39
Background Part I: Martingale Problem Under Sublinear Expectation Part II: Itˆo’s calculas in the sublinear expectation space Summary Itˆ o’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path Xin Guo UC Berkeley METE Conference, June 8, 2018 Based on the joint work with Chen Pan (NUS) Guo & Pan Itˆo’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough

It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Ito’s Calculas under Sublinear Expectations viaRegularity of PDEs and Rough Path

Xin Guo

UC Berkeley

METE Conference, June 8, 2018

Based on the joint work with Chen Pan (NUS)

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 2: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Work related to Mete

1. W. H. Fleming and H. M. Soner (1992), Controlled Markov Processesand Viscosity Solutions, Springer-Verlag, New York.2. Cheridito, H. M. Soner, N. Touzi, and N. Victoir (2007), Second-orderbackward stochastic differential equations and fully nonlinear parabolicPDEs, Communications on Pure and Applied Mathematics, LX,1081-1110.3. H. M. Soner, N. Touzi, and J. F. Zhang (2011), Martingalerepresentation theorem for the G -expectation, Stochastic Processes andtheir Applications, 121(2), 265-287.4. H. M. Soner, N. Touzi, and J. F. Zhang (2011), Quasi-sure stochasticanalysis through aggregation, Electronic Journal of Probability, 16(67),1844-1879.5. H. M. Soner, N. Touzi, and J. F. Zhang (2012), Well-posedness ofsecond order backward SDEs, Probability Theory and RelatedFields,153(1-2), 149-190.

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 3: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Outline

1 Background

2 Part I: Martingale Problem Under Sublinear Expectation

3 Part II: Ito’s calculas in the sublinear expectation space

4 Summary

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 4: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Linearity in probability theory

1-1 correspondence between linear expectation and additiveprobability measure,

P(X ∈ A) = E [1A].

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 5: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Sublinear Expectation E

Given χ (e.g. all bounded measurable random variables), E : χ→ R issublinear iff

(a) Monotonicity: If X ≤ Y , then E [X ] ≤ E [Y ]

(b) Constant preserving: E [X + c] = E [X ] + c

(c) Sublinearity: E [X + Y ] ≤ E [X ] + E [Y ].

(d) Positive homogeneity: E [λX ] = λE [X ] for all λ > 0

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 6: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

No more 1-1 correspondence between E and P

ClearlyP(A) = E [1A] = Ef [1A]

for all f continuous and strictly increasing, f (x) = x for x ∈ [0, 1], whereEf [X ] = f −1(E [f (X )]).

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 7: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Linear and sublinear expectations (Denis, Hu and Peng (2011))

There exists a weakly compact family of probability measures P such that

E [X ] = maxP∈P

EP [X ],

where EP is the linear expectation with respect to P, for a proper classof random process X .

Sublinear expectation and model uncertainty

Sublinear expectation “measures” the model uncertainty, the bigger theexpectation E , the more the uncertainty.

E1[X ] ≤ E2[X ] iff P1 ⊂ P2

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 8: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Sublinear expectation and risk measure

Letρ(X ) = E [−X ]

Then we get a coherent risk measure ρ : χ→ R

(a) Monotonicity: If X ≥ Y , then ρ(X ) ≤ ρ(Y ).

(b) Constant translatability: ρ(X + c) = ρ(X )− c

(c) Convexity: ρ(αX + (1− α)Y ) ≤ αρ(X ) + (1− α)ρ(Y ),α ∈ [0, 1].

(d) Positive homogeneity: ρ(λX ) = λρ(X ) for all λ > 0.

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 9: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

G - expectation theory (Peng (2005))

G -normal distribution N(0× [σ2, σ2]), characterized by the G -heatequation

∂tu − G (D2u) = 0, u|t=0 = φ.

