192
4 4 4 4 4 i 4 4 4 4 4 4 4 4 4 4 % 4 4 4 4 ..... 4 4 4 4 4 4 HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY A Reference Book of Standard Data For Use In X-Ray Photoelectron Spectroscopy By C.D. Wagner W.M. Riggs L.E. Davis J.F. Moulder G.E. Muilenberg (Editor) Published By Perkin-Elmer Corporation Physical Electronics Division 6509 Flying Cloud Drive Eden Prairie, Minnesota 55344

[John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

Embed Size (px)

DESCRIPTION

Useful book for x-ray spectroscopy

Citation preview

Page 1: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

4 4 4 4 4

i

4 4 4 4 4 4 4 4 4 4

%

4 4 4 4 .....4 4 4 4 4 4

HANDBOOK OFX-RAY PHOTOELECTRON

SPECTROSCOPYA Reference Book of Standard Data

For Use InX-Ray Photoelectron Spectroscopy

By

C.D. Wagner

W.M. Riggs

L.E. Davis

J.F. Moulder

G.E. Muilenberg (Editor)

Published By

Perkin-Elmer CorporationPhysical Electronics Division

6509 Flying Cloud DriveEden Prairie, Minnesota 55344

Page 2: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

***>>>>>>>>>> >>>>>>>>> >>>>>>>>

©Copyright 1979

By

Perkin-Elmer Corporation

Physical Electronics Division

Printed in U.S.A.

All rights reserved

This book, or parts thereof, may notbe reproduced in any form without

permission of the publishers.

i

Page 3: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

|| < 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ( < » < * <

a

ii

!i

X-Ray Photoelectron Spectroscopy (XPS), morepopularly known as Electron Spectroscopy for

I Chemical Analysis (ESCA), is now a widely-used; analytical technique for investigating theI chemical composition of solid surfaces. Muchj has already been written concerning the prin-] ciples of the technique and the diverse range of} applications for which it has been used. Until: now, however, a concise reference work has not

been available to the ESCA practitioner. Thus, wej felt it desirable to assemble in a single, compact; volume much of the information required by those

'j persons using ESCA on a routine basis.

Some users of this Handbook will recognizestrong similarities between it and the Handbookof Auger Electron Spectroscopy, also publishedby Physical Electronics. This is natural sincethere are many similarities between ESCA andAuger spectroscopy and much was learned frompublishing two editions of the Auger Handbook.As in the previous Handbook, we include broad

j scan spectra of most of the elements, as well asI spectra from a number of oxides to indicate the

differences between elemental states and ionicI

ii

Prefaceforms. Also included is a lengthy discussion of theESCA technique and its use.

In many ways, ESCA is more complex than Augerspectroscopy. Both photoelectron lines andAuger lines are found in the spectra and a varietyof satellite and other lines must be understood. Inaddition, more detailed chemical information canbe obtained if exact line positions can be deter¬mined. For these reasons, the Handbook of X-RayPhotoelectron Spectroscopy contains muchprecise spectroscopic energy information, in¬cluding amplified Auger spectra and amplifiedstrong line photoelectron spectra.

This Handbook is meant to serve as a guide andreference work for the long-time ESCA practi¬tioner as well as the newcomer to the ESCA field.We sincerely hope it serves this purpose andplays a useful role in the practice of x-rayphotoelectron spectroscopy.

PERKIN-ELMERPhysical Electronics DivisionDecember, 1978

Page 4: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

<<<<<4<<4<44 4<<4<4<4<<<<4<<<<<

ContentsI. X-ray Photoelectron Spectroscopy 1

1. Introduction 3

2. Principles of the Technique 4

3. Preparing and Mounting Samples 6A. Removal of Volatile Material 6B. Removal of Non-volatile Organic

Contaminants 6C. Surface Etching 6D. Abrasion 7E. Fracture and Scraping 7F. Grinding to Powder 7G. Mounting Powders for Analysis 7H. Considerations of Mounting Angle 8

4. Experimental Procedure 8A. Experimental Technique for Obtaining

Spectra 8B. Instrument Calibration 10C. Programming Scans for An Unknown

Sample 10(1) Survey Scans(2) Detail Scans

5. Data Interpretation 12A. The Nature of the Spectrum 12

(1) General Features(2) Kinds of Lines

B. Line Identification 16

C. Chemical State Identification 17(1) Determination of Static Charge on

Insulators(2) Photoelectron Line Chemical Shifts

and Separations(3) Auger Line Chemical Shifts and the

Auger Parameter(4) Satellite Lines and Peak Shapes

D. Quantitative Analysis 21E. Determination of Element Location ....23

6. How To Use This Handbook 27

II.Standard ESCA Spectra of the Elements andLine Energy Information 29

1. Tables of Auger Parameter Data 168

2. References for Line Energy Information ..174

III.Appendix 179

Table 1. Line Positions from Mg X-rays(by element) 182

Table 2. Line Positions from Al X-rays(by element) 184

Table 3. Line Positions from Mg X-rays(numerical order) 186

Table 4. Line Positions from Al X-rays(numerical order) 187

Table 5. Atomic Sensitivity Factors 188Table 6. Periodic Table of the Elements.....189Table 7. Alphabetical Index of the Spectra. . 190

Page 5: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

4 4 |4 4 4 4 4 4 4 4 4 4 4 4 4 4

I

.

