IT1201S&sUnitNotes

Embed Size (px)

Citation preview

  • 8/20/2019 IT1201S&sUnitNotes

    1/18

     

    1

    SIGNALS & SYSTEMS

    Unit II 

    Fourier series representation of continuous-time periodic signals:

    Complex Fourier seri es expansion:The Fourier series expansion of a continuous-time periodic, x(t) signal is given by

    ∞ 

    x(t)=Σ ck  e jk ω0tk=−∞ 

    or

    ∞ x(t)=Σ ck  e j2πkt/T

    k=−∞ 

    where ck  are Fourier series coefficients given by

    T

    ck =(1/T)∫  x(t) e− jk ω0t dt0

    or

    T

    ck =(1/T)∫  x(t) e− j2πkt/T dt0

    where, in all equations,

    ω0 = (2π/T)

    Convergence of F ouri er seri es: Di ri chlet Conditions:  The Fourier series expansion of a periodic signal defined by the equation

    ∞ 

    x(t)=Σ ck  e jk ω0tk=−∞ 

    is convergent i.e., the Fourier series expansion of a periodic signal is possible if and only if

    the signal has finite energy over one period or the signal is square-integrable over one period

    i.e.,

  • 8/20/2019 IT1201S&sUnitNotes

    2/18

     

    2

    T

    ∫ |x(t)|2 dt < ∞ 0

    or if the signal satisfies the following conditions known as the Di ri chlet conditions .

    Conditi on 1:  x(t) must be absolutely integrable over one period i.e.,

    T

    ∫ |x(t)| dt < ∞ 0

    Conditi on 2:  The signal has a finite no. of maxima and minima in any finite interval of time.

    Conditi on 3:  The signal has finite no. of finite discontinuities in any finite interval of time.

    Tr igonometr ic Fourier series expansion:The Fourier series expansion of a continuous-time periodic, x(t) signal is given by

    ∞ 

    x(t)=(a0/2) +Σ [ak  cos(k ω0t) + bk  sin(k ω0t)] k=1

    where

    T

    ak =(2/T)∫  x(t) cos(k ω0t) dt0

    T

     bk =(2/T)∫  x(t) sin(k ω0t) dt0

    T

    a0=(2/T)∫  x(t) dt0

    and (a0/2)=c0; ak =[ck  + c−k ]; bk =j[ck  − c−k ].

    Even and odd signals:  

    A signal, x(t) is said to be even if x(t)=x(−t). For an even signal, bk =0 and hence thetrigonometric Fourier series becomes

  • 8/20/2019 IT1201S&sUnitNotes

    3/18

     

    3

    ∞ 

    x(t)=(a0/2) +Σ ak  cos(k ω0t) k=1

    where

    T

    ak =(2/T)∫  x(t) cos(k ω0t) dt0

    T

    a0=(2/T)∫  x(t) dt0

    A signal, x(t) is said to be odd if x(t)= −x(−t). For an odd signal, ak =0 and hence thetrigonometric Fourier series becomes

    ∞ 

    x(t)=Σ  bk  sin(k ω0t) k=1

    where

    T

     bk =(2/T)∫  x(t) sin(k ω0t) dt0

    Fourier transform of aperiodic continuous-time signals: Spectrum of aperiodic

    continuous-time signals:

    The Fourier transform  of an aperiodic continuous-time signal, x(t) is defined as

    ∞ 

    X(ω)=∫  x(t) e− jωt dt−∞ 

    where X(ω) is also called the spectrum  of x(t). Recovering the signal x(t) from X(ω) i.e., theinverse Fourier transform  is defined as

    ∞ 

    x(t)=(1/2π)∫  X(ω) e jωt dω −∞ 

  • 8/20/2019 IT1201S&sUnitNotes

    4/18

     

    4

    Properti es of continuous-time Fourier Transform:

    1.  Linearity:  ax1(t) + bx2(t) ↔ aX1(ω) + bX2(ω)

    2.  Time shi fting:  x(t−t0) ↔ e− jωt0 X(ω) 

    3. 

    Frequency shi f ting:  e− jω0t x(t) ↔ X(ω−ω0) 

    4.  Time scaling:  x(at) ↔ (1/|a|)X(ω/a) 

    5.  Time reversal:  x(−t) ↔ X(−ω) 

    6.  Duality:  X(t) ↔ 2πx(−ω) 

    7.  Di ff erentiation in time domain:  [dx(t)/dt] ↔ jωX(ω) 

    8. 