Here G (·) : R→ R is a monotonic, sublinear function, with

G (γ) =1

2sup

α∈[σ2,σ2]

γα,

G− Brownian Motion, via the notion of G -independence

Ito’s calculus developed under G -Ito’s isometry

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 10: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Link between PDEs and probability

Independence: probability= measure theory + notion ofindependence

Regularity: the subject of PDEs/Control

Stroock and Varadhan (1979) explored the regularity of the solutionto a linear PDE for the uniqueness of the solution to a martingaleproblem

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 11: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Our work

Propose and study the martingale problem in a sublinear expectationspace in the spirit of Stroock and Varadhan (1979)

Build Ito’s calculus for the canonical process in this sublinearexpectation space

Key ideas: Regularity of fully nonlinear PDEs and rough path theory

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 12: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Martingale problem

Find a family of operators Ett≥0 on a sublinear expectation space(Ω,H) such that

ϕ(Xt)−∫ t

0

G (Xθ, ϕx(Xθ), ϕxx(Xθ)) dθ, t ≥ 0

is an Et-martingale for all ϕ ∈ C∞0 (Rd).

G : Rd × Rd × Sd → R continuous with desirable properties

Ω = Cx0 ([0,∞);Rd) and Xt(ω) = ω(t), ω ∈ Ω.

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 13: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Our martingale problems vs classical martingale problems

Classical M.P.’s Our M.P.’s

to find a probability measure Pon (Ω,F)

to find a sublinear expectation E on(Ω,H)

X0 = x P-a.s. X0 = x in L1E or L2

Eϕ(Xt) −

∫ t

0Lθϕ(Xθ) dθ is a P-

martingale for ∀ϕ ∈ C∞0

ϕ(Xt) −∫ t

0G (Xθ, ϕx(Xθ), ϕxx(Xθ))dθ is

an E-martingale for ∀ϕ ∈ C∞0Lθ = 1

2

∑aij(θ, ·) ∂2

∂xi∂xj+∑

bi (θ, ·) ∂∂xi

is a linear differen-tial operator

Nonlinear PDE associated with G : Rd ×Rd × Sd → R is a continuous functionwith some properties

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 14: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Choice of G

A function G : Rd × Rd × Sd → R

G = G (x , p,A) = supγ∈Γ

1

2tr[a(x , γ)A] + (b(x , γ), p)

,

Γ given compact metric space

a(x , γ) = σ(x , γ)σ′(x , γ) positive semidefinite

σ, b ∈ C (Rd × Γ), and σ and b uniformly bounded and uniformlyLipschitz continuous with respect to x

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 15: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

This function G : Rd × Rd × Sd → R satisfies

A. Subadditivity G (x , p + p,A + A) ≤ G (x , p,A) + G (x , p, A);

B. Positive Homogeneity G (x , λp, λA) = λG (x , p,A);

C. Monotonicity G (x , p,A) ≤ G (x , p,A + A);

D. G is uniformly Liptschitz continuous with respect to x .

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 16: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

PDEs associated with G

For a given G , the associated state-dependent parabolic PDE∂tu(t, x)− G (x ,Du(t, x),D2u(t, x)) = 0, (t, x) ∈ (0,∞]× Rd ,

u(0, x) = ϕ(x), x ∈ Rd .

a(·, ·) ≡ I and b(·, ·) ≡ 0, this PDE (P) is the heat equation

In general, this type of PDE (P) corresponds to the HJB equationfrom stochastic control

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 17: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Known results about related PDEs

Fleming and Soner (1992)

There exists a unique viscosity solution for this PDE (P) with polynomialgrowth, assuming ϕ(x) ∈ C (Rd) with a polynomial growth.

Evans-Krylov (1982)

For a class of convex, fully nonlinear PDEs, if ϕ(x) ∈ Cb([0,T ]× Rd),then the solution u possess the following properties:

I) u ∈ Cb([0,T ]× Rd);

II) there exists a constant α0 ∈ (0, 1) only depending on d ,K , ε suchthat for each κ > 0, ‖u‖C 2+α0 ([κ,T ]×Rd ) <∞.

