14
IVB. Geometric optics 2. Reflection 1. Wave front and rays 1 2 2 1 3. Refraction: Snell’s Law 2 2 1 1 sin sin n n index of refraction: v c n 1 2 2 1 f f 1 2 1 2 2 1 v v n n rays wave fronts Example: 1 2 2 3 n 1 n 2 n 3 3 3 2 2 1 1 sin sin sin n n n 1 3 1 3 If n n in out normal to surface diffuse reflection 2 3 from t independen is n 1

IVB. Geometric optics 2. Reflection 1. Wave front and rays 3. Refraction: Snell’s Law index of refraction: rays wave fronts Example: n1n1 n2n2 n3n3 inout

Embed Size (px)

Citation preview

Page 1: IVB. Geometric optics 2. Reflection 1. Wave front and rays 3. Refraction: Snell’s Law index of refraction: rays wave fronts Example: n1n1 n2n2 n3n3 inout

IVB. Geometric optics

2. Reflection

1. Wave front and rays

1 221

3. Refraction: Snell’s Law

2211 sinsin nn index of refraction:v

cn 1

221 ff 1

2

1

2

2

1

v

v

n

n

rays

wave fronts

Example:

12

23

n1 n2 n3

332211 sinsinsin nnn

1313 If nn

in out

normal to surface

diffuse reflection

23 fromt independen is n

1

Page 2: IVB. Geometric optics 2. Reflection 1. Wave front and rays 3. Refraction: Snell’s Law index of refraction: rays wave fronts Example: n1n1 n2n2 n3n3 inout

Example:

?

50

33.1

00.1

2

1

2

1

n

n2211 sinsin nn

35

50sin33.1

00.1sinsin

2

12

12

n

n

2

Page 3: IVB. Geometric optics 2. Reflection 1. Wave front and rays 3. Refraction: Snell’s Law index of refraction: rays wave fronts Example: n1n1 n2n2 n3n3 inout

4. Total internal reflection

1n 2

1

1

21

21

sin 0

900

n

nCC

21 nn 12 nn

2n

Example:

?

00.1

52.1

2

1

C

n

nn

1.41

52.1

11sin

1

2

C

C nn

n

2

1

3

900 12

Page 4: IVB. Geometric optics 2. Reflection 1. Wave front and rays 3. Refraction: Snell’s Law index of refraction: rays wave fronts Example: n1n1 n2n2 n3n3 inout

1) Binoculars often use total internal reflection; this gives true 100% reflection, which even the best mirror cannot do.

4a. Applications of total internal reflection

2) Fiber optics.

The typical value of the index of refraction for optical fibers:•for the core n=1.48•for the cladding n=1.46

4

An image can be formed using multiple small fibers

Light will be transmitted along the fiber even if it is not straight

6.8048.1

46.1sin

1

2 CC n

n

Page 5: IVB. Geometric optics 2. Reflection 1. Wave front and rays 3. Refraction: Snell’s Law index of refraction: rays wave fronts Example: n1n1 n2n2 n3n3 inout

5. Plane mirror

O I

dodi

O I

do di

Image in plane mirror:•virtual•erect•the same size

do = di

6. Comments about objects and images created by different optical instruments: curved mirrors, lenses and their combinations

Image:•real or virtual •erect or inverted•lager, smaller, or the same size as the object

ho = hi

5

Page 6: IVB. Geometric optics 2. Reflection 1. Wave front and rays 3. Refraction: Snell’s Law index of refraction: rays wave fronts Example: n1n1 n2n2 n3n3 inout

7. Spherical mirror

1) Mirror equation

C di

do

h

fdd

fdd

io

oi

if

if

fdd i

111

0

focus

2

f

Rf

Example:

?

0.3

0.1

i

o

d

md

mR

mm

d

mmmdRd

i

i

6.00.5

0.3

0.3

0.5

0.3

1

0.1

2121

0

6

Page 7: IVB. Geometric optics 2. Reflection 1. Wave front and rays 3. Refraction: Snell’s Law index of refraction: rays wave fronts Example: n1n1 n2n2 n3n3 inout

2) Magnification

Co

i

o

i

d

d

h

hm

dido

imageerect - 0 if

image inverted - 0 if

m

m

Example: What is magnification in the previous example?