    Di ff erentiation in f requency domain:  (− jt)x(t) ↔ [dX(ω)/dω] t

    9.  I ntegration in time domain:  ∫  x(t) dt ↔ πX(0) δ(ω) + (1/jω)X(ω) −∞ 

    10.  Convolution:  x1(t)∗x2(t) ↔ X1(ω)X2(ω) 

    11.  Multiplication:  x1(t)x2(t) ↔ (1/2π)X1(ω)∗X2(ω) ∞  ∞ 

    12.  Parseval’ s theorem:  ∫ |x(t)|2 dt ↔ (1/2π)∫ |X(ω)|2 dω −∞  −∞ 

    Laplace transform:

    The Laplace transform of a continuous-time signal x(t) is defined as

    ∞ 

    X(s)=∫  x(t) e−st dt−∞ 

    Properties of L aplace transform:

    1. 

    Linearity:  ax1(t) + bx2(t) ↔ aX1(s) + bX2(s)

    2.  Time shi fting:  x(t−t0) ↔ e−st0 X(s) 

    3.  Frequency shi f ting:  e−s

    0t x(t) ↔ X(s−s0) 

    4.  Time scaling:  x(at) ↔ (1/|a|)X(s/a) 

    5.  Time reversal:  x(−t) ↔ X(−s) 

    6. 

    Di ff erentiation in time domain:  [dx(t)/dt] ↔ sX(s) 

  • 8/20/2019 IT1201S&sUnitNotes

    5/18

     

    5

    7.  Di ff erentiation in f requency domain:  (−t)x(t) ↔ [dX(s)/ds] t

    8.  I ntegration in time domain:  ∫  x(t) dt ↔ (1/s)X(s) −∞ 

    9. 

    Convolution:  x1(t)∗x2(t) ↔ X1(s)X2(s) 

    Laplace transform pairs

    ∞ 

    1.  f(t)⇔F(s)=∫  f(t)e−stdt0− 

    n

    2.  dn[f(t)]/dt⇔sF(s)−Σ sn−i f i−1(0−)i=1

    3.  (−t)nf(t)⇔dn[F(s)]/dsn 4.  eatf(t)⇔F(s−a)5.  e−atf(t)⇔F(s+a)6.  δ(t)⇔1

    7. 

    dn[δ(t)]/dsn⇔sn 

    8.  u(t)⇔1/s9.  tn/n!⇔1/sn+1 

    10. e

    at⇔1/(s−a)

    11. e−at⇔1/(s+a)12.

     sinbt⇔b/(s2+b2)

    13. cosbt⇔s/(s2+b2)14.

     

    sinhbt⇔b/(s2−b2)

    15. coshbt⇔s/(s2−b2)

    16. eatsinbt⇔b/[(s−a)2+b2]17. eatcosbt⇔(s−a)/[(s−a)2+b2]18. e−atsinbt⇔b/[(s+a)2+b2]19. e−atcosbt⇔(s+a)/[(s+a)2+b2]20.

     eat

    [tn/n!]⇔1/(s−a)n+1 

    21. 

    e−at

    [tn/n!]⇔1/(s+a)n+1 

  • 8/20/2019 IT1201S&sUnitNotes

    6/18

     

    6

    SIGNALS & SYSTEMS

    Unit III 

    Differential equations describing continuous-time LTI systems:The continuous-time LTI systems are described by the linear constant coefficient

    differential equations of the form

     N M

    Σ bk [dk y(t)/dtk ]=Σak [dk x(t)/dtk ]k=0 k=0

    or

     b0y(t) + b1[dy(t)/dt] + … + b N[d Ny(t)/dt N]= a0x(t) + a1[dx(t)/dt] + … + aM[d

    Mx(t)/dtM]

    or

     b0y(t) + b1y1(t) + b2y

    2(t) + … + b Ny

     N(t)= a0x(t) + a1x

    1(t) + a2x

    2(t) + … + aMx

    M(t)

    where

    yi(t)=[diy(t)/dti] – ith derivative of y(t)

    xi(t)=[dix(t)/dti] – ith derivative of x(t)

