − u(n− N)

    7.  Define Discrete-Time Fourier Transform (DTFT) of a sequence.8.  Compute the Fourier transforms of the following sequences.

    {1,2,0,−2,−1}, 0 ≤ n ≤ 4(i)  x(n)=0, otherwise

    (ii)  x(n)=(1/2)nu(n)

    (iii)  x(n)=(1/2)nu(n-5)

    (iv) 

    x(n)=δ(n)

    1, 0 ≤ n ≤ M(v)  wr (n)=

    0, otherwise

    (vi)  x(n)=u(n)−u(n−6)(vii)

     

    x(n)=2nu(−n)(viii)  x(n)={−2,−1,0,1,2}

    9.  Find x(n) if

    e− jωτ, |ω| ≤ ωc 

  • 8/20/2019 IT1201S&sQBank-1

    10/16

      10

    ∞ 

    1.  x(n)⇔X(Z)=Σx(n)Z−n 

    n= −∞ 

    2. 

    x(n−k)⇔Z−k 

    X(Z)

    3.  a

    nx(n)⇔X(a

    −1Z)=X(Z/a)

    4.  anx(n−k)⇔Z−k ak X(a−1Z)= Z−k ak X(Z/a)5.

      ax1(n)+bx2(n)⇔aX1(Z)+bX2(Z)

    6.  δ(n)⇔17.  δ(n−k)⇔Z−k  

    8.  a

    nδ(n)⇔1

    9. 

    anδ(n−k)⇔Z

    −k a

    k  

    10. K δ(n)⇔K11. K δ(n−k)⇔KZ−k  12. u(n)⇔[1/(1−Z−1)]13.

     u(n−k)⇔Z−k 

    [1/(1−Z−1

    )]

    14. anu(n)⇔[1/(1−aZ−1)]

    15. 

    a

    n

    u(n−k)⇔Z

    −k 

    a

    [1/(1−aZ

    −1

    )]16.

     e jnθ

    u(n)⇔[1/(1−e jθ

    Z−1

    )]

    17. cosnθu(n)⇔[(1−Z−1cosθ)/(1−2Z−1cosθ+Z−2)]18.

     sinnθu(n)⇔[Z−1

    sinθ/(1−2Z−1

    cosθ+Z−2

    )]

    19. ancosnθu(n)⇔[(1−aZ−1cosθ)/(1−2aZ−1cosθ+a2Z−2)]20. ansinnθu(n)⇔[aZ−1sinθ/(1−2aZ−1cosθ+a2Z−2)]21.

     nx(n)⇔Z−1

    [dX(Z)/d(Z−1

    )]

  • 8/20/2019 IT1201S&sQBank-1

    11/16

      11

    SIGNALS & SYSTEMS

    Unit V 

    1.  Define linear systems.

    2.  Define time-invariant systems.

    3. 

    Define causal systems.4.  Define stable systems.

    5.  Define LTI systems.6.

     

    Check the following systems for (a) linearity, (b) time-invariance and (c) causality.

    (i)  y(n)=ex(n)

     

    (ii)  y(n)=ax(n)+b

    (iii)  y(n)=anx(n)+b

    (iv)  y(n)=g(n)x(n)

    (v)  y(n)= x(n-m)

    (vi)  y(n)= a[x(n)]2+bx(n)

    (vii) 

    y(n)=n[x(n)]2 

    (viii) 

    y(n)=x(n2)

    (ix)  y(n)=xe(n), the even part of x(n)(x)

     

    y(n)=xo(n), the odd part of x(n)

    (xi)  y(n)=x(n) (xii)  y(n)=cos[x(n)]

    (xiii)  y(n)=x(n)cosωon(xiv)

     

    y(n)=x(-n+2)

    (xv)  y(n)=x(n)+nx(n+1)

    (xvi) 

    y(n)=x(2n)

    (xvii) y(n)=x(-n)

    (xviii) 

    y(n)=x(n2

    )7.

