16
Jornadas Técnicas “Transferencia de I+D+i para el desarrollo sostenible de frutales tropicales en la Macaronesia” Lanzamiento del proyecto FRUTTMAC. 27 y 28 de noviembre 2019. ICIA. Valle Guerra. La Laguna. Tenerife. Islas Canarias Jana Alonso Lorenzo Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC) Dpto. de Agrobiología y Medio Ambiente (IPNA-CSIC) La Laguna. Tenerife. Islas Canarias.

Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

Jornadas Técnicas “Transferencia de I+D+i para el desarrollo sostenible de frutales tropicales en la Macaronesia”

Lanzamiento del proyecto FRUTTMAC.

27 y 28 de noviembre 2019. ICIA. Valle Guerra. La Laguna. Tenerife. Islas Canarias

Jana Alonso Lorenzo Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC) Dpto. de Agrobiología y Medio Ambiente (IPNA-CSIC) La Laguna. Tenerife. Islas Canarias.

Page 2: Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

Consejo Superior de Investigaciones Científicas (CSIC)1939

1956Instituto de Productos Naturales y Agrobiología

(IPNA)

1970 Grupo de Fertilidad de Suelos y Nutrición Vegetal

2001

Page 3: Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

Grupo de Fertilidad de suelos y Nutrición Vegetal: Más de 40 años de experiencia en fertilidad de suelos y nutrición de diferentes cultivos de las islas: ‣ Plátano. ▸ Proteas ‣ Aguacate ▸ Rosa ‣ Piña tropical ‣ Patata ‣ Lechuga

Varias tesis doctorales dirigidas (≈10) Contratos con empresas y patentes: ‣ UNELCO (Endesa), estudio de suelos y plantas alrededor de

Centrales térmicas de la isla de Tenerife ‣ Proteas La Palma, cultivo y comercialización ‣ Patentes, estimulación de la defensa de plantas y resistencia

frente a plagas Servicio de Fertilidad de Suelos (SFS)

Page 4: Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

22018%

23019%

15512%

59548%

323%

Suelos

Aguas

BIOF/MO

MV

AL

(B) Año 2018

23026%

354%

12013%

492; 56%

71%

(A) Año 2017

Servicio de Fertilidad de Suelos (SFS) – COMPETENCIAS: Proyectos de Investigación con distintas instituciones canarias: ‣ CDTI, regeneración y optimización de suelos en agricultura ecológica de plátano ‣ Aprovechamiento de residuos de poda para la obtención de compuestos de valor

comercial o industrial ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral y exportación de plantas de protea ‣ Mac 2007-2013: Efectos biólogicos de vinos tintos en la prevención de patologías

ateroscleróticas, oncológicas y neurológicas Apoyo a la agricultura de las islas Canarias mediante el SFS:

Page 5: Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

OBJETIVOS de FRUTTMAC: OBJETIVO 1

OBJETIVO 2: Fomentar la implantación de Buenas Prácticas Agrícolas (BPA) y la gestión sostenible de las explotaciones de frutales tropicales: ✓ 2.1. SALUD DEL SUELO ✓ 2.2. Control fitosanitario ✓ 2.3. Gestión sostenible

OBJETIVO 3

Page 6: Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

SALUD del SUELO:

fao.org/soils-2015

©FAO - April 2015

& BIODIVERSITY& BIODIVERSITYSOILSSOILS

#IYS2015

When these diverse soil organisms interact with one another and withthe plants and animals in the ecosystem, they form a complex web of ecological activity.

Soil is one of nature’s most complex ecosystems: it contains a myriad of organismswhich interact and contribute to the global cycles that make all life possible.

SOIL BIODIVERSITY AND AGRICULTURE

ProtozoaBacteria

FungiMycorrhizal

and saprophytic

NematodesRoot-feeders

ArthropodsPredators

NematodesPredators

Organic MatterWaste, residue and

metabolites from plants,animals and microbes

PlantsShoots and roots Birds

Animals

ArthropodsShredders

NematodesFungal and bacterial

feeders

ProtozoaAmoebe, flagellates

and ciliates

Firsttrophic level

Photosynthesizers

Secondtrophic level

Decomposers, mutualists,pathogens, parasites,

root-feeders

Thirdtrophic level

Shredders, predators,grazers

Fourthtrophic levelHigher levelpredators

Fifth and highertrophic levels

Higher levelpredators

Over 1000 species of invertebratesmay be found in 1 m! of forest soils.