Furthermore, if ϕ ∈ C 2+α1 (Rd) and bounded, thenu ∈ C 2+α([0,T ]× Rd) for α = α0 ∧ α1 ∈ (0, 1).

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 18: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Properties of such PDEs

By the property of G , the stability of the viscosity solution andEvans-Krylov (1982),

Smooth approximation of viscosity solutions

If ϕ(x) ∈ C∞0 (Rd) The unique solution of the PDE can be approximatedby C 2+α solutions of the same type of PDEs on compact subsets.

Properties of solutions to the PDEs

Let uϕ ∈ C ([0,T ]× Rd) denote the unique solutions of (P) withpolynomial growth, respectively. Then

uϕ+c = uϕ + c ,

uϕ − uφ ≤ uϕ−φ,

uλϕ = λuϕ, λ ≥ 0.

with c ∈ R a constant, and ϕ, φ continuous with polynomial growth.

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 19: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Constructing conditional expectations

Finite dimensional construction via backward induction, in the spiritof BSDE by using the unqiue solution of the PDEs

Extend to a Banach space under the norm ‖ · ‖1 = E [| · |] or‖ · ‖2 =

√E [| · |2].

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 20: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

The finite dimensional construction

Ω = Cx0 ([0,∞);Rd), Xt(ω) = ωt ∈ Ω is canonical

Define an operator Tt [ϕ(·)](x) = u(t, x), where u is the uniqueviscosity solution of the PDE

Take ϕ in a proper function space, say Cl,Lip((Rd)N) whereCl.Lip(Rn) is the space of real-valued continuous functions defined onRn such that for all ϕ ∈ Cl.Lip(Rn),

|ϕ(x)− ϕ(y)| ≤ C (1 + |x |m + |y |m)|x − y |, ∀ x , y ∈ Rn

for some C > 0,m ∈ N depending on ϕ.

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 21: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Set ξ(ω) = ϕ(Xt1 , · · · ,XtN ), 0 = t0 ≤ t1 ≤ · · · ≤ tN ≤ T ,

Define Et by

Et [ξ] = ϕN−j(ωt1 , · · · , ωtj ), if t = tj , 0 ≤ j ≤ N,

Here

ϕ1(x1, · · · , xN−1) = TtN−tN−1[ϕ(x1, · · · , xN−1, ·)](xN−1),

. . .

ϕN−j(x1, · · · , xj) = Ttj+1−tj [ϕN−j−1(x1, · · · , xj , ·)](xj),

. . .

ϕN−1(x1) = Tt2−t1 [ϕN−2(x1, ·)](x1),

ϕN = Tt1 [ϕN−1(·)](x0),

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 22: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Sublinear expectation space (Ω,H, E)

(ΩT ,HT , E) is a sublinear expectation space, withΩT := ω·∧T ;ω ∈ Ω andHT := Lip(ΩT ) = ϕ(Xt1 , · · · ,XtN );ϕ ∈ Cl.Lip((Rd)N) for someN ∈ N and 0 ≤ t1 ≤ · · · ≤ tN ≤ TFor each t ∈ [0,T ], one can extend the spaceLip(Ωt) ⊂ Lip(ΩT ), t ≤ T to a Banach space LiE(Ωt) under the norm

‖ · ‖1 = E [| · |] or ‖ · ‖2 =√E [| · |2]. Set H = LiE := ∪T≥0L

iE(ΩT )

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 23: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Properties of EGiven such a sublinear expectation space (Ω,H, E). For any ξ, η ∈ H

(Monotonicity)Et [ξ] ≤ Et [η] if ξ ≤ η

(Constant preserving) For c ∈ R constant,

E [ξ + c] = E [ξ] + c

(Tower property)

Es Es+h = Es , h > 0.

(Subadditivity) Et [ξ + η] ≤ Et [ξ] + Et [η].(Positive homogeneity)

Es [ξη] = ξ+Es [η] + ξ−Es [−η].

In particular,Et [λξ] = λEt [ξ]

for any constant λ ≥ 0.For the time dependent G , the tower property becomes the semi-groupproperty.