     

    Identify whether the following systems are recursive or non-recursive systems.

    (i)  y(n)-(1/2)y(n-1)=x(n)

    (ii)  y(n)-y(n-1)-y(n-2)=x(n-2)

    (iii)  y(n)+y(n-1)=x(n)-2x(n-1)

    (iv)  y(n)+4y(n-1)+4y(n-2)=x(n)+4x(n-1)+3x(n-2)

    (v) 

    y(n)=(5/6)y(n-1)-(1/6)y(n-2)+x(n)

    (vi)  10y(n)-5y(n-1)+y(n-2)=x(n)-5x(n-1)+10x(n-2)

    (vii)  y(n)=x(n)+2x(n-1)+x(n-2)(viii)  y(n)=(1/2)x(n)+x(n-1)+(1/2)x(n-2)

    (ix)  y(n)=x(n)-2x(n-1)+x(n-2)

    (x) 

    y(n)=x(n)+2x(n-1)-x(n-2)8.  Define the impulse response of a system.

    9.  Determine the impulse response of the following LTI, causal systems.(i)

     

    y(n)-(1/2)y(n-1)=x(n)

    (ii)  y(n)-(1/2)y(n-1)=x(n)+x(n-1)

    (iii)  y(n)-y(n-1)-y(n-2)=x(n-2)

    (iv)  y(n)+y(n-1)=x(n)-2x(n-1)

    (v)  y(n)-2cosθy(n-1)+y(n-2)=sinθx(n-1)(vi)

     

    y(n)+y(n-1)=x(n)-x(n-1)

    (vii)  y(n)+3y(n-1)+2y(n-2)=x(n)

    (viii)  y(n)+4y(n-1)+4y(n-2)=x(n)+4x(n-1)+3x(n-2)(ix)

     

    3y(n)-y(n-1)=-x(n)+3x(n-1)

    (x)  y(n)-(1/4)y(n-1)-(3/8)y(n-2)=x(n)+x(n-1)

  • 8/20/2019 IT1201S&sQBank-1

    12/16

      12

    (xi)  y(n)-(3/4)y(n-1)+(1/8)y(n-2)=x(n)-x(n-1)

    (xii)  y(n)-(5/2)y(n-1)+y(n-2)=x(n)-x(n-1)

    (xiii) 

    y(n)-2cosθy(n-1)+y(n-2)=x(n)(xiv)

     

    y(n)-2cosθy(n-1)+y(n-2)=x(n)-cosθx(n-1)(xv)  y(n)-3y(n-1)+2y(n-2)=x(n)+3x(n-1)+2x(n-2)

    (xvi) 

    y(n)-2y(n-1)=x(n)+x(n-1)(xvii)

     

    y(n)-ay(n-1)=x(n)+x(n-1)

    (xviii) y(n)=(5/6)y(n-1)-(1/6)y(n-2)+x(n)(xix)

     

    y(n)=0.6y(n-1)-0.08y(n-2)+x(n)

    (xx)  y(n)=0.7y(n-1)-0.1y(n-2)+2x(n)-x(n-2)

    (xxi)  y(n)-3y(n-1)-4y(n-2)=x(n)+2x(n-1)

    (xxii) y(n)+(1/2)y(n-1)=x(n)+2x(n-1)+x(n-2)

    (xxiii) y(n)-y(n-1)=x(n)+x(n-1)

    (xxiv) 

    y(n)-y(n-1)+(1/4)y(n-2)=2x(n-1)

    (xxv)  y(n)-5y(n-1)+6y(n-2)=2x(n-1)

    (xxvi) 10y(n)-5y(n-1)+y(n-2)=x(n)-5x(n-1)+10x(n-2)

    (xxvii) 

    y(n)=x(n)+2x(n-1)+x(n-2)(xxviii)y(n)=(1/2)x(n)+x(n-1)+(1/2)x(n-2)

    (xxix) y(n)=x(n)-2x(n-1)+x(n-2)

    (xxx)  y(n)=x(n)+2x(n-1)-x(n-2)

    10.  What is the output of a system with the impulse response h(n) to the input x(n)?

    11.  Compute the convolution of the following sequences x(n)=an u(n) & h(n)=bn u(n).

    12.  Find the output of the system with impulse response h(n)=(1/2)n u(n) to the input

    x(n)=1, 0≤n≤ N−1.13.