2.00.3

6.0

m

m

d

dm

o

iThis image is real, inverted,and 5 times smaller than the object

7

Page 8: IVB. Geometric optics 2. Reflection 1. Wave front and rays 3. Refraction: Snell’s Law index of refraction: rays wave fronts Example: n1n1 n2n2 n3n3 inout

3) Graphical method

8

Page 9: IVB. Geometric optics 2. Reflection 1. Wave front and rays 3. Refraction: Snell’s Law index of refraction: rays wave fronts Example: n1n1 n2n2 n3n3 inout

4) Image and object at various distances

C F

C F

fdd i

111

0

focus

2

f

Rf

o

i

o

i

d

d

h

hm

0f=R/22f=R 9

Page 10: IVB. Geometric optics 2. Reflection 1. Wave front and rays 3. Refraction: Snell’s Law index of refraction: rays wave fronts Example: n1n1 n2n2 n3n3 inout

magnification image mirror do di

m<0 inverted, real concave do>f di>f

m>1

0<m<1

upright, virtual concave

convex

0<do<f

0<do

di<0

-f<di<0

10

Page 11: IVB. Geometric optics 2. Reflection 1. Wave front and rays 3. Refraction: Snell’s Law index of refraction: rays wave fronts Example: n1n1 n2n2 n3n3 inout

Example: You are standing 3.0 m from a convex security mirror in a store. You estimate the height of your image to be half of your actual height. Estimate the radius of curvature of the mirror.

o

i

o

i

d

d

h

hm

Rfdd i

2111

0

?

0.3

021

0

R

hh

md

i

021 dd i

Rdd o

221

0

mdR 0.62 0

11

Page 12: IVB. Geometric optics 2. Reflection 1. Wave front and rays 3. Refraction: Snell’s Law index of refraction: rays wave fronts Example: n1n1 n2n2 n3n3 inout

Example: The magnification of a convex mirror is +0.65 for objects 2.2 m from the mirror. What is the focal length of this mirror?

4.1m.f

?

2.2

65.0

0

f

md

m

o

i

o

i

d

d

h

hm 0mdd i

fdd i

111

0

fmdd

111

00

fmd

m 11

0

165.0

2.265.0

10

m

m

mdf

12

Page 13: IVB. Geometric optics 2. Reflection 1. Wave front and rays 3. Refraction: Snell’s Law index of refraction: rays wave fronts Example: n1n1 n2n2 n3n3 inout

Example: A shaving/makeup mirror is designed to magnify your face by a factor of 1.33 when your face is placed 20.0 cm in front of it. (a)What type of mirror is it? (b) Describe the type of image that it makes of your face. (c) Calculate the required radius of curvature for the mirror.

i i

o o

h dm

h d

i 26.6cmd

80.6cmf

2 2 80.6cm 161cmR f

Solution:(a) To produce a larger image requires a concave mirror. (b) The image will be erect and virtual. (c)

fdd i

111

0

?

0.20

33.1

0

R

cmd

m

13

Page 14: IVB. Geometric optics 2. Reflection 1. Wave front and rays 3. Refraction: Snell’s Law index of refraction: rays wave fronts Example: n1n1 n2n2 n3n3 inout

Example1: Concave spherical mirrors produce images which A) are always smaller than the actual object B) are always larger than the actual objectC) are always the same size as the actual objectD) could be smaller than, larger than, or the same size as the actual object, depending on the placement of the object

Example2: Convex spherical mirrors produce images which A) are always smaller than the actual object B) are always larger than the actual object C) are always the same size as the actual object D) could be larger than, smaller than, or the same size as the actual object, depending on the placement of the object

Example3: A single concave spherical mirror produces an image which is A) always virtual B) always realC) real only if the object distance is less than fD) real only if the object distance is greater than f

Example4: A single convex spherical mirror produces an image which is A) always virtual B) always real C) real only if the object distance is less than fD) real only if the object distance is greater than f

14