I

I. X-RAY PHOTOELECTRONSPECTROSCOPY

PERKIN-ELMER 1

Page 6: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

ÿ i « i * * < j < « < 4 i < «<««<<««<

Surface analysis by ESCA involves irradiation ofthe solid in vacuo with monoenergetic soft x-raysand sorting the emitted electrons, by energy. Thespectrum obtained is a plot of the number of emit¬ted electrons per energy interval versus theirkinetic energy. Each element has a unique elemen¬tal spectrum, and the spectral peaks from a mix¬ture are approximately the sum of the elementalpeaks from the individual constituents. Since themean free path of the electrons is very small, theelectrons which are detected originate from onlythe top few atomic layers. Quantitative data can beobtained from the peak heights or areas and iden¬tification of chemical states often can be madefrom the exact positions and separations of thepeaks, as well as from certain spectral contours.

1. IntroductionThis Handbook is designed to furnish the user withmuch of the information necessary to use ESCAfor diverse types of surface analysis. Information isprovided on methods of sample preparation, datagathering, identifying elements present, identify¬ing the chemical states of surface constituents,obtaining quantitative information on the elementspresent, and determining elemental distribution bydepth and by phase.

Survey spectra, strong line spectra, and Augergroup spectra (x-ray excited) for most of theelements and some of their compounds are includ¬ed. Plots and tables of spectroscopic energy datathat will aid in the identification of chemical statesare also included with the spectral information.

PERKIN-ELMER 3

Page 7: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»>»>>»>> »»»»»»»»»>»»»>»>>>>*

2. Principles of the TechniqueSurface analysis by x-ray photoelectron spec¬troscopy (XPS), more commonly known as electronspectroscopy for chemical analysis (ESCA), is ac¬complished by irradiating a sample withmonoenergetic soft x-rays and energy analyzingthe electrons emitted. MgKo- x-rays (1253.6 eV) orAlKa x-rays (1486.6 eV) are ordinarily used. Thesephotons have limited penetrating power in a solid,of the order of 1-10 micrometers. They interact withatoms in this surface region by the photoelectriceffect, causing electrons to be emitted. The emit¬ted electrons have kinetic energies given by:

KE = hv - BE - <)>5 H)

where hv is the energy of the photon, BE is thebinding energy of the atomic orbital from which theelectron originates, and <t>3 is the spectrometer workfunction.

The binding energy may be regarded as an ioniza¬tion energy of the atom for the particular shell in¬volved. Since there is a variety of possible ionsfrom each type of atom, there is a correspondingvariety of kinetic energies of the emitted electrons.Moreover, there is a different probability, or cross-section, for each process. The variety of ionizationprocesses for iron and uranium are shownschematically in Figure 1. The Fermi level cor¬responds to zero binding energy (by definition), andthe depth beneath the Fermi level in the Figure in¬dicates the relative energy of the ion remainingafter electron emission, or the binding energy ofthe electron. The lengths of the lines indicate therelative probabilities of the various ionization pro¬cesses. The p, d, and f levels'become split uponionization, leading to vacancies in the p1/2, p3(2, d3(2,d5/2, f5/2, and f7/2 in the ratio 1:2 for p levels, 2:3 for dlevels, and 3:4 for f levels.

IRON URANIUMFERMI LEVEL

2P3/22Pl/2

6P3/2 -6P 1/2

SP3/2

5p 1/2

5s

"7/2 "

4f:5/2

"1*5/24(13/2

"P3/2

"Pl/2

500 eV

1000 eV

Figure 1. Relative ionization cross-sections and ionizationenergies for iron and uranium. (Line lengths areproportional to ionization cross-section anddepths below Fermi level are proportional toionization energy.)

4 PHYSICAL ELECTRONICS

Page 8: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I < I i I i * i i < <

In addition to the photoelectrons emitted in thephotoelectric process, Auger electrons are emitteddue to relaxation of the energetic ions left afterphotoemission. This Auger electron emission oc¬curs roughly 10"'4 seconds after the photoelectricevent. (The competing emission of a fluorescentx-ray photon is a minor process in this energyrange, occurring less than one percent of the time.)In the Auger process, shown in Figure 2, an outerelectron falls into the inner orbital vacancy, and asecond electron is emitted, carrying off the excessenergy. The Auger electron possesses kineticenergy equal to the difference between the energyof the initial ion and the doubly-charged final ion,and is independent of the mode of the initial ioniza¬tion. Thus, photoionization normally leads to twoemitted electrons, a photoelectron and an Auger

electron. Of course, the energies of the electronsemitted cannot exceed the energy of the ionizingphotons.

Probabilities of interaction of the electrons withmatter far exceed those of the photons, so whilethe path length of the photons is of the order ofmicrometers, that of the electrons is of the order oftens of Angstroms. Thus, while ionization occursto a depth of a few micrometers, only those elec¬trons that originate within tens of Angstromsbelow the solid surface can leave the surfacewithout energy loss. It is these electrons whichproduce the peaks in the spectra and are mostuseful. Those that undergo loss processes beforeemerging form the background. Experimental data

L2 iOR 2p

L, OR 2s

PHOTONPHOTOELECTRON

KOR 1s

• • O Cf*/

AUGER ELECTRON

-0-1-L2_3 OR 2p

L, OR 2s

-•-• K OR 1s

Figure 2. Diagram of the photoelectric process (top) andthe Auger process (bottom).