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 24: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Martingale Problem

Let Ω = Cx([0,∞);Rd) with ω0 = x ∈ Rd , set Xt(ω) := ωt . Given thePDE (P) with ϕ ∈ C∞0 (R).

ϕ(Xt)−∫ t

0

G (Xθ, ϕx(Xθ), ϕxx(Xθ)) dθ] = 0, 0 ≤ s ≤ t <∞.

is an E− martingale. Here E = Et with Et the family of conditionalexpectations on the sublinear expectation space generated from the PDE(P).

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 25: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

E-Martingale

Given a sublinear expectation space (Ω,H, E), a stochastic process(ξt)t≥0 is a collection of random variables on (Ω,H), i.e., for each t ≥ 0,ξt ∈ LiE(Ωt), i = 1, 2.A stochastic process (Mt)t≥0 is called an E-martingale if for eacht ∈ [0,∞),Mt ∈ LiE(Ωt), and for each s ∈ [0, t],

Es [Mt ] = Ms .

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 26: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Key idea to solving the martingale problem

The positive homogeneity, monotonicity, and the constant preservingof E leads to

Given a sublinear expectation space (Ω,H, E). Let X ∈ H be given.Then for each sequence ϕn∞n=1 ⊂ C(Rd) satisfying ϕn ↓ 0, we haveE [ϕn(X )] ↓ 0.

Focus on the simple process and smooth solutions of PDE.Take π = θi ; θ0 = s < θ1 < · · · < θK = t,K ∈ N, ‖π‖ =max1≤k≤K |∆θk |,∆θk = θk − θk−1

g(Xθ) := G (Xθ, ϕx(Xθ), ϕxx(Xθ)).Given a smooth PDE solution in the sense of Evans-Krylov,

Es [K∑

k=1

ϕ(Xθk )− ϕ(Xθk−1)− g(Xθk−1

)∆θk] = o(1), as ‖π‖ → 0.

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 27: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

The proof needs ∂tu to be uniformly α2 -Holder continuous in t, because

Eθk−1[ϕ(Xθk )− ϕ(Xθk−1

)− g(Xθk−1)∆θk ]

=Eθk−1[ϕ(Xθk )]− ϕ(Xθk−1

)− g(Xθk−1)∆θk

= u(∆θk ,Xθk−1)− u(0,Xθk−1

)− g(Xθk−1)∆θk

=

[∂u

∂t(0,Xθk−1

)− g(Xθk−1)

]∆θk + O((∆θk)1+ α

2 )

= O((∆θk)1+ α2 )

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 28: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Solution of martingale problem leads to

Key moment estimates

Given T > 0. Let t ∈ [0,T ] and h > 0 such thatti = t + ih ∈ [0,T ], i = 0, 1, 2, 3. Then we have the following estimates

|Et [±(Xt − Xs)]| ≤ L|t − s|,Et [(Xt+h − Xt)

2n] ≤ C (n, L,T )hn,

Et [±(Xt+2h − Xt+h)(Xt+h − Xt)]| ≤ L√

C (1, L,T )h32 ,

Et [|(Xt1 − Xt0 )(Xt2 − Xt1 )(Xt3 − Xt2 )|] ≤ C (1, L,T )32 h

32 ,

where L is the Lipschitz constant of G , C (n, L,T ) is a constantdepending only on n, L and T .

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 29: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Remark

Our estimate is consistent with the G -framework where independentincrements assumption is needed.Take Xt = Bt + 〈B〉t , then under the G -expectation E,

E[(X2h − Xh)Xh] = E[(B2h + 〈B〉2h − Bh − 〈B〉h)(Bh + 〈B〉h)]

∼O(h32 ).