A typical healthy soil might contain:

SOILS HOST A QUARTEROF OUR PLANET’S BIODIVERSITY

hundredsof species of fungi

thousands of speciesof bacteria & actinomycetes

20-30 species of mites

earth worms

50-100 species of insects

Regulation of soilhydrological processes

Maintenanceof soil structure

Gas exchanges andcarbon sequestration

co"

o"

THE SOIL FOOD WEB

Suppression of pests, parasites and diseases

Decompositionof organic matter

Soil detoxification

Nutrient cycling

Symbiotic and asymbiotic relationships with plants and their roots

Plant growth control

Sources of foodand medicines

Agricultural systems and agro-ecological practices such as:agroecology, agroforestry, conservation agriculture, organicfarming and zero-tillage can sustainably increase farmproductivity without degrading the soil and water resources.

The overuse or misuse of agro-chemicalshas resulted in environmental degradation,particularly of soil and water resources.

Clearing forested land or grasslandfor cultivation a!ects the soil environment and drastically reduces the numberand species of soil organisms.

Soil organisms are responsible for performing vital functions in the soil ecosystem:

nematodes

Biodiversity is essential for food security and nutrition.

vertebrate animals

fao.org/soils-2015

©FAO - April 2015

& BIODIVERSITY& BIODIVERSITYSOILSSOILS

#IYS2015

When these diverse soil organisms interact with one another and withthe plants and animals in the ecosystem, they form a complex web of ecological activity.

Soil is one of nature’s most complex ecosystems: it contains a myriad of organismswhich interact and contribute to the global cycles that make all life possible.

SOIL BIODIVERSITY AND AGRICULTURE

ProtozoaBacteria

FungiMycorrhizal

and saprophytic

NematodesRoot-feeders

ArthropodsPredators

NematodesPredators

Organic MatterWaste, residue and

metabolites from plants,animals and microbes

PlantsShoots and roots Birds

Animals

ArthropodsShredders

NematodesFungal and bacterial

feeders

ProtozoaAmoebe, flagellates

and ciliates

Firsttrophic level

Photosynthesizers

Secondtrophic level

Decomposers, mutualists,pathogens, parasites,

root-feeders

Thirdtrophic level

Shredders, predators,grazers

Fourthtrophic levelHigher levelpredators

Fifth and highertrophic levels

Higher levelpredators

Over 1000 species of invertebratesmay be found in 1 m! of forest soils.

A typical healthy soil might contain:

SOILS HOST A QUARTEROF OUR PLANET’S BIODIVERSITY

hundredsof species of fungi

thousands of speciesof bacteria & actinomycetes

20-30 species of mites

50-100 species of insects

Regulation of soilhydrological processes

Maintenanceof soil structure

Gas exchanges andcarbon sequestration

co"

o"

THE SOIL FOOD WEB

Suppression of pests, parasites and diseases

Decompositionof organic matter

Soil detoxification

Nutrient cycling

Symbiotic and asymbiotic relationships with plants and their roots

Plant growth control

Sources of foodand medicines

Agricultural systems and agro-ecological practices such as:agroecology, agroforestry, conservation agriculture, organicfarming and zero-tillage can sustainably increase farmproductivity without degrading the soil and water resources.

The overuse or misuse of agro-chemicalshas resulted in environmental degradation,particularly of soil and water resources.

Clearing forested land or grasslandfor cultivation a!ects the soil environment and drastically reduces the numberand species of soil organisms.

Soil organisms are responsible for performing vital functions in the soil ecosystem:

nematodes

Biodiversity is essential for food security and nutrition.

vertebrate animals

#IYS2015

fao.org/soils-2015

BB008e/1/10.15

©FAO, 2015

Climate change representsa serious threat

to global food security.

Healthy soils provide the largest store of terrestrial carbon.

CLIMATE CHANGECLIMATE CHANGESOILSSOILS HELP TO COMBAT AND ADAPT TO

Poorly managed soilsIf soils are managed poorly or cultivated through unsustainable agricultural practices, soil carbon can be released into the atmosphere in the form of carbon dioxide ( ), which can contribute to climate change.

co!

c c cc ccc c

The carbon cycle is the exchange of carbon (in various forms, e.g., carbon dioxide) between the atmosphere, ocean, terrestrial biosphere and geological deposits.

Soils and the Carbon Cycle

consumer

industry

fossil fuelsbacteria

respiration photo

synthesis

combustion

decayfossil f

uel extr

acti

on

3

1

4

5

5

atmosphericCO!

In some cases, the dead plants and animalsare buried and turn into fossil fuels,such as coal and oil, over millions of years. Humans burn fossil fuels to create energy, which sends most of the carbon back into the atmosphere in the form of CO2.