10080

60

40

- 4

3

/

SB

E

+/

4- >ft/.

*

ÿ—\~E°-75

/

/v

/

/

V/ 4- + = ALUMINUM

A= CARBON0= SILICON

0= GOLD

100 200 400 600 1000 2000(E) ELECTRON ENEHGY, (eV)

4000

Figure 3. Electron mean free paths in various materials(from tabulation by C. J. Powell, Surface Science,44 (1974) p. 29.)

PERKIN-ELMER 5

Page 9: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I >>»>»>) t >>ÿ>>ÿ>>>>> t >>> t >»> > »on mean free paths of electrons in variousmaterials are shown in Figure 3.

The electrons leaving the sample are detected byan electron spectrometer according to their kineticenergy. The analyzer normally is operated as anenergy "window", accepting only those electronshaving an energy within the range of this fixed win¬

dow, referred to as the pass energy. Scanning fordifferent energies is accomplished by applying avariable electrostatic field, before the analyzer isreached. This retardation voltage may be variedfrom zero up to the photon energy. Electrons aredetected as discrete events, and the number ofelectrons for a given detection time and energy isstored digitally or recorded using analog circuitry.

3. Preparing and Mounting SamplesIn the majority of ESCA applications, samplepreparation and mounting are not critical. Typical¬ly, the sample can simply be mechanicallyattached to the specimen mount and analysisbegun, with the sample in the "as-received" condi¬tion. Sample preparation is even discouraged inmany cases, especially where the natural surfaceis of interest, since almost any procedure willtend to modify surface composition. For thosesamples where special preparation or mountingprocedures are necessary, the following techni¬ques may be used.

A. REMOVAL OF VOLATILE MATERIAL.Ordinarily any volatile material must be removedfrom the sample before analysis, although in ex¬ceptional cases, when the volatile layer is of in¬terest, the sample may be cooled for analysis.Removal of volatile materials can be done bylong-term pumping in a separate vacuumsystem or by washing with a suitable solvent.Samples can be washed efficiently in a Soxhlettextractor with a suitable solvent sufficientlyvolatile that it quickly evaporates from the sam¬ple after removal from the extractor. Choice ofthe solvent can be critical. Hexane or other light

hydrocarbon solvents are probably least likely totransform the surface, providing the solvent pro¬perties are satisfactory. It is desirable to do theextraction under a nitrogen atmosphere if thesample is likely to be sensitive to 'oxygen.

B. REMOVAL OF NON-VOLATILE ORGANICCONTAMINANTS.When the nature of an organic contaminant isnot of interest, or when a contaminant obscuresunderlying inorganic material that is of interest,it may be removed in a Soxhlett extractor asdescribed above. Freshly distilled solventshould be used to avoid the possibility of con¬tamination by high boiling point impuritieswithin the solvent.

C. SURFACE ETCHING.Ion sputter-etching or other erosion techniques,such as the use of oxygen atoms on organicmaterials (see Section I.5.E., p. 25), can also beused to remove surface contaminants. Argonion etching is also commonly used to obtain in¬formation on composition as a function of depthinto the specimen. It should be noted, however,that use of these methods for surface removal

6 PHYSICAL ELECTRONICS

Page 10: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

< ( I I I < I 4 4 4 <<<<<J<<<< < ( ( I 4 < I < ( <are likely to change the chemical nature of thesurface. Thus, identification of the remainingchemical states may not accurately reflect theinitial composition.

D. ABRASION.Abrasion of a surface can be accomplishedwithout significant contamination by usingsilicon carbide paper #600. This does causelocal heating, so that reaction with environmen¬tal gases may occur (e.g. oxidation in air and for¬mation of nitrides in nitrogen). The roughnessproduced will reduce the ESCA signal intensityrelative to that of a smooth sample. Use of thistechnique usually provides intense spectra ofmetals along with a contribution from the oxidesand/or nitrides that form on the surface. Alkaliand alkaline earth metals cannot be satisfactori¬ly prepared in this manner. Spectra of suchsamples can be obtained only with rigorousultra-high vacuum preparation .and measure¬ment conditions.

E. FRACTURE AND SCRAPING.With proper equipment, many materials can befractured or scraped within the test chamberunder ultra-high vacuum conditions. While thisobviates contamination by reaction with at¬mospheric gases, attention must neverthelessbe given to unexpected results that can occur.When fracturing, the fracture might occur alonggrain boundaries, for example, and scraping cancover hard material with soft material when thesystem is multi-phase.

F. GRINDING TO POWDER.Spectra reasonably characteristic of bulk com¬position are most frequently obtained onsamples ground to a powder in an alumina mor¬tar. Harder surfaces than alumina can be used,but they are expensive for general use. Again,protection of the fresh surfaces from the at¬mosphere is required. When grinding samples,

localized high temperatures can also be pro¬duced, so grinding should be done slowly tominimize chemical change at the newly createdsurfaces. The alumina mortar should be well-cleaned before re-use, preferably ending with aconcentrated nitric acid cleaning, followed byrinsing with distilled water, and thorough drying.