     

    Compute the convolution of the following sequences x(n)=an u(n) &

    h(n)=bn u(−n).

    14. 

    Find the output of the system with impulse response h(n)=(1/2)

    n

     u(n) to the inputx(n)=(3/4)n u(n).

    15.  Determine the output of the system with impulse response h(n)={1,2,3} to the input

    x(n)={1,−1,−1,1,1}.16.  Determine the output of the system with impulse response

    1, 0 ≤ n ≤ 6h(n)=

    0, otherwiseto the input

    (−1)n, 0 ≤ n ≤ 4x(n)=

    0, otherwise17.

     

    Find the output of the system with impulse response h(n)={2,1,−1} to the inputx(n)={−1,1,−1,−1,−1,1}.

    18.  Find the output of the system with impulse response h(n)={2,1,−2} to the inputx(n)={−1,2,1,1,−1,−1,1}.

    19.  Determine the output of the system with impulse response h(n)={1,2,3} to the input

    x(n)={1,−1,−1,1,1}.20.

     

    Determine the output of the system with impulse response

    1, 0 ≤ n ≤ 6

    h(n)= 0, otherwise

  • 8/20/2019 IT1201S&sQBank-1

    13/16

      13

    to the input

    (−1)n, 0 ≤ n ≤ 4x(n)=

    0, otherwise

    21.  Find the output of the system with impulse response h(n)={2,1,−1} to the input

    x(n)={−1,1,−1,−1,−1,1}.22.  Find the output of the system with impulse response h(n)={2,1,−2} to the input

    x(n)={−1,2,1,1,−1,−1,1}.23.

     

    What is the condition on h(n) for a system to be stable?

    24.  Determine the impulse response of the following LTI, causal systems & hence its

    stability.(i)  y(n)-(1/2)y(n-1)=x(n)

    (ii)  y(n)-(1/2)y(n-1)=x(n)+x(n-1)(iii)

     

    y(n)-y(n-1)-y(n-2)=x(n-2)

    (iv)  y(n)+y(n-1)=x(n)-2x(n-1)

    (v)  y(n)-2cosθy(n-1)+y(n-2)=sinθx(n-1)(vi)

     

    y(n)+y(n-1)=x(n)-x(n-1)

    (vii)  y(n)+3y(n-1)+2y(n-2)=x(n)

    (viii)  y(n)+4y(n-1)+4y(n-2)=x(n)+4x(n-1)+3x(n-2)

    (ix) 

    3y(n)-y(n-1)=-x(n)+3x(n-1)

    (x)  y(n)-(1/4)y(n-1)-(3/8)y(n-2)=x(n)+x(n-1)

    (xi)  y(n)-(3/4)y(n-1)+(1/8)y(n-2)=x(n)-x(n-1)(xii)  y(n)-(5/2)y(n-1)+y(n-2)=x(n)-x(n-1)

    (xiii)  y(n)-2cosθy(n-1)+y(n-2)=x(n)(xiv)  y(n)-2cosθy(n-1)+y(n-2)=x(n)-cosθx(n-1)(xv)  y(n)-3y(n-1)+2y(n-2)=x(n)+3x(n-1)+2x(n-2)

    (xvi) 

    y(n)-2y(n-1)=x(n)+x(n-1)(xvii) y(n)-ay(n-1)=x(n)+x(n-1)

    (xviii) 

    y(n)=(5/6)y(n-1)-(1/6)y(n-2)+x(n)

    (xix)  y(n)=0.6y(n-1)-0.08y(n-2)+x(n)