5

primaryproducer

Plants use CO2 from the atmosphere, waterfrom the soil and sunlight to make their own food and grow in a process called photosynthesis. The carbon they absorbfrom the air becomes part of the plant.

1

Animals that feed on the plants pass the carbon compounds along the food chain.2

Most of the carbon the animals consumeis converted into CO2 as they breathe (respiration), and is released back intothe atmosphere.

3

When the animals and plants die,the dead organisms are eaten by decomposersin the soil (bacteria and fungi) andthe carbon in their bodies is again returnedto the atmosphere as CO2.

4

Greenhouse gas emissions from agriculture, forestry and fisheries have nearly doubled over the past 50 years.

Without greater e!orts to reduce them, they could increase an additional 30% by 2050.

Sustainably managed soils

The steady conversion of grassland and forestland to cropland and grazing lands has resulted in historic losses of soil carbon worldwide.

Land-use conversions and drainage of organic soils for cultivation are responsible for about 10% of all greenhousegas emissions.

10%co!

c

1965 2015

When managed sustainably soils can playan important role in climate change mitigation through carbon sequestration ( ) andby decreasing greenhouse gas emissionsin the atmosphere.

c

20502015

By restoring degraded soils and adopting soil conservation

practices...

...there is major potential to decrease the emissionof greenhouse gases from agriculture, enhance

carbon sequestration and build resilienceto climate change.

co!

2

Forests Croplands

Grazing lands Peatlands

2!

30%+

2!

Greenhouse gases

#IYS2015

fao.org/soils-2015

BB008e/1/10.15

©FAO, 2015

Climate change representsa serious threat

to global food security.

Healthy soils provide the largest store of terrestrial carbon.

CLIMATE CHANGECLIMATE CHANGESOILSSOILS HELP TO COMBAT AND ADAPT TO

Poorly managed soilsIf soils are managed poorly or cultivated through unsustainable agricultural practices, soil carbon can be released into the atmosphere in the form of carbon dioxide ( ), which can contribute to climate change.

co!

c c cc ccc c

The carbon cycle is the exchange of carbon (in various forms, e.g., carbon dioxide) between the atmosphere, ocean, terrestrial biosphere and geological deposits.

Soils and the Carbon Cycle

consumer

industry

fossil fuelsbacteria

respiration photo

synthesis

combustion

decayfossil f

uel extr

acti

on

3

1

4

5

5

atmosphericCO!

In some cases, the dead plants and animalsare buried and turn into fossil fuels,such as coal and oil, over millions of years. Humans burn fossil fuels to create energy, which sends most of the carbon back into the atmosphere in the form of CO2.

5

primaryproducer

Plants use CO2 from the atmosphere, waterfrom the soil and sunlight to make their own food and grow in a process called photosynthesis. The carbon they absorbfrom the air becomes part of the plant.

1

Animals that feed on the plants pass the carbon compounds along the food chain.2

Most of the carbon the animals consumeis converted into CO2 as they breathe (respiration), and is released back intothe atmosphere.

3

When the animals and plants die,the dead organisms are eaten by decomposersin the soil (bacteria and fungi) andthe carbon in their bodies is again returnedto the atmosphere as CO2.

4

Greenhouse gas emissions from agriculture, forestry and fisheries have nearly doubled over the past 50 years.

Without greater e!orts to reduce them, they could increase an additional 30% by 2050.

Sustainably managed soils

The steady conversion of grassland and forestland to cropland and grazing lands has resulted in historic losses of soil carbon worldwide.

Land-use conversions and drainage of organic soils for cultivation are responsible for about 10% of all greenhousegas emissions.

10%co!

c

1965 2015

When managed sustainably soils can playan important role in climate change mitigation through carbon sequestration ( ) andby decreasing greenhouse gas emissionsin the atmosphere.

c

20502015

By restoring degraded soils and adopting soil conservation

practices...

...there is major potential to decrease the emissionof greenhouse gases from agriculture, enhance

carbon sequestration and build resilienceto climate change.

co!

2

Forests Croplands

Grazing lands Peatlands

2!

30%+

2!

Greenhouse gases

El suelo se ha definido como un medio vivo y dinámico en el cual se libra un diálogo biológico entre plantas, organismos y el medio mineral que los acoge

(Gascó, 2001).

El suelo es un sistema autoorganizado y heterogéneo que posee una gran complejidad estructural y funcional debido a la gran diversidad de sus

componentes (abióticos y bióticos), y los procesos que tienen lugar en su seno (Labrador, 2008).

