19
Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST Nano-additives for Nano-additives for Intumescent Materials Intumescent Materials

Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

  • Upload
    amma

  • View
    37

  • Download
    0

Embed Size (px)

DESCRIPTION

Nano-additives for Intumescent Materials. Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST. Outline. Background Nano-additives for intumescent materials High Throughput Methods Image analysis – confocal Flammability of polymers Gradient coatings. - PowerPoint PPT Presentation

Citation preview

Page 1: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

Jeffrey W. GilmanMaterials and Products Group

Fire Science DivisionNIST

Nano-additives for Nano-additives for Intumescent MaterialsIntumescent Materials

Page 2: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

• Background Background • Nano-additives for intumescent materialsNano-additives for intumescent materials• High ThroughputHigh Throughput MethodsMethods

• Image analysis – confocalImage analysis – confocal• Flammability of polymersFlammability of polymers• Gradient coatingsGradient coatings

OutlineOutline

Page 3: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

Gasification of Polystyrene Layered-silicate NanocompositesGasification of Polystyrene Layered-silicate Nanocomposites

Char or

Coke Formation

0

200

400

600

800

1000

1200

1400

1600

0 120 240 360 480 600

PP intercalated + delaminated (mass fraction 2 % silicate) PP-g-MA (mass fraction 0.4 % MA)

PP intercalated + delaminated (mass fraction 4 % silicate)

Hea

t Rel

ease

Rat

e (k

W/m

2 )

Time (seconds)

Flux = 35 kW/m2

Page 4: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

Nano-additivesNano-additives

Layered Double Hydroxide

Mg(OH)64-

Al(OH)63

-

POSSCarbon nanotubes

Coughlin-U Mass

Bellayer - NIST

Zammerano-Chimteclab

Layered Silicates

Nano silica

Kashiwagi - NIST

Page 5: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

New additives for intumescent New additives for intumescent materialsmaterials

Layered Layered Double HydroxidesDouble Hydroxides

Imidazolium Imidazolium DicyanamideDicyanamide

New Char Forming New Char Forming SystemsSystems

Epoxy LDH nanocomposite coating

Polyurea LDH nanocomposite coating

Page 6: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

Parameter Space (~ 10Parameter Space (~ 106 6 Experiments) for Polymer Experiments) for Polymer NanocompositesNanocomposites

Page 7: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

Fluorescence Monitoring of ExfoliationFluorescence Monitoring of Exfoliation

Laser Scanning Confocal Microscope; Laser Scanning Confocal Microscope; 100s of images, 200-1000 nm slices100s of images, 200-1000 nm slices

Charles Wu, Lipiin SungCharles Wu, Lipiin Sung

Page 8: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

0 20 40 60 80 100 120 140 160 180Distance (µm)

0

50

100

150

200

250

Intensity

Profile

20 μm

Distance (μm)

0

20

40

60

80

100

120

140

0 50 100 150

Inte

nsity

(a.u

.)

PS + 0.5% MWNT (NB) 1 min

+ 2σ x

x

- 2σ

x

x

Confocal Laser Scanning Fluorescence MicroscopyConfocal Laser Scanning Fluorescence Microscopy

Page 9: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

PC Mg6Al/DBS+MO Daca 7 min – Step size Confocal 0.40 micron

Projection

Confocal Imaging of LDH NanocompositesConfocal Imaging of LDH Nanocomposites

EVA(18%VA)/DBS+MO Daca 7 min – Step size Confocal 0.4 micron

Projection

Page 10: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

0 20 40 60 80 100 120 140 160 180Distance (µm)

0

50

100

150

200

250

Intensity

Profile

20 μm

Distance (μm)

0

20

40

60

80

100

120

140

0 50 100 150

Inte

nsity

(a.u

.)

0 20 40 60 80 100 120 140 160 180Distance (µm)

0

50

100

150

200

250

Intensity

Profile

20 μm

Distance (μm)

0

20

40

60

80

100

120

140

160

0 50 100 150

Inte

ns

ity

(a

.u.)

0 20 40 60 80 100 120 140 160 180Distance (µm)

0

50

100

150

200

250

Intensity

Profile

20 μm

Distance (μm)

0

20

40

60

80

100

120

0 50 100 150

Inte

nsity

(a.u

.)

0 20 40 60 80 100 120 140 160 180Distance (µm)

0

50

100

150

200

250

Intensity

Profile

20 μm

Distance (μm)

0

20

40

60

80

100

120

140

0 50 100 150

Inte

nsi

ty (a

.u.)

