15
1 Jet Response Prediction Using Jet Images Alexx Perlo(TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech), Maurizio Pierini (CERN), Raghav Kunnawalkam Elayavalli (WSU), Rohan Bhandari (UCSB) 12th Dec 2017

Jet Response Prediction Using Jet Images...1 Jet Response Prediction Using Jet Images Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech),

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Jet Response Prediction Using Jet Images...1 Jet Response Prediction Using Jet Images Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech),

1

Jet Response Prediction Using Jet Images

Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech), Maurizio Pierini (CERN),

Raghav Kunnawalkam Elayavalli (WSU), Rohan Bhandari (UCSB)

12th Dec 2017

Page 2: Jet Response Prediction Using Jet Images...1 Jet Response Prediction Using Jet Images Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech),

Detector Level Correction

2

Jet Energy Correction necessary to correct for

detector response

JEC as function of pT and eta available in the CMS QCD open data samples

Jet pT [GeV/c] Jet η

anti-kt R = 0.7 PF Jets JINST 12 (2017) P02014

Page 3: Jet Response Prediction Using Jet Images...1 Jet Response Prediction Using Jet Images Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech),

Regression with Scikit-learn• Very simple random forest • Minimal optimization on max.depth (currently = 11)

RegressionInput

3Jet pT [GeV/c] Jet |eta|

Jet pT [GeV/c] Jet |eta|

Res

idua

l (In

put -

Pre

dict

ion)

Jet E

nerg

y Sc

ale

Page 4: Jet Response Prediction Using Jet Images...1 Jet Response Prediction Using Jet Images Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech),

Motivation • Train a Network —> Jet Energy Response

• Use CMS Open data for training

Random Jet Image

• Regression of a 2D image to a continuous variable

1107.4277

4

Page 5: Jet Response Prediction Using Jet Images...1 Jet Response Prediction Using Jet Images Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech),

FastJetParticle Flow

5

Page 6: Jet Response Prediction Using Jet Images...1 Jet Response Prediction Using Jet Images Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech),

Pre-Processing

• Common procedure to induce uniformity in training

• Rotation loses significant detector-level information

6

Page 7: Jet Response Prediction Using Jet Images...1 Jet Response Prediction Using Jet Images Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech),

2D Convolutional Filter

Activation Function - Tanh

2D Convolutional Filter

Activation Function - Tanh

• Creating Multiple convolutional filters

• The larger the filter the more physics it captures - reduces effect of sparsity

• Activation function dependent on the required output

…Multiple times for

deep network

Setting up a D

7

Page 8: Jet Response Prediction Using Jet Images...1 Jet Response Prediction Using Jet Images Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech),

Details • Convolution2D (20, 11,11)• MaxPooling (2, 2)• Convolution2D (10, 7,7)• MaxPooling (3, 3)• Convolution2D (8, 5,5)• Convolution2D (6, 5,5)• MaxPooling (2, 2)• Convolution2D (4, 5, 5)

• Tanh activation for conv2D• Flatten• Merge Jet Eta

• 20 Dense layers w/ sigmoid• Dropout 0.08

• Merge Jet pT• 20 Dense Layers w/ soft plus• Dropout 0.08

• Output layer - Linear activation • Adam optimizer with mean squared

error loss function

256 Batch size with patience = 20

8

D

Page 9: Jet Response Prediction Using Jet Images...1 Jet Response Prediction Using Jet Images Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech),

• Residuals as a function of the scaled jet eta, pT

• grid size : 30 x 30

• Effectively captures behavior with a smaller width

anti-kt R=0.7 PF Jets

Predicting the Response

9

ReScaled Jet Eta

ReScaled Jet pT

Page 10: Jet Response Prediction Using Jet Images...1 Jet Response Prediction Using Jet Images Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech),

Can we go to smaller radii

anti-kt R=0.5 PF Jets• R = 0.5 jets require larger correction factor

• Model capable of reproducing similar levels of performance for R =0.7

• Grid size is reduced to 25x25

10

ReScaled Jet Eta

ReScaled Jet pT

Page 11: Jet Response Prediction Using Jet Images...1 Jet Response Prediction Using Jet Images Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech),

• R = 0.7 Jets

• DCNN - Jet Image w/ pT/eta (Mean Residual)

• RF - Random Forestsmodels=random_forest_regression(factors=factorNames,regressor='jtjec')models.max_depth=20models.n_trees=10models.fit(new_df_train,True)models.test(new_df_test,True)

• MLP - MultiLayer Perceptron

model = MLPRegressor(hidden_layer_sizes=[200,200,200,200],activation='relu',random_state=12345)

anti-kt R = 0.7 PF Jets

Residual = input JES - Predicted

11

Model Comparisons

Jet pT [GeV/c]

Jet |eta|

Page 12: Jet Response Prediction Using Jet Images...1 Jet Response Prediction Using Jet Images Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech),

What is the model learning? - I

• Residuals as function of energy carried by various jet constituents (charged, neutral hadron, photons)

• RF (all features) and DCNN showcase very good performance

12 Neutral Hadron FractionCharged Fraction

Photon Fraction

anti-kt R = 0.7 PF Jets

Page 13: Jet Response Prediction Using Jet Images...1 Jet Response Prediction Using Jet Images Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech),

13

What is the model learning? - II

• Residuals as function of # or multiplicity of identified jet constituents (charged, neutral hadron, photons)

• Multiplicity dependence captured in DCNN - from the jet image!

Neutral Hadron MultiplicityCharged Multiplicity

Photon Multiplicity

anti-kt R = 0.7 PF Jets

Page 14: Jet Response Prediction Using Jet Images...1 Jet Response Prediction Using Jet Images Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech),

Conclusions • DCNN trained on jet images is effective in learning the detector

response

• Fragmentation dependent response encoded in jet images are extracted

• With trained on Open data, one can build up such a resolution-unsmearing model for any experiment

• Currently training on the jet response, next steps is to train with generator level jet information

• Longer term goal would be to look at single jet JER uncertainty

14

Page 15: Jet Response Prediction Using Jet Images...1 Jet Response Prediction Using Jet Images Alexx Perloff (TAMU), Andrew Whitbeck (FNAL), Javier Duarte (FNAL), Jean-Roch Vilimant (CalTech),

Backup

15