    Transfer function of continuous-time LTI systems described by given differentialequation: The transfer function of an LTI system described by the given differential equation of

    the form

     b0y(t) + b1[dy(t)/dt] + … + b N[d N

    y(t)/dt N

    ]= a0x(t) + a1[dx(t)/dt] + … + aM[dM

    x(t)/dtM

    ]

    or

     b0y(t) + b1y1(t) + b2y

    2(t) + … + b Ny N(t)= a0x(t) + a1x

    1(t) + a2x2(t) + … + aMx

    M(t)

    is defined as the ratio of the Laplace transform of its output to that of its input i.e.,

    H(s)=[Y(s)/X(s)]

    Impulse response of continuous-time LTI systems described by given differential

    equation:

    The impulse response of a continuous-time LTI system described by the givendifferential equation is the inverse Laplace transform of its transfer function i.e.,

    h(t)=L −1[H(s)]

    Convolution integral:The convolution integral is defined by

  • 8/20/2019 IT1201S&sUnitNotes

    7/18

     

    7

    ∞ 

    y(t)=x(t)∗h(t)=∫ x(τ)h(t−τ)dτ −∞ 

  • 8/20/2019 IT1201S&sUnitNotes

    8/18

     

    8

    SIGNALS & SYSTEMS

    Unit IV 

    Discrete-time signals: A discrete-signal is a sequence of numbers x in which the nth number in the sequence is

    denoted as

    x(n), −∞≤n≤∞ 

    i.e., a discrete-time signal is a function whose independent variable is the set of integers.

    Some special discrete-time signals: 

    (1) Uni t-sample or impulse sequence:

    Unit-sample or impulse sequence δ(n) is defined as

    1 if n=0

    δ(n)=0 if n≠0

    The shifted unit-sample or impulse sequence δ(n−k) is defined as

    1 if n= −k or +kδ(n±k)=

    0 if n≠k

    (2) Uni t-step sequence:  Unit-step sequence u(n) is defined as

    1 if n≥0

    u(n)=0 if n

  • 8/20/2019 IT1201S&sUnitNotes

    9/18

     

    9

    The shifted unit-step sequence u(n−k) is defined as

    1 if n≥−k or +ku(n±k)=

    0 if n

  • 8/20/2019 IT1201S&sUnitNotes

    10/18

     

    10

    I nverse Discrete-Time Fourier Transform (IDTFT):  

    The inverse Fourier transform of X(ω) is defined as

    ω0+2π 

    F−1

    [X(

    ω)]=x(n)=(1/2

    π)

    ∫ X(

    ω)e

     jωnd

    ω 

    ω0 

    where, in many cases, ω0=−π so that

    Discrete Fouri er Transform (DFT):  The discrete Fourier transform of a finite-length sequence x(n) is defined as

     N−1

    X(k)=Σx(n)e− j2π(n/N)k , 0≤k ≤ N−1n=0

    or

     N−1

    X(k)=Σx(n)W Nnk , 0≤k ≤ N−1n=0

    where W N= e− j(2π/N).

    X(k) is periodic with period N i.e., X(k+N)=X(k).

    I nverse Discrete Fourier Transform (IDFT):  

    The inverse discrete Fourier transform of X(k) is defined as

     N−1

    x(n)=(1/N)ΣX(k)e j2π(n/N)k , 0≤n≤ N−1k=0

    or

     N−1

    x(n)=(1/N)ΣX(k) W N−nk , 0≤n≤ N−1k=0

    where W N= e− j(2π/N).

    Properties of DFT: 

    Peri odicity property:  If X(k) is the N-point DFT of x(n), then

  • 8/20/2019 IT1201S&sUnitNotes

    11/18

     

    11

    X(k+N)=X(k)

    L ineari ty property:If X1(k)=DFT[x1(n)] & X2(k)=DFT[x2(n)], then

    DFT[a1x1(n)+a2x2(n)]=a1X1(k)+a2X2(k)

    Convoluti on property:If X1(k)=DFT[x1(n)] & X2(k)=DFT[x2(n)], then

    DFT[x1(n)  N x2(n)]=X1(k)X2(k)

    where N indicates N-point circular convolution.

    Mul tipli cation property:

    If X1(k)=DFT[x1(n)] & X2(k)=DFT[x2(n)], then

    DFT[x1(n)x2(n)]=(1/N)[X1(k) N X2(k)]

    where N indicates N-point circular convolution.