The moment estimates are crucial for establishing Ito’s calculus asthe random process in the sublinear expectation space constructedfrom the PDE in general has no independent increment

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 30: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Moments estimates leads to

〈X 〉tL2E= lim

n→∞

∑ΠN

|Xtk+1− Xtk |2,

∫ T

0

φ(Xt) dXtL2E= lim‖ΠN‖→0

∑tk∈ΠN

φ(Xtk )(Xtk+1− Xtk ),

with ΠN = tk ; tk = kt/N, k = 0, 1, . . . ,N

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 31: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

For general φ(X ) and general partition

To show the limit is independent of the partition, need “sewing lemma”for estimating error term.To see this, assume φ ∈ C 1(R) for each u ∈ [s, t], and approximateφ(Xu) by

φ(Xu) ≈ φ(Xs) + φ′(Xs)Xs,u.

Then formally the integral∫ T

0

φ(Xθ) dXθ ≈∑ΠN

[φ(Xtk )Xtk ,tk+1

+ φ′(Xtk )

∫ tk+1

tk

Xtk ,θ dXθ

],

with the error term

R(s, t) :=

∫ t

s

φ(Xθ) dXθ −[φ(Xs)Xs,t + φ′(Xs)

∫ t

s

Xs,θ dXθ

]Establishing “Sewing Lemma” to estimate

‖R(s, t)‖2 :=√E [|R(s, t)|2] ≤ C |t − s|β , for some β > 1

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 32: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Generalized Ito’s isometry

Suppose ϕ ∈ C 1(R) and ϕ′ ∈ P. Then

Es

(∫ s+h

s

ϕ(Xθ) dXθ

)2 ≤ C1h, (1)

Es

(∫ s+h

s

ϕ(Xθ) dXθ

)4 ≤ C2h

2, (2)

Es

(∫ s+h

s

ϕ(Xθ) dXθ

)]≤ C3h, (3)

with h > 0, s, s + h ∈ [0,T ], and C1,C2,C3 depending on ϕ, L, and T ,

P = ϕ ∈ C (R) : there exist constants C > 0, p ∈ N, γ ∈ (0, 1] s.t.

|ϕ(x)− ϕ(y)| ≤ C (1 + |x |p + |y |p)|x − y |γ for any x , y ∈ R.

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 33: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Ito’s formula

Let

ηt = η0 +

∫ t

0

µ(Xθ) dθ +

∫ t

0

ρ(Xθ) d〈X 〉θ +

∫ t

0

ς(Xθ) dXθ, 0 ≤ t ≤ T ,

where η0 ∈ R is a constant. Suppose ς ∈ C 1(R) and ς ′ ∈ P. Then, forany f ∈ C 2(R) satisfying f ′′ ∈ P,

f (ηt) = f (η0) +

∫ t

0

f ′(ηθ) dηθ +1

2

∫ t

0

f ′′(ηθ)ς2(Xθ) d〈X 〉θ.

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 34: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Integration by parts

Let φ, ψ ∈ C 1(R), and φ′, ψ′ ∈ P, then under the L2E norm

φ(Xt)ψ(Xt)− φ(Xs)ψ(Xs) =

∫ t

s

φ(Xθ) dψ(Xθ)

+

∫ t

s

ψ(Xθ) dφ(Xθ) + 〈φ(X ), ψ(X )〉s,t

Here the cross variation process 〈φ(X ), ψ(X )〉 is defined by

〈φ(X ), ψ(X )〉 =1

4[〈φ(X ) + ψ(X )〉 − 〈φ(X )− ψ(X )〉]

and the quadratic variation 〈φ(X )〉t defined as

〈φ(X )〉t = φ(Xt)2 − φ(X0)2 − 2

∫ t

0

φ(Xθ) dφ(Xθ) in L2E .

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 35: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Summary

A martingale problem under sub-linear expectation is proposed andstudied, and associated Ito’s calculus is developed

The analytical properties of PDE, especially the semi-group propertyand the regularity of the solution, replace the dependence structureof the random process X , and leads to generalized Ito’s isometry.

Extension to path dependent PDEs or jump processes?