    (xx)  y(n)=0.7y(n-1)-0.1y(n-2)+2x(n)-x(n-2)(xxi)  y(n)-3y(n-1)-4y(n-2)=x(n)+2x(n-1)

    (xxii) y(n)+(1/2)y(n-1)=x(n)+2x(n-1)+x(n-2)(xxiii)

     

    y(n)-y(n-1)=x(n)+x(n-1)

    (xxiv) y(n)-y(n-1)+(1/4)y(n-2)=2x(n-1)

    (xxv)  y(n)-5y(n-1)+6y(n-2)=2x(n-1)

    (xxvi) 10y(n)-5y(n-1)+y(n-2)=x(n)-5x(n-1)+10x(n-2)

    (xxvii) 

    y(n)=x(n)+2x(n-1)+x(n-2)(xxviii)y(n)=(1/2)x(n)+x(n-1)+(1/2)x(n-2)

    (xxix) y(n)=x(n)-2x(n-1)+x(n-2)

    (xxx)  y(n)=x(n)+2x(n-1)-x(n-2)25.

     

    Determine the frequency response of the following LTI, causal systems.

    (i)  y(n)-(1/2)y(n-1)=x(n)(ii)

     

    y(n)-(1/2)y(n-1)=x(n)+x(n-1)

    (iii)  y(n)-y(n-1)-y(n-2)=x(n-2)

    (iv)  y(n)+y(n-1)=x(n)-2x(n-1)

    (v)  y(n)+y(n-1)=x(n)-x(n-1)

    (vi)  y(n)+3y(n-1)+2y(n-2)=x(n)

    (vii) 

    y(n)+4y(n-1)+4y(n-2)=x(n)+4x(n-1)+3x(n-2)

    (viii)  3y(n)-y(n-1)=-x(n)+3x(n-1)

  • 8/20/2019 IT1201S&sQBank-1

    14/16

      14

    (ix)  y(n)-(1/4)y(n-1)-(3/8)y(n-2)=x(n)+x(n-1)

    (x)  y(n)-(3/4)y(n-1)+(1/8)y(n-2)=x(n)-x(n-1)

    (xi)  y(n)-(5/2)y(n-1)+y(n-2)=x(n)-x(n-1)

    (xii)  y(n)-3y(n-1)+2y(n-2)=x(n)+3x(n-1)+2x(n-2)

    (xiii) 

    y(n)-2y(n-1)=x(n)+x(n-1)

    (xiv) 

    y(n)-ay(n-1)=x(n)+x(n-1)(xv)  y(n)=(5/6)y(n-1)-(1/6)y(n-2)+x(n)(xvi)  y(n)=0.7y(n-1)-0.1y(n-2)+2x(n)-x(n-2)

    (xvii) y(n)-3y(n-1)-4y(n-2)=x(n)+2x(n-1)(xviii)

     

    y(n)-y(n-1)=x(n)+x(n-1)

    (xix)  y(n)-y(n-1)+(1/4)y(n-2)=2x(n-1)

    (xx)  y(n)-5y(n-1)+6y(n-2)=2x(n-1)

    (xxi)  10y(n)-5y(n-1)+y(n-2)=x(n)-5x(n-1)+10x(n-2)

    (xxii) y(n)=x(n)+2x(n-1)+x(n-2)

    (xxiii) 

    y(n)=(1/2)x(n)+x(n-1)+(1/2)x(n-2)

    (xxiv) y(n)=x(n)-2x(n-1)+x(n-2)

    (xxv) 

    y(n)=x(n)+2x(n-1)-x(n-2)26.  Determine the transfer functions of the following LTI, casual systems.