G. MOUNTING POWDERS FOR ANALYSIS.There are a number of methods that can be usedto mount powders for analysis. Perhaps themost widely used method is to carefully andlightly dust the powder on polymer film basedadhesive tape with a camel's hair brush. Thepowder must be dusted on lightly, with no wip¬ing strokes across the powder surface. Manyresearchers shun organic tape for UHV work, butcertain types have been used successfully in the10'9 Torr range.

Alternative methods for mounting powders in¬clude pressing the powder into an indium foil,supporting the powder on a metallic mesh,pressing the powder into pellets, and simply de¬positing the powder by gravity. With the indiumfoil method, the powder is pressed between twopieces of pure foil. The pieces are thenseparated and one of them mounted foranalysis. Success with this technique has beenvaried. Sometimes bare indium remains expos¬ed and, if the sample is an insulator, parts of thepowder can charge differently from other parts.Differential charging can also be a problemwhen a metallic mesh is used to support thepowder. If a press is used to form the powder in¬to a pellet of workable dimensions, a press withhard and extremely clean working surfacesshould be used. If a specimen holder with ahorizontal sample surface is used, the powdercan simply be deposited by gravity in a uniformlayer. With this method, care must be taken inpumpdown to ensure that gas evolution doesnot disturb the powder.

PERKIN-ELMER 7

Page 11: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»>»»»»»»* ÿ »»>»»»»»»>»*»»»»»»H.CONSIDERATIONS OF MOUNTING ANGLE.

In ESCA studies the sample mounting angle isnot critical, but it does have some effect on thespectra. The use of a shallow electron take-offangle accentuates the spectrum of any layersegregated on the surface, whereas a samplemounting angle normal to the analyzer axisminimizes the contribution from such a layer.This effect can be utilized in estimating thedepth of atoms contributing to the spectrum. Itis not limited to planar surfaces, but is evenobserved with powders, though the effects aremuted. The geometry of the double passcylindrical-mirror analyzer used to obtain the

spectra presented in this Handbook effectivelyintegrates over a large range of take-off angleswhen used in the normal configuration. Thisreduces the effect of variations in samplegeometry and mounting angle to an insignifi¬cant level in most cases. However, use of a 50°sample mounting angle in conjunction with theangle-resolved aperture inside the analyzerallows the take-off angle to be varied withoutchanging the sample mounting angle. Thus,take-off angle effects can be minimized forroutine work, or emphasized when desired (seeSection I.5.E., p. 25)

4. Experimental ProcedureA. EXPERIMENTAL TECHNIQUE FOR OBTAINING

SPECTRA.All spectra in this Handbook were obtained us¬ing a PHI Model 550 ESCA/SAM system. Aschematic diagram of the apparatus, shown inFigure 4, indicates the relationship of majorcomponents, including the electron energyanalyzer, the x-ray source, and the ion gun usedfor sputter-etching. The Model 25-260, PrecisionElectron Energy Analyzer, incorporated in the

.ESCA/SAM is a double pass, cylindrical-mirrortype analyzer (CMA) with a retarding grid inputstage. The x-ray source is a standard flange-mounted Physical Electronics source which canbe configured with a magnesium or analuminum anode. All of the spectra in the Hand¬book were taken with an x-ray source power of600 watts ("IOKv-60 ma).As shown in Figure 4, thespecimens were mounted on the end of the sam¬ple introduction probe at an angle of 50° with

respect to the analyzer axis. The x-ray source islocated perpendicular to the analyzer axis andthe ion beam is nearly normal to the samplesurface.

In the ESCA/SAM System, energy distribution,energy resolution and the size of the analysisarea are strictly a function of the analyzer. Forall of the spectra in the Handbook the analyzerwas operated in the retarding mode. This givesan energy distribution function with intensityproportional to E"1. The retarding grids are usedto scan the spectrum while the CMA is operatedat a constant pass energy. This results in con¬stant resolution (AE) across the entire energyspectrum. The size of the analysis area is de¬fined by the size of the circular apertures at theoutput of the CMA stages. Analyzer energyresolution (AE/E) is also determined by theseapertures. In the Precision Electron Energy

8 PHYSICAL ELECTRONICS

Page 12: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

<<<<<<<11<<<<<<<<<<<<<<I<<<<<<

COMPUTERSYSTEM(MACS) .

ANALYZERCONTROL

IONGUN

PULSE COUNTINGDETECTION

INNERCYLINOER

OUTERCYLINOER

MAGNETICSHIELDX-RAY

SOURCE

ELECTRONMULTIPLIER

ELECTRONGUN- SAMPLE PROBE

RETARDINGGRIOS

FIRST ANGULAR RESOLVED SECONDAPERTURE APERTURE APERTURE

Figure 4. Schematic representation ot the PHI Model 550,

Analyzer, three different aperture sizes areavailable. All spectra in the Handbook were ob¬tained using the largest apertures. Use of thelarge apertures results in maximum signal inten¬sity, a circular analysis area approximately 5mmin diameter, and energy resolution which is 2%of the pass energy.