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 36: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

More related works

Construction of stochastic integrals with respect to semi-martingale:Bichleter (1981), Nutz (2012),

G-SDEs with rough paths: Geng, Qian, and Yang (2014), Peng andZhang (2015)

Rough path: Lyons (1998), Friz and Hairer (2014)

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 37: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Reference

Cheridito, H. M. Soner, N. Touzi, and N. Victoir (2007), Second-order backward stochastic differential equations and fullynonlinear parabolic PDEs, Communications on Pure and Applied Mathematics,LX, 1081-1110.

L. C. Evans (1982), Classical solutions of fully nonlinear, convex, second-order elliptic equations, Communications in Pure andApplied Mathematics, 35(3), 333-363.

D. Feyel and A. de La Pradelle (2006), Curvelinear integrals along enriched paths, Electronic Journal of Probability 16(34),860-892.

P. Friz and M. Hairer (2014), A Course on Rough Paths – with an Introduction to Regularity Structures, Springer, Berlin.

W. H. Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York.

X. Geng, Z. Qian, and D. Yang (2014), G -Brownian motion as rough paths and differential equations driven by G -Brownianmotion, Seminaire de Probabilites XLVI, Lecture Notes in Mathematics 2123, Springer, New York.

X. Guo, C. Pan (2018). Ito’s calculus under sublinear expectations via regularities of PDEs and rough path, SPA

X. Guo, C. Pan and S. Peng (2015). Martingale problem under nonlinear expectations, MAFE

I. Karatzas and S. E. Shreve (1991), Brownian Motion and Stochastic Calculus, 2nd edition, Springer-Verlag, New York.

N. V. Krylov (1982), Boundedly nonhomogeneous elliptic and parabolic equations, Izvestiya Akad. Nauk SSSR, ser. mat. 46(3),487-523; and translated in Mathematics of the USSR, Izvestiya 20(3), 459-492.

T. J. Lyons (1998), Differential equations driven by rough signals, Revista Matematica Ibreoamericana, 14(2), 215-310.

S. G. Peng (1991), Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stochastics andStochastic Rep., 37(1-2), 61-74.

M. Nutz (2012), Pathwise construction of stochastic integrals, Electronic Communications in Probability , 17(24), 1-7.

S. G. Peng and H. Zhang (2015), Wong-Zakai approximation through rough paths in the G -expectation framework, Preprint,

H. M. Soner, N. Touzi, and J. F. Zhang (2011), Martingale representation theorem for the G -expectation, Stochastic Processesand their Applications, 121(2), 265-287.

H. M. Soner, N. Touzi, and J. F. Zhang (2011), Quasi-sure stochastic analysis through aggregation, Electronic Journal ofProbability, 16(67), 1844-1879.

H. M. Soner, N. Touzi, and J. F. Zhang (2012), Well-posedness of second order backward SDEs, Probability Theory and RelatedFields ,153(1-2), 149-190.

D. W. Stroock and S. R. S. Varadhan (1969), Diffusion processes with continuous coefficients, I and II, Communications on Pureand Applied Mathematics, 22, 345-400 and 479-530.

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 38: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

u ∈ Cα(Q), α ∈ (0, 1], if

‖u‖Cα(Q) := supx 6=y ,x,y∈Rd

s 6=t,s,t∈[0,T ]

|u(t, x)− u(s, y)|(|t − s| 12 + |x − y |)α

<∞.

u ∈ C 2+α(Q), α ∈ (0, 1], if

‖u‖C(Q)+‖∂tu‖C(Q)+‖Du‖C(Q)+‖D2u‖C(Q)+‖∂tu‖Cα(Q)+‖D2u‖Cα(Q) < ∞.

C∞0 (Rd) is the space of C∞ functions having compact support onRd .

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path

Page 39: It^o’s Calculas under Sublinear Expectations via ... · Fleming and H. M. Soner (1992), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York. 2. Cheridito,

BackgroundPart I: Martingale Problem Under Sublinear ExpectationPart II: Ito’s calculas in the sublinear expectation space

Summary

Happy Birthday, METE!

Guo & Pan Ito’s Calculas under Sublinear Expectations via Regularity of PDEs and Rough Path