21
January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Se minar 1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

Embed Size (px)

Citation preview

Page 1: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 1

Optical properties of carbon nanotubes I.(Absorption)

Kamarás Katalin MTA SzFKI

Page 2: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 2

Outline

1. Basics of optical properties2. Selection rules3. Polarization effects4. Kataura plot5. Isolated nanotubes

Page 3: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 3

10 – 400 nm

15 – 1000

20 keV – 12 MeV

1 – 2.5

3 – 120 eV

>0.3 mm

1 – 4 meV

0.5 – 1.5 eV

-sugárzás

 

 

400 - 4000

12000 - 24000

<1012 Hz

Tartomány Frekvencia Hullámszám (cm-1) Energia Hullámhossz

Rádióhullámok, mikrohullámok    

Szubmilliméter 1011 – 1012 Hz 10 -30 0.3 – 1 mm

Távoli infravörös (FIR) 0.1 – 10 THz 10 - 700 1 – 90 meV

Infravörös (MIR) 12 – 120 THz 0.05 – 0.5 eV 2.5 – 25

Közeli infravörös (NIR) 120 – 400 THz 4000 - 12000

Látható (VIS) 1.5 – 3 eV 400 – 800 nm

Ultraibolya (UV)    

Röntgen     50 eV – 120 keV 0.01 – 10 nm

  0.1 – 10 pm

m

m

m

The electromagnetic spectrum

Page 4: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 4

I0

IT

IR

Reflexiós Abszorpciósspektroszkópia (transzmissziós)

spektroszkópiaBolometrikus

(direkt abszorpciós)spektroszkópia

IA

Td IeIRRII

000 )1(

Typical optical measurement arrangements

Page 5: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 5

Basics of optical properties

We want to determine the complex dielectric function:

relrelrel i "'~

~

0

SI ! (RTM not in SI)

through the complex index of refraction:

"'~~ innn rel RTM: in

or the absorption coefficient:

EED rel 0~~

0~ kcn

00

"'

~)( c

zn

c

zin

eezE

dispersion absorption

zeIzEzEzI )0()()()( *

dz

dI

I

1

00 '

""2

cnc

n rel Measured: , n”, calculated:

f n’ is slowly varying with , ~ ”BEWARE!

Page 6: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 6

22

22

0 ")1'(

")1'(

nn

nn

I

IR R

’, ”

n’, n”

Frequency dependence of optical functions

i ii

pi

iiii

erel ii

NVm

e

22

2

220

2

11

1

R

Drude-Lorentz dielectric function:

from independent oscillators additive, but n not!because of square root) where absorption is strong, n’ also varies strongly!(because of dispersion relations) where absorption is strong, reflectance is also high!

Page 7: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 7

0TI Fresnel’s equations for normal incidence:

22

22

0 ")1'(

")1'(

nn

nn

I

IR R

R large, if n’>>1or n”>>n’

Reflectance spectroscopy

Extraction of optical constants from reflectance: use of dispersion relations

Kramers-Kronig (KK) transformation:

d

d

Rdd

R )(lnln

2

1)(ln)(

0022

PP

ieRinn

innr

'''1

'''1

i

r

E

En’, n” ’, ”, ...

Because of the integral, broad spectral range or reasonable extensions are needed!

Page 8: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 8

if R<<1, dT eI

IT

0

cddTA log Beer’s law(Lambert-Beer)

specific (molar) absorption coefficient

1][ cm .//1][ konccm

dT log

Absorption spectroscopy (from transmittance)

not a definition! (measured sometimes called “extinction coefficient”)

Transmission can also be subject to KK analysis, if the spectral range is broad enough:

Page 9: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 9

Optical functions of a transparent nanotube

~ -log T and ” ~ is a good approximationabove 3000 cm-1 only!

-log T is a reasonable approximation for the optical conductivity ’=” rather than ”

100 1000 100000

20

40

60

80

100

120

Transparent nanotube

-log T, scaled from KK, scaledReflectance from KK from KK, scaled

,, from KK, scaled

Frequency (cm-1)

Page 10: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 10

Optical functions for extended bands

k-dependence: Ec(k) – conduction band, Ev(k) – valence band, Mcv(k) – dipole matrix elementk=0, but k is not restricted

If we neglect the k-dependence of the matrix elements, we obtain an expression containing the joint density of states nj(E):

Parallel bands contribute most to the absorption

Page 11: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 11

Band structure of nanotubes

n,n (armchair)metallic

n,msemiconducting

n-m=mod 3small-gap

N. Hamada, S. Sawada, A.Oshiyama:PRL 68, 1579 (1992)

Page 12: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 12

Density of states of nanotubesJ.W. Mintmire, C.T. White: PRL 81, 2506 (1998)

First approximation: (see talk of M. Veres)

Page 13: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 13

Selection rules

Selection rules:for Ez: m=0, parity changefor Exy: m= 1, no parity change

z: 13 13,14 14,15 15xy: 12 13, but not 13 14

z-polarized light: 0A0- xy-polarized light: 0E+1

+

u

Page 14: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 14

Depolarization (antenna effect)

Page 15: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 15

Polarized absorption in nanotubes

Due to depolarization, only tubes with their axis parallel to the field show a structured response

Calculation: S. Tasaki, K. Maekawa, T. Yamabe: Phys. Rev. B 57, 9301 (1998)

Experiment: N. Wang, Z.K. Tang, G.D. Li, J.S. Chen: Nature 408, 50 (2000)

Page 16: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 16

Optical spectra of carbon nanotubesSelection rules: only symmetric transitons are allowed

0 5000 10000 15000 20000 25000

Ab

sorb

an

ce

Frequency (cm-1)

Semiconducting nanotube

0 5000 10000 15000 20000 25000

Abs

orba

nce

Frequency (cm-1)

Metallic nanotube

Page 17: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 17

Optical spectra of macroscopic nanotube samples

Háttér: -plazmon

0 5000 10000 15000 20000 250000

1

2

3

4

M11S

22

S11

M00

Rinzler nanotube filmmeasurement:F. Borondics, M. Nikolou, K. Kamarás, D.B. Tanner

Ab

sorb

an

ce

Frequency (cm-1)

P. Petit, C. Mathis, C. Journet, P. Bernier:Chem. Phys. Lett. 305, 370 (1999)

1 eV = 8000 cm-1F

IR MIR

NIR

VIS

UV

Baseline subtraction of high-frequencyabsorption:•“plasmons” (•perpendicular polarization•tube-tube interaction in bundles

Page 18: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 18

Kataura plot - calculated

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu,S. Suzuki, Y. Ohtsuka, Y. Achiba:Synthetic Metals 103, 2555 (1999)

Page 19: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 19

Kataura plot – improved (RTM)

Tubes with the same diameter but different chiralities have different transition energies!

Optical measurements (NIR,VIS)

experimental Kataura plot

Page 20: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 20

Transmission of nanotube film

Z. Wu, Z. Chen, X. Du, J.M. Logan,J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A. F. HebardA.G. Rinzler: Science 305, 1273 (2004)

Page 21: January 24, 2005SZFKI-MFA Carbon Nanotube Learning Seminar1 Optical properties of carbon nanotubes I. (Absorption) Kamarás Katalin MTA SzFKI

January 24, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 21

Isolated nanotubes: absorption

M.J. O’Connell, S.M. Bachilo, C.B. Huffmann, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley:Science 297, 593 (2002)