    Z transforms:Definition:  The (two-sided or bilateral) Z transform of a discrete time function x(n) is

    defined as

    ∞ 

    Z [x(n)]=X(Z)=Σ  x(n)Z−n n=−∞ 

    Region of convergence (ROC):  For any given sequence, the set of values of Z for which the Z transform of the

    sequence absolutely converges is called the region of convergence, which is abbreviated as

    ROC. For the absolute convergence of the Z transform of a given sequence x(n), the

    condition is

    ∞ 

    Σ  x(n)Z−n 

  • 8/20/2019 IT1201S&sUnitNotes

    12/18

     

    12

    Z-tr ansform pairs

    ∞ 

    1.  x(n)⇔X(Z)=Σx(n)Z−n n= −∞ 

    2.  x(n−k)⇔Z−k X(Z)

    3.  anx(n)⇔X(a−1Z)=X(Z/a)4.

      anx(n−k)⇔Z−k ak X(a−1Z)= Z−k ak X(Z/a)

    5.  ax1(n)+bx2(n)⇔aX1(Z)+bX2(Z)6.  δ(n)⇔17.

      δ(n−k)⇔Z−k  

    8. 

    anδ(n)⇔1

    9.  anδ(n−k)⇔Z−k ak  10. K δ(n)⇔K11. K δ(n−k)⇔KZ−k  12.

     u(n)⇔[1/(1−Z−1)]

    13. u(n−k)⇔Z−k [1/(1−Z−1)]14. anu(n)⇔[1/(1−aZ−1)]15.

     

    anu(n−k)⇔Z−k ak [1/(1−aZ−1)]

    16. e jnθu(n)⇔[1/(1−e jθZ−1)]17.

     cosnθu(n)⇔[(1−Z−1cosθ)/(1−2Z−1cosθ+Z−2)]

    18. sinnθu(n)⇔[Z−1sinθ/(1−2Z−1cosθ+Z−2)]19. ancosnθu(n)⇔[(1−aZ−1cosθ)/(1−2aZ−1cosθ+a2Z−2)]20.

     ansinnθu(n)⇔[aZ−1sinθ/(1−2aZ−1cosθ+a2Z−2)]

    21. nx(n)⇔Z−1[dX(Z)/d(Z−1)]

  • 8/20/2019 IT1201S&sUnitNotes

    13/18

     

    13

    SIGNALS & SYSTEMS

    Unit V 

    Classification of discrete-time systems:

    L inear system:

    A system is said to be linear if, for some linear combination of any number of inputs(excitations) x1(n), x2(n), x3(n), …, it produces same linear combination of individual outputs

    (responses) y1(n), y2(n), y3(n), …, i.e.,

    R  [ax1(n) + bx2(n) + cx3(n) + …]=ay1(n) + by2(n) + cy3(n) + …

    for all possible values of the constants a, b, c, ….

    Time-invariant system:

    A system is said to be time-invariant if the output (response) of the system to any

    input (excitation) with a time shift or delay, is the same output (response) with the same time

    shift or delay i.e.,

    R  [x(n−k)]=y(n−k)

    Causal systems:

    A system is said to be causal if the output (response) of the system does not depend

    on future input (excitation) values or in other words if the output (response) of the systemdepends only on past or present input (excitation) values i.e., the system is ‘nonanticipate’.

    Stable system – BI BO stabil i ty:

    A system is said to be stable if it produces a bounded output (response) for a bounded

    input (excitation) i.e.,

    x(n)

  • 8/20/2019 IT1201S&sUnitNotes

    14/18

     

    14

    or by

     N M

    Σ bk  y(n−k)=Σ

     am x(n−m)k=0 m=0

    The LTI systems described by the above equation are called the recursive  systems

    (i.e., systems with feedback). With bk =0 for k=1, 2, …, N, the above equation becomes

     b0 y(n)=a0 x(n) + a1 x(n−1) + … + aM x(n−M)

    or by

    M

    y(n)=Σ (am/b0) x(n−m)m=0

    The LTI systems described by the above equation are called the non-recursive  

    systems (i.e., systems with feedback).

    The impulse response (IR) of a system:

    Definition:The impulse response, h(n) of a system is defined as the system response to the unit-

    sample or impulse sequence δ(n).