PS + 0.5% MWNT (NB) 10 min

PS + 0.5% MWNT (NB) 1 min

PS + 0.5% DMHDIm-TFB (NB) 10 min

PS + 0.5% MWNT + 0.5% DMHDIm-TFB (NB) 10 min

- The lower intensity regions are possibly due to a MWNTquenching mechanism

-The lower (2/m) the more homogeneous the sample

- Complements the TEM data

2σ/ m = 0.38

Confocal Laser Scanning Fluorescence MicroscopyConfocal Laser Scanning Fluorescence Microscopy

2σ/ m = 0.18 2σ/ m = 0.09 2σ/ m = 0.09

Page 11: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

High Throughput Gradient Approaches

Schematic drawings flame spread on homogenous sample exposed to a gradient flux intensity (Workflow 1)

Page 12: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

Flame SpreadFlame Spread

Low

High

Page 13: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

Different Critical Fluxes for Flame-SpreadDifferent Critical Fluxes for Flame-Spread

PS/APP-PER

50 %50 %40 %20 %

5 %

8

16

24

32

40

48

0 100 200 300 400 500 600 700 800

HIFT mid-line flux (kW/m2)

HIFT flux (kW/m2)

distance mm

50 % 40 % 5 % 20 %

Page 14: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

High Throughput Gradient Approaches

Simultaneous flame spread (MFFS)and heat release measurements using the Cone Calorimeter

HeatRelease rate

Flux

Page 15: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

Conventional Property Characterization:Tensile testing, DMA, UL94, Cone calorimetry

High Throughput Property Characterization:Nanoindentation, flame spead,, rapid calorimetry

High Throughput Material characterization: on-line sensors,Micro-FTIRMicro-FTIR, COnfocalCOnfocal, UV-Vis spectra

Conventional Material Characterization:TEM, GPC, XRD…

Polymers, catalysts, nano-additives, co-additives, and processing variables

Compare results

Compare results

Gradient and Gradient and

Rapid CoatingRapid Coating

SystemSystem

Page 16: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

High Throughput System-2 High Throughput System-2 Gradient CoatingsGradient Coatings

NIST Project team:Cindy Montgomery, Dick Harris

samples

Computer control panel

FluidicSystems (CEO:Bruce Menck)

Page 17: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

High Throughput ScreeningHigh Throughput Screeningof Military Aircraft Topcoat Accelerators of Military Aircraft Topcoat Accelerators ProjectProjectGradient #3, 1000, 1600, 32s, (2100- 2551)/(2700-3040)cm-1

Naomi EidelmanNaomi Eidelman

ISO/CH2

target

0.07

0.67

0.39

Accelerator concentration (% x 10-3)

Cu

rin

g t

ime

(hr)

1.50 1.55 1.60 1.65 1.70 1.75 1.8011

21

16

32

42

37

55

65

60

102

112

107

155

165

160

Page 18: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

ConclusionsConclusionsNano-additives enhance the performance of Nano-additives enhance the performance of

intumescent systemsintumescent systems

Gradient Spray Coating Facility provides Gradient Spray Coating Facility provides rapid sample preparationrapid sample preparation

FTIR-Microscopy, Optical probes and FTIR-Microscopy, Optical probes and Confocal are inherently High Throughput vs. Confocal are inherently High Throughput vs. alternativesalternatives

Gradient Flux Flame Spread and Tign vs Gradient Flux Flame Spread and Tign vs Flux allows HT evaluation of FRFlux allows HT evaluation of FR

Page 19: Jeffrey W. Gilman Materials and Products Group Fire Science Division NIST

Research TeamResearch TeamRick Davis, Takashi Kashiwagi, Marc Nyden, Richard Harris, Greg Linteris, John Rick Davis, Takashi Kashiwagi, Marc Nyden, Richard Harris, Greg Linteris, John

Shields, Walid Awad, Lori Brassell, Michael Smith - BFRL/NIST; Shields, Walid Awad, Lori Brassell, Michael Smith - BFRL/NIST; David VanderHart, Atsuchi Asano, Anthony Bur - MSEL/NISTDavid VanderHart, Atsuchi Asano, Anthony Bur - MSEL/NIST

Joe Lichtenhan –Hybrid PlasticsJoe Lichtenhan –Hybrid PlasticsPaul Maupin –DOEPaul Maupin –DOEPaul C. Trulove and Hugh DeLong -Air Force Office of Scientific ResearchPaul C. Trulove and Hugh DeLong -Air Force Office of Scientific ResearchDoug Fox – NRL, Naval AcademyDoug Fox – NRL, Naval Academy 

Funding ($):Funding ($):Air Force Office of Scientific ResearchAir Force Office of Scientific Research (ISSA - (ISSA - AFOSR- ISSA-01-0001AFOSR- ISSA-01-0001 ) )

AFRL – High Throughput Screening of Military Aircraft AcceleratorsAFRL – High Throughput Screening of Military Aircraft Accelerators - Joel Johnson - Joel Johnson

High Throughput Methods for Materials Flammability ConsortiumHigh Throughput Methods for Materials Flammability Consortium (AFRL, FAA, Rhodia, Dow) (AFRL, FAA, Rhodia, Dow)

FAAFAA, Richard Lyon at William J. Hughes Technical Center (IAA- DTFA03-99-X-90009), Richard Lyon at William J. Hughes Technical Center (IAA- DTFA03-99-X-90009)