    (i)  y(n)-(1/2)y(n-1)=x(n)(ii)

     

    y(n)-(1/2)y(n-1)=x(n)+x(n-1)

    (iii)  y(n)-y(n-1)-y(n-2)=x(n-2)

    (iv)  y(n)+y(n-1)=x(n)-2x(n-1)

    (v) 

    y(n)-2cosθy(n-1)+y(n-2)=sinθx(n-1)(vi)  y(n)+y(n-1)=x(n)-x(n-1)

    (vii)  y(n)+3y(n-1)+2y(n-2)=x(n)(viii)

     

    y(n)+4y(n-1)+4y(n-2)=x(n)+4x(n-1)+3x(n-2)

    (ix)  3y(n)-y(n-1)=-x(n)+3x(n-1)

    (x) 

    y(n)-(1/4)y(n-1)-(3/8)y(n-2)=x(n)+x(n-1)

    (xi)  y(n)-(3/4)y(n-1)+(1/8)y(n-2)=x(n)-x(n-1)

    (xii)  y(n)-(5/2)y(n-1)+y(n-2)=x(n)-x(n-1)

    (xiii)  y(n)-2cosθy(n-1)+y(n-2)=x(n)(xiv)  y(n)-2cosθy(n-1)+y(n-2)=x(n)-cosθx(n-1)(xv)  y(n)-3y(n-1)+2y(n-2)=x(n)+3x(n-1)+2x(n-2)

    (xvi)  y(n)-2y(n-1)=x(n)+x(n-1)(xvii)

     

    y(n)-ay(n-1)=x(n)+x(n-1)

    (xviii) y(n)=(5/6)y(n-1)-(1/6)y(n-2)+x(n)

    (xix)  y(n)=0.6y(n-1)-0.08y(n-2)+x(n)

    (xx) 

    y(n)=0.7y(n-1)-0.1y(n-2)+2x(n)-x(n-2)(xxi)  y(n)-3y(n-1)-4y(n-2)=x(n)+2x(n-1)

    (xxii) 

    y(n)+(1/2)y(n-1)=x(n)+2x(n-1)+x(n-2)

    (xxiii) y(n)-y(n-1)=x(n)+x(n-1)

    (xxiv) y(n)-y(n-1)+(1/4)y(n-2)=2x(n-1)(xxv)  y(n)-5y(n-1)+6y(n-2)=2x(n-1)

    (xxvi) 10y(n)-5y(n-1)+y(n-2)=x(n)-5x(n-1)+10x(n-2)(xxvii)

     

    y(n)=x(n)+2x(n-1)+x(n-2)

    (xxviii)y(n)=(1/2)x(n)+x(n-1)+(1/2)x(n-2)

    (xxix) y(n)=x(n)-2x(n-1)+x(n-2)

    (xxx)  y(n)=x(n)+2x(n-1)-x(n-2)

    27. 

    Determine the transfer functions and hence the impulse responses of the following LTI,casual systems.

  • 8/20/2019 IT1201S&sQBank-1

    15/16

      15

    (i)  y(n)-(1/2)y(n-1)=x(n)

    (ii)  y(n)-(1/2)y(n-1)=x(n)+x(n-1)

    (iii)  y(n)-y(n-1)-y(n-2)=x(n-2)

    (iv)  y(n)+y(n-1)=x(n)-2x(n-1)

    (v)  y(n)-2cosθy(n-1)+y(n-2)=sinθx(n-1)

    (vi) 

    y(n)+y(n-1)=x(n)-x(n-1)(vii)  y(n)+3y(n-1)+2y(n-2)=x(n)

    (viii)  y(n)+4y(n-1)+4y(n-2)=x(n)+4x(n-1)+3x(n-2)

    (ix)  3y(n)-y(n-1)=-x(n)+3x(n-1)

    (x)  y(n)-(1/4)y(n-1)-(3/8)y(n-2)=x(n)+x(n-1)

    (xi)  y(n)-(3/4)y(n-1)+(1/8)y(n-2)=x(n)-x(n-1)

    (xii)  y(n)-(5/2)y(n-1)+y(n-2)=x(n)-x(n-1)