All spectra obtained while compiling the datafor the Handbook were recorded and stored us¬ing a PHI Multiple-technique Analytical Com¬puter System. The instrument was calibratedweekly and the calibration was checked severaltimes each day during data acquisition. The ana¬lyzer work function was determined assumingthe binding energy of the gold 4f7,2 peak to be83.8 eV. All survey spectra, scans of 1000 eV ormore, were taken at a pass energy of 50 eV, pro¬viding an instrumental resolution of 1 eV. Thenarrow scans of strong lines are, in most cases,just wide enough to encompass the peak(s) of

ESCAZSAM system.

interest and were obtained with a pass energy of25 eV. The narrow spectra are necessary todetermine accurately the energy and shape ofthe strong lines. On insulating samples, a highresolution spectrum of the adventitioushydrocarbon on the surface of the sample wastaken to use as a reference for charge correc¬tion. It has been experimentally determined thatthe binding energy for the adventitious carbonpeak is approximately 284.6 eV.

The samples analyzed to obtain the spectra inthe handbook were standard materials of knowncomposition. Metal foils and polycrystallinematerials with large surface areas weremechanically held to the specimen probe.Powder samples were ground with a mortar andpestle to expose fresh surfaces and dusted ontoadhesive tape. Most elemental standards weresputter-etched immediately prior to analysis toremove surface contaminants. Most com-

PERKIN-ELMER 9

Page 13: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

' * >»»»»>»»» ) » » » »pounds, however, were ground and the freshlyexposed surface was analyzed without etchingin order to avoid possible changes in surfacechemistry. Several materials, for example mer¬cury, were cooled for the analysis, and xenonand argon were imbedded in graphite via ion im¬plantation just prior to analysis.

B. INSTRUMENT CALIBRATION.To ensure the accuracy of the data presented inthe Handbook, the instrument used to obtain thedata was calibrated regularly throughout thedata gathering process. The energy scale wasperiodically calibrated using a high precisiondigital voltmeter. Then, several times each day,the calibration was checked for accuracy.

The best way to check the calibration, and themethod used here, is to record suitable linesfrom a known, conducting specimen. Typically,the Au4f or Cu2p and 3p lines are used.The linesshould be recorded with a narrow sweep widthin the range of 5-10 eV, and a pass energy of 25eV or less, corresponding to the pass energynormally used for high resolution scans, shouldbe used. The peak position is determined ac¬curately by drawing cords parallel to thebaseline and drawing the best straight line orsimple monotonic curve through the midpoints,as shown in Figure 5. The peaks should occur atexactly the correct position in the spectrum.

There is not as yet general agreement on ac¬curate values of any standard line energies, butat this point the following is recommended forclean gold and copper (on a binding energyscale):

932.4 eV567.9 eV (Al radiation)334.9 eV (Mg radiation)74.9 eV83.8 eV

Cu2p3,2Cu (L3M5M5)

Figure 5. Method for accurately locating the peak positionfrom a narrow scan.

Cu3p3/2Au4f7/2

Since the 2p3)2 and 3p3/2 photoelectron peakenergies of copper are widely separated inenergy, measurement of these peak bindingenergies provides a quick and simple means ofchecking the magnitude of the binding energyscale. Utilizing all of the above standardenergies establishes the magnitude and lineari¬ty of the energy scale and its position, i.e., thelocation of the Fermi level.

C. PROGRAMMING SCANS FOR AN UNKNOWNSAMPLE.For a typical ESCA investigation where the sur¬face composition is unknown, a broad scansurvey spectrum should be obtained first toidentify the elements present. Once the elemen¬tal composition has been determined, narrowerdetailed scans of selected peaks can be usedfor a more comprehensive picture of thechemical composition. This is the procedurethat has been followed in compiling data for theHandbook, even though specimen compositionwas known prior to analysis.

(PSurvey Scans. Ordinarily, a scan range from1000-0 eV binding energy is sufficient for theidentification of all detectable elements. In afew cases, such as with Zn, Mg, and Na, thestrongest lines may occur at a binding energyabove this range. Most spectra in this Hand¬book were recorded with scan ranges of1000-0 or 1100-0 eV binding energy. There are

10 PHYSICAL ELECTRONICS

Page 14: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

< <<<<<<<< I < < 4 < < < 4 4 « * < < « « 4 4 < « <

a few, especially where AIKo x-rays wereused, that cover a wider range. In an unknownsample, if specific elements are suspected atlow concentrations, their standard spectrashould be consulted before programming thesurvey scan. If the strongest line occursabove 1000 eV binding energy, the scan rangecan be modified accordingly.

An analyzer pass energy of 100 eV, in conjunc¬tion with the normal ESCA aperture settings,is recommended for survey scans with theESCA/SAM system. These settings result inadequate resolution (AE = 2eV) for elementalidentification and produce very high signal in¬tensities, minimizing data acquisition timeand maximizing elemental detectability.