    Impulse response of a linear, time-invariant, causal system described by the standard

    Nth order difference equation:

    The impulse response of a LTI, causal system described by the standard Nth orderdifference equation

    y(n)+b1y(n−1)+b2y(n−2)+…+b Ny(n− N)=a0x(n)+a1x(n−1)+…+aMx(n−M)(assuming zero initial conditions i.e., y(n)=0 for n

  • 8/20/2019 IT1201S&sUnitNotes

    15/18

     

    15

    i.  If the roots obtained are distinct, say λ1, λ2,…, λ N, then the homogeneous solutionwould be

    yh(n)=[C1(λ1)n+C2(λ2)n+…+C N(λ N)n]u(n).ii.  If any of the roots is a multiple order root, say λ1 of order m, then the

    homogeneous solution would be

    yh(n)={[C1(λ1)n+C2n(λ1)n+C3n2(λ1)n+C4n3(λ1)n+…+Cmnm−1(λ1)n]

    +Cm+1(λm+1)n+Cm+2(λm+2)n+…+C N(λ N)n}u(n).where C1, C2, C3… are arbitrary constants.

     Procedure Block 2: Impulse Response h(n): 

    7)  Form the impulse response h(n) as follows: Note down the maximum shift on y (i.e., N) and maximum shift on x (i.e., M).

    i.  If M

  • 8/20/2019 IT1201S&sUnitNotes

    16/18

     

    16

    ∞ 

    y(n)=R [ Σ x(k) δ(n−k)]  ---------------------------------------------------------------------(3)k=−∞ 

    Since k is a dummy variable and R  operates only on n which indexes both the input

    and output sequences, by the linearity of the system,

    ∞ 

    y(n)=Σ x(k) R [δ(n−k)] --------------------------------------------------------------------------(4)k=−∞ 

    If h(n) represents the response of the system to the unit-sample or impulse sequence,

    δ(n) or as usually called, the impulse response of the system, then, by the time-invariance ofthe system,

    ∞ 

    y(n)=Σ x(k) h(n−k) ------------------------------------------------------------------------------(5)k=−∞ 

    The above equation is generally known as convolu tion sum  and suggests the

    characterization of a linear time-invariant system completely by its impulse response, in the

    sense that, given h(n), it is possible to use Equ(5) to find the response of the system to any

    excitation x(n) and to define the properties of the system.

     Property 1: The convolution operation is commutative.

    x(n) ∗ h(n) = h(n) ∗ x(n)

     Property 2: The convolution operation is distributive over addition

    x(n)*[h1(n)+h2(n)] = x(n)*h1(n) + x(n)*h2(n)

    Convoluti on of two inf in i te-length sequences:  

    The convolution y(n) of two infinite-length sequences x(n) and h(n) is defined as

    Rx(n) y(n)

    Fig1

  • 8/20/2019 IT1201S&sUnitNotes

    17/18

     

    17

    ∞ 

    y(n) =Σx(k)h(n−k), −∞ ≤ n ≤ ∞ k=−∞ 

    or

    ∞ 

    y(n) =Σh(k)x(n−k), −∞ ≤ n ≤ ∞ k=−∞ 

    Determinati on of stabil i ty of a LTI system, given its impulse response:

    An LTI system is stable if its impulse response, h(n) is absolutely summable i.e,

    ∞ 

    Σ h(n)

  • 8/20/2019 IT1201S&sUnitNotes

    18/18

     

    18

    Z-transform analysis of LTI systems:

    Transfer function of an LT I system:  The transfer function of an LTI system is defined as the ratio of the Z-transform of its

    output to that of its input i.e.,

    H(Z) = [Y(Z)/X(Z)]

    Impul se response of an LTI system descri bed by the given dif ference equation:  The impulse response of an LTI system is the inverse Z-transform of the transfer

    function H(Z) i.e.,

    h(n)=Z−1[H(Z)]

    Frequency response of an LTI system:The frequency response of an LTI system is defined as the Z-transform computed at

    the unit circle in the Z plane i.e.,

    H(e jω)=H(Z)|Z=e jω 

    Response of an LTI system descri bed by given di ff erence equation to any input, x(n ):The response of an LTI system described by the given difference equation of the form

     b0 y(n) + b1 y(n−1) + … + b N y(n− N)=a0 x(n) + a1 x(n−1) + … + aM x(n−M)

    to any input x(n) is given by

    y(n)=Z−1[H(Z)X(Z)]