    (xiii)  y(n)-2cosθy(n-1)+y(n-2)=x(n)(xiv)  y(n)-2cosθy(n-1)+y(n-2)=x(n)-cosθx(n-1)(xv)

     

    y(n)-3y(n-1)+2y(n-2)=x(n)+3x(n-1)+2x(n-2)

    (xvi)  y(n)-2y(n-1)=x(n)+x(n-1)

    (xvii) 

    y(n)-ay(n-1)=x(n)+x(n-1)

    (xviii) y(n)=(5/6)y(n-1)-(1/6)y(n-2)+x(n)

    (xix)  y(n)=0.6y(n-1)-0.08y(n-2)+x(n)

    (xx) 

    y(n)=0.7y(n-1)-0.1y(n-2)+2x(n)-x(n-2)

    (xxi)  y(n)-3y(n-1)-4y(n-2)=x(n)+2x(n-1)

    (xxii) 

    y(n)+(1/2)y(n-1)=x(n)+2x(n-1)+x(n-2)

    (xxiii) y(n)-y(n-1)=x(n)+x(n-1)

    (xxiv) y(n)-y(n-1)+(1/4)y(n-2)=2x(n-1)(xxv)

     

    y(n)-5y(n-1)+6y(n-2)=2x(n-1)

    (xxvi) 10y(n)-5y(n-1)+y(n-2)=x(n)-5x(n-1)+10x(n-2)

    (xxvii) 

    y(n)=x(n)+2x(n-1)+x(n-2)(xxviii)y(n)=(1/2)x(n)+x(n-1)+(1/2)x(n-2)

    (xxix) y(n)=x(n)-2x(n-1)+x(n-2)

    (xxx) 

    y(n)=x(n)+2x(n-1)-x(n-2)

    28.  Determine the frequency response of the following LTI, causal systems using Z-

    transform.(i)  y(n)-(1/2)y(n-1)=x(n)

    (ii)  y(n)-(1/2)y(n-1)=x(n)+x(n-1)(iii)

     

    y(n)-y(n-1)-y(n-2)=x(n-2)

    (iv)  y(n)+y(n-1)=x(n)-2x(n-1)

    (v)  y(n)+y(n-1)=x(n)-x(n-1)

    (vi) 

    y(n)+3y(n-1)+2y(n-2)=x(n)(vii)  y(n)+4y(n-1)+4y(n-2)=x(n)+4x(n-1)+3x(n-2)

    (viii) 

    3y(n)-y(n-1)=-x(n)+3x(n-1)

    (ix)  y(n)-(1/4)y(n-1)-(3/8)y(n-2)=x(n)+x(n-1)

    (x)  y(n)-(3/4)y(n-1)+(1/8)y(n-2)=x(n)-x(n-1)(xi)  y(n)-(5/2)y(n-1)+y(n-2)=x(n)-x(n-1)

    (xii)  y(n)-3y(n-1)+2y(n-2)=x(n)+3x(n-1)+2x(n-2)(xiii)

     

    y(n)-2y(n-1)=x(n)+x(n-1)

    (xiv)  y(n)-ay(n-1)=x(n)+x(n-1)

    (xv)  y(n)=(5/6)y(n-1)-(1/6)y(n-2)+x(n)

    (xvi)  y(n)=0.7y(n-1)-0.1y(n-2)+2x(n)-x(n-2)

    (xvii) 

    y(n)-3y(n-1)-4y(n-2)=x(n)+2x(n-1)(xviii)

     

    y(n)-y(n-1)=x(n)+x(n-1)

  • 8/20/2019 IT1201S&sQBank-1

    16/16

      16

    (xix)  y(n)-y(n-1)+(1/4)y(n-2)=2x(n-1)

    (xx)  y(n)-5y(n-1)+6y(n-2)=2x(n-1)

    (xxi)  10y(n)-5y(n-1)+y(n-2)=x(n)-5x(n-1)+10x(n-2)

    (xxii) y(n)=x(n)+2x(n-1)+x(n-2)