El suelo “un ente vivo” (Tello, 1998)

Page 7: Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

¿Cómo desarrollaremos el OBJETIVO 2.1.?: OBJETIVO 2.1.1: ✓ Estudiar los parámetros químicos y físicos de los suelos de los diferentes cultivos en

las zonas de interés. ✓ Determinar el contenido de materia orgánica ✓ Extracto húmico total: ácidos húmicos y fúlvicos.

OBJETIVO 2.1.2: Determinar la Huella de Carbono y la Huella Hídrica en las fincas de estudio

OBJETIVO 2.1.3: Estudiar la viabilidad de establecer un servicio de diagnóstico de suelos basados en los criterios descrito en los OBJETIVOS anteriores, junto con la actividad biológica de lo mismos.

Page 8: Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

OBJETIVO 2.1.1.: Parámetros químicos y físicos Determinación %MO

% saturación textura

pH conductividad eléctrica

% materia orgánica N, P

K intercambiables

solubles

Page 9: Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

Ác. fúlvico

Ác. húmico

OBJETIVO 2.1.1.: Extracto húmico total: ácidos húmicos y fúlvicos:

Page 10: Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

OBJETIVO 2.1.2.: Colaboración con la empresa Fanegada Medio Ambiente

¿Por qué es importante conocer la HUELLA DE CARBONO y

la HUELLA HÍDRICA?

La agricultura ha sido la responsable del 10,1 % de las emisiones totales de gases de efecto invernadero de la UE en 2015, según datos del Parlamento Europeo. La agricultura es la principal fuente de emisión de CH4 y NO2 y, en menor medida

aunque también importante, de CO2.

Se estima que las tierras de cultivo han sido responsables del 15% del total de emisiones de GEI (Gases Efecto Invernadero) durante la década de los 90. La captación de CO2 por los ecosistemas vegetales constituye un factor a tener en

cuenta en el balance global de carbono.

Page 11: Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

OBJETIVO 2.1.2. - Huella de Carbono “HUELLA DE CARBONO” es un indicador ambiental que pretende reflejar la totalidad de gases de efecto invernadero (GEI) emitidos por efecto directo o indirecto de un individuo, organización (empresa, instituciones, asociaciones…), evento o producto.

GEI emitidos a la atmósfera que tienen efecto sobre el clima: CO2, CH4, NO2, SF6, HFC, PFC, NF3.

Protocolos de estimación y contabilidad de emisiones de GEI: - GHG Protocol (Estándar Corporativo de Contabilidad y Reporte de Gases de Efecto

Invernadero). - Norma ISO 14064 (Norma UNE ISO 14064-1) - Norma UNE-ISO 14069:2013, empleada como guía para la aplicación de la ISO

14064-1 - MAPAMA (actualmente METECO). Herramienta de cálculo y registro.

Page 12: Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

OBJETIVO 2.1.2. - Huella Hídrica “HUELLA HÍDRICA” o “Water Footprint” es un indicador del uso del agua, incluyendo tanto el uso directo como indirecto de un consumidor o productor, así como el volumen total de agua consumida y/o contaminada en todas las etapas de producción de un determinado producto.

Componentes: - Huella hídrica verde: volumen de agua de

lluvia evaporada o incorporada en el producto. - Huella hídrica azul: volumen de agua

superficial o subterránea evaporada o incorporada en el producto.

- Huella hídrica gris: volumen de agua contaminada.

Protocolos: - The Water Footprint Network (WFN) en su guía “Water Footprint Assessment

Manual” (2011). - Norma ISO 14046.

Page 13: Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

OBJETIVO 2.1.3. - Viabilidad de un Servicio Diagnóstico de Suelos

Según los resultados obtenido en los dos objetivos anteriores, se establecerá una herramienta diagnóstica de suelos correlacionando dos

criterios fundamentales: parámetros químicos

y parámetros microbiológicos

(definidos por la Dra. María Carmen Jaizme)

Herramienta que ayudará a los técnicos a manejar el SISTEMA

Page 14: Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

CULTIVOS A ESTUDIAR: Platanera Papaya Mango Piña tropical Aguacate

Page 15: Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

En diciembre de 2018, la Asamblea General de las Naciones Unidas proclamó 2020 Año Internacional de la Sanidad Vegetal (AISV). Este año

constituye una oportunidad única e irrepetible para sensibilizar a escala internacional sobre cómo la protección de la salud vegetal puede ayudar a

eliminar el hambre, reducir la pobreza, proteger el medio ambiente y estimular el desarrollo económico.

Page 16: Jana Alonso Lorenzo - ICIA · 2019. 12. 4. · ‣ Sostenibilidad del cultivo de plátanos tratados con purines enriquecidos y compost ‣ Fertilidad de suelos, nutrición mineral

Take Home Message!