(2) Detail Scans. For purposes of chemical stateidentification, for quantitative analysis ofminor components and for peak deconvolu-tion and other mathematical manipulations ofthe data, detail scans must be obtained forprecise peak location and for accurateregistration of line shapes. There are somelogical rules for this programming:

i.Scans should be wide enough to encom¬pass the background on both sides of theregion of interest, yet narrow enough, lessthan 25 eV, to permit determination of theexact position of the peaks. If these re¬quirements cannot be met in one region,two regions of the spectrum must be pro¬grammed. Sufficient scanning must bedone, within the time limitations of the

analysis, to obtain good counting statisticsand clear spectra.

ii.Peaks from any species thought to beradiation-sensitive or transient should berun first. Otherwise any convenient ordermay be chosen.

iii.lf the C1s line is to be used for chargereferencing, it should preferably be run ear¬ly and again late in the sequence or, alter¬natively, run at a time closest to the regionof greatest interest. This is because thereis occasionally a slight change in steady-state static charge with time (cf SectionI.5.C., p. 17).

iv.No clear guidelines can be given on themaximum duration of data gathering onany one sample. It should be recognized,however, that chemical states have vastlyvarying degrees of radiation sensitivity,and for any one set of irradiation condi¬tions there exists for many samples aperiod beyond which it is impractical to at¬tempt to gather data.

v.With the ESCA/SAM, an analyzer passenergy of 25 eV (AE = 0.5 eV) is normallyadequate for routine detail scans. Wherehigher resolution is needed, lower passenergies can be utilized with correspon¬ding loss of signal intensity. For theultimate in resolution, the smaller aper¬tures should be used in conjunction withan analyzer pass energy of 10 or 15 eV.

PERKIN-ELMER 11

Page 15: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»»»»»»>>»»»»»» I »»»»»»>»>>» >

5. Data InterpretationA. THE NATURE OF THE SPECTRUM

(DGeneral Features. The spectrum is displayedas a plot of electron binding energy versus thenumber of electrons in a fixed, small energyinterval. The position on the kinetic energyscale equal to the photon energy minus thespectrometer work function corresponds to abinding energy of zero with reference to theFermi level (equation 1). Therefore, a bindingenergy scale beginning at that point and in¬creasing to the left is customarily used.

The spectra in this Handbook are typical forthe various elements. The well-defined peaksare due to electrons that have not lost energyin emerging from the sample. Electrons thathave lost energy form the raised backgroundat binding energies higher than the peaks.The background is continuous because theenergy loss processes are random andmultiple.

The "noise" in the spectrum is not instrumen¬tal, but is the consequence of the collectionof single electrons as counts randomlyspaced in time. The standard deviation forcounts collected in any channel is equal tothe square root of the counts, so that the per¬cent standard deviation is 100/ (counts)"2. Thesignal/noise ratio is then proportional to thesquare root of the counting time. Thebackground level upon which the peak issuperimposed is a characteristic of thespecimen and the transmission charac¬teristics of the instrument.

(2)Kinds of Lines. Several types of peaks areobserved in ESCA spectra. Some are fun¬

damental to the technique, and are alwaysobserved. Others are dependent upon the ex¬act physical and chemical nature of the sam¬ple. The following describes the various spec¬tral features that are likely to be encountered.

i.Photoelectron Lines. The most intense ofthe photoelectron lines are usually relative¬ly symmetrical and are typically the nar¬rowest lines observed in the spectrum.Photoelectron lines of pure metals can,however, exhibit considerable asymmetrydue to coupling with conduction electrons.Peak width is a convolution of the naturalline width, the width of the x-ray line andthe instrumental contribution to the linewidth. Less intense photoelectron lines athigher binding energies are usually widerby 1-4 eV than the lines at lower bindingenergies. All of the photoelectron lines ofinsulating solids are of the order of 0.5 eVwider than photoelectron lines of conduc¬tors. The approximate binding energies ofall photoelectron lines detectable arecatalogued in Tables 1-4 of the Appendix.

ii.Auger Lines. These are, more properly,groups of lines in rather complex patterns.There are four main Auger series obser¬vable in ESCA. They are the KLL, LMM,MNN, and NOO series, identified by speci¬fying the initial and final vacancies in theAuger transition. The KLL series, for exam¬ple, includes those processes with an in¬itial vacancy in the K shell and final doublevacancy in the L shell. The symbol V, e.g.KVV, indicates that the final vacancies arein valence levels. The KLL series has,theoretically, nine lines and others have

12 PHYSICAL ELECTRONICS

Page 16: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

4 4 4 4 4 4 4 4 4 <4<<<<<<<<<< 4 4 4 4 < < < < <

still more. Since Auger lines have kineticenergies that are independent of the ioniz¬ing radiation they appear on a bindingenergy plot to be in different positionswhen ionizing photons of different energy(i.e. different x-ray sources) are used. Core-type Auger lines (with final vacanciesdeeper than the valence levels) usuallyhave at least one component of intensityand width similar to the most intensephotoelectron line. Positions of the moreprominent Auger components arecatalogued along with the photoelectronpeaks in Tables 1 through 4 in theAppendix.

iii. X-ray Satellites. The x-ray emission spec¬trum used for irradiation exhibits not onlythe characteristic x-ray, but some minorx-ray components at higher photonenergies. For each photoelectron peak thatresults from the Ka x-ray photons, there is afamily of minor peaks at lower bindingenergies, with intensity and spacingcharacteristic of the x-ray anode material.The pattern of such satellites for Mg and Alis shown in Figure 6 and Table 1.

t-1--1-1-1-1-r

3Q0 290 280 270 260 250 240 230 220 210 200BIN0ING ENERGY, eV

Figure 6. Mg x-ray satellites (C1s graphite spectrum).

Table 1 — X-ray satellite energies and intensities

°l,2 °3 <*4 <*5 °6 Pdisplacement, eV

9 relative height0

1008.48.0

10.24.1

17.50.55

20.00.45

48.50.5

A| displacement, eVrelative height

0100

9.86.4

11.83.2

20.10.4

23.40.3

69.70.55

iv.X-ray "Ghosts". Occasionally x-radiationfrom an element other than the x-raysource anode material impinges upon thesample, resulting in small peaks cor¬responding to the most intense spectralpeaks, but displaced by a characteristicenergy interval. These lines can be due toMg impurity in the Al anode, or vice versa,Cu from the anode base structure orgeneration of x-ray photons in thealuminum foil x-ray window. On occasion,such lines can originate via generation ofx-rays within the sample itself. This lastpossibility is rare, because the probabilityof x-ray emission is low relative to theAuger transition. Nevertheless, such minorlines can be puzzling. Table 2 indicateswhere such peaks are most likely to occur,relative to the most intense photoelectronlines. Since the appearance of "ghost"lines is a rare occurrence, they should notbe considered in line identification until allother possibilities are excluded.

Table 2 — Displacements of x-ray "ghost" lines

(Apparent binding energy of the "ghost" line minus that of theparent photoelectron line.)

Anode MaterialContaminating Radiation

Mg Al

O (Ka) 728.7 961.7

Cu (La) 323.9 556.9

Mg (Ka) — 233.0

Al (Ka) -233.0 —

PERKIN-ELMEFl 13

Page 17: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»>»)>»»»)>

v. Shake-Up Lines. Not all photoelectric pro¬cesses are simple ones, leading to the for¬mation of ions in the ground state. Ratheroften, there is a finite probability that theion will be left in an excited state, a fewelectron volts above the ground state. Inthis event, the kinetic energy of the emittedphotoelectron is reduced, with the dif¬ference corresponding to the energy dif¬ference between the ground state and theexcited state. This results in the formationof a satellite peak a few electron voltslower in kinetic energy (higher in bindingenergy) than the main peak. As an example,the characteristic shake-up line for carbonin unsaturated compounds, a shake-up pro¬cess involving the energy of the n—n* tran¬sition, is shown in Figure 7.

CIs

*10

Figure 7. The n-bond shake-up satellite for the C1s line inpolystyrene.

In some cases, most often withparamagnetic compounds, the intensity ofthe shake-up satellite may approach that ofthe main line. More than one satellite of aprincipal photoelectron line can also beobserved, as shown in Figure 8. The occur¬rence of such lines is sometimes more ap¬parent in Auger spectral contours, of which

* ) *>>*>>>»>>»>>»>) )

CuO

950BINDING ENERGY, eV

940 930970 960

Figure 8. Examples of shake-up lines observed with thecopper 2p spectrum.

an example is presented in Figure 9. Thedisplacements and relative intensities ofshake-up satellites can sometimes beuseful in identifying the chemical state ofan element, as discussed in Section I.5.C.,p. 20.

vi. Multiplet Splitting. Emission of an electronfrom a core level of an atom that itself hasa spin (unpaired electrons in valence levels)

14 PHYSICAL ELECTRONICS

Page 18: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I < i i i i i i i < <<<<<<<<<<<<<<<<<<<<

N(E)

E

NiO

575 555 535 515 495 475 455 435 415 395 375BINDING ENERGY. eV

Figure 9. Some effects of chemical state on Auger lineshapes.

can create a vacancy in two or more ways.The coupling of the new unpaired electronleft after photoemission from an s-type or¬bital with other unpaired electrons in theatom can create an ion with either of twoconfigurations and two energies. Thisresults in a photoelectron line that is splitasymmetrically into two componentssimilar to the one shown in Figure 10.

Splitting also occurs in the ionization of plevels, but the result is more complex andsubtle. In favorable cases, it results in anapparent slight increase in the spin doubletseparation, evidenced in the separation ofthe 2p,(2 and 2p3(2 lines in first row transi¬tion metals, and the generation of a lesseasily noticed asymmetry in the line shapeof the components. Often such effects onthe p doublet are obscured by shake-uplines.

Cr METAL

N(E|

72 7088 86 84 82 80 78 76 74 68BINDING ENERGY. eV

Figure 10. Multiplet splitting in the Cr 3s line.

vii. Energy Loss Lines. With some materials,there is an enhanced probability for loss ofa specific amount of energy due to interac¬tion between the photoelectron and otherelectrons in the surface region of the sam¬ple. An example of this is shown in Figure11.The enhanced probability of energy lossproduced a distinct and rather sharp humpat an energy about 21 eV above the bindingenergy of the parent line. Under certainconditions of spectral display, energy losslines can cause confusion. Suchphenomena in insulators are rarely sharperthan that shown in Figure 11, and areusually much more muted. They are, ofcourse, different in each solid medium.

With metals, the effect is often much moredramatic, as indicated by the loss lines for

PERKIN-ELMER 15

Page 19: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

* * * * > > ) > \ I > I I I > \ >}))))))>)))) )

Figure 11. Energy loss envelope from the 01s line in SiO,.

aluminum shown in Figure 12. Energy lossto the conduction electrons occurs in well-defined quanta characteristic of eachmetal. The photoelectron line, or the Augerline, is successively mirrored at intervals ofhigher binding energy, with reduced inten¬sity. The energy interval between theprimary peak and the loss peak is calledthe plasmon energy. The so-called "bulk

N(E)E

190 182 174 166 158 150 142 134BINDING ENERGY, eV

126 118 110

Figure 12. Energy loss (plasmon) lines associated with the2s line of aluminum (a = 15.3eV; note surfaceplasmon at b).

plasmons" are the more prominent ofthese lines. A second series, the "surfaceplasmons", exists at energy intervals deter¬mined by dividing the bulk plasmon energyby \f2. The effect is not easily observablein non-conductors, nor is it prominent in allconductors.

viii. Valence Lines and Bands. Lines of low in¬tensity occur in the low binding energyregion of the spectrum between the Fermilevel and about 10-15 eV binding energy.These lines are produced by photoelectronemission from molecular orbitals and fromsolid state energy bands. Differences be¬tween insulators and conductors areespecially noted by the absence orpresence of electrons from conductionbands at the Fermi level.

B. LINE IDENTIFICATIONIn general, interpretation of the ESCA spectrumis most readily accomplished by first identifyingthe lines that are almost always present,specifically those of carbon and oxygen, thenidentifying major lines and associated weakerlines and, lastly, identifying the remaining weaklines. The following step-by-step proceduregenerally simplifies the data interpretation taskand minimizes data ambiguities.

StepjL The C1s, 01s, C(KLL) and O(KLL) linesare usually prominent in any spectrum. Iden¬tify these lines first along with all derivedx-ray satellites and energy loss envelopes.

Step 2. Identify other intense lines (cf Appen¬dix Tables) present in the spectrum. Thenlabel any related satellites and other less in¬tense spectral lines associated with thoseelements. Keep in mind that some lines maybe interfered with by more intense, overlap¬ping lines from other elements. The most

16 PHYSICAL ELECTRONICS

Page 20: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ( 4 4

serious interferences by the carbon and oxy¬gen lines, for example, are Ru3d by C1s, V2pand Sb3d by 01s, l(MNN) and Cr(LMM) byO(KLL), and Ru(MNN) by C(KLL).

StepJL Identify any remaining minor lines. Indoing this, assume they are the most intenselines of an unknown element. If not, theyshould already have been identified inprevious steps. Again, possible line in¬terferences should be kept in mind. Smalllines that seem unidentifiable can be ghostlines. This possibility can be checked for themore intense parent photoelectron lines us¬ing Table 2 (p. 13).

Step 4. Check the conclusions by noting thespin doublets for p, d, and f lines.They shouldhave the right separation (cf Appendix Tables1 and 2, pp. 182 and 184) and should be in thecorrect intensity ratio. The ratio for p linesshould be about 1:2, d lines 2:3, and f lines 3:4except that p lines, especially 4p lines, maybe less than 1:2.

C. CHEMICAL STATE IDENTIFICATIONThe identification of chemical states dependsprimarily upon the accurate determination ofline energies. To determine line energies ac¬curately, the voltage scale of the instrumentmust be precisely calibrated (cf Section I.4.B.,p. 10), a line with a narrow sweep range must berecorded with good statistics (of the order ofseveral thousand counts per channel abovebackground), and accurate correction must bemade for static charge if the sample is aninsulator.

(1) Determination of Static Charge on Insulators.During analysis, insulating samples tend toacquire a steady-state charge of as much asseveral volts. This steady-state charge is abalance between electron loss from the sur¬

face by emission and electron gain by con¬duction or by acquisition of slow or thermalelectrons from the vacuum space. The steady-state charge, usually positive, can beminimized by adding slow electrons to thevacuum space with an adjacent neutralizer orflood gun. It is often advantageous to do thisto reduce differential charging and to sharpenthe spectral lines.

A serious problem is the exact determinationof the extent of charging. Any positive charg¬ing adds to the retardation and tends to makethe peaks appear at higher binding energy,whereas excessive compensation can makethe peaks shift to lower binding energy. Thefollowing are five methods that are usuallyvalid for charge correction on insulatingsamples:

i.Measurement of the position of the C1sline from adventitious hydrocarbon nearlyalways present on samples introducedfrom the laboratory environment or from aglove box. This line, on unsputtered inertmetals such as gold or copper, appears at284.6 eV, so any shift from this value can betaken as a measure of the static charge.(Much of the literature uses the more ap¬proximate value of 285). At this time, it isnot known whether a reproducible lineposition exists for carbon remaining on thesurface after ion beam etching.

ii.Evaporation of a trace of gold onto thesample after the spectra have been record¬ed. The Au4f doublet is then recorded aswell as a repetition of the