    (xxiii) 

    y(n)=(1/2)x(n)+x(n-1)+(1/2)x(n-2)

    (xxiv) 

    y(n)=x(n)-2x(n-1)+x(n-2)(xxv)  y(n)=x(n)+2x(n-1)-x(n-2)

    29.  Determine the forced response (output) of the following LTI, casual system to the

    excitations (inputs)y(n)+3y(n-1)+2y(n-2)=x(n)

    x(n)=4

    x(n)=4(1/2)nu(n)

    x(n)=(-1)nu(n)

    x(n)=n(1/2)nu(n)

    x(n)=n(-1)nu(n)

    30.  Determine the response (output) of the following LTI, casual system to the excitation

    (input) x(n)=n2nu(n). y(n)+4y(n-1)+4y(n-2)=x(n)+4x(n-1)+3x(n-2)31.  Determine the response (output) of the following LTI, casual system to the input

    x(n)=n2nu(n). y(n)+4y(n-1)+4y(n-2)=x(n)+4x(n-1)+3x(n-2)

    32. 

    Determine the response (output) of the LTI, casual system y(n)+2y(n-1)+y(n-2)=x(n) to

    the input x(n)=9(2)n-8n+4.

    33.  Find the step responses of the following LTI, causal systems.

    (i)  y(n)-(1/2)y(n-1)=x(n)

    (ii)  y(n)-(1/2)y(n-1)=x(n)+x(n-1)

    (iii) 

    y(n)-y(n-1)-y(n-2)=x(n-2)

    (iv)  y(n)+y(n-1)=x(n)-2x(n-1)

    (v)  y(n)-2cosθy(n-1)+y(n-2)=sinθx(n-1)(vi)

     

    y(n)+y(n-1)=x(n)-x(n-1)

    (vii)  y(n)+3y(n-1)+2y(n-2)=x(n)

    (viii)  y(n)+4y(n-1)+4y(n-2)=x(n)+4x(n-1)+3x(n-2)

    (ix) 

    3y(n)-y(n-1)=-x(n)+3x(n-1)

    (x)  y(n)-(1/4)y(n-1)-(3/8)y(n-2)=x(n)+x(n-1)

    (xi) 

    y(n)-(3/4)y(n-1)+(1/8)y(n-2)=x(n)-x(n-1)

    (xii)  y(n)-(5/2)y(n-1)+y(n-2)=x(n)-x(n-1)

    (xiii)  y(n)-2cosθy(n-1)+y(n-2)=x(n)(xiv)  y(n)-2cosθy(n-1)+y(n-2)=x(n)-cosθx(n-1)(xv)  y(n)-3y(n-1)+2y(n-2)=x(n)+3x(n-1)+2x(n-2)

    (xvi) 

    y(n)-2y(n-1)=x(n)+x(n-1)(xvii) y(n)-ay(n-1)=x(n)+x(n-1)

    (xviii) 

    y(n)=(5/6)y(n-1)-(1/6)y(n-2)+x(n)

    (xix)  y(n)=0.7y(n-1)-0.1y(n-2)+2x(n)-x(n-2)

    (xx)  y(n)-3y(n-1)-4y(n-2)=x(n)+2x(n-1)(xxi)  y(n)+(1/2)y(n-1)=x(n)+2x(n-1)+x(n-2)

    (xxii) y(n)-y(n-1)=x(n)+x(n-1)(xxiii)

     

    y(n)-5y(n-1)+6y(n-2)=2x(n-1)

    (xxiv) 10y(n)-5y(n-1)+y(n-2)=x(n)-5x(n-1)+10x(n-2)

    (xxv)  y(n)=x(n)+2x(n-1)+x(n-2)

    (xxvi) y(n)=(1/2)x(n)+x(n-1)+(1/2)x(n-2)

    (xxvii) 

    y(n)=x(n)-2x(n-1)+x(n-2)(xxviii)y(n)=x(n)+2x(n-1)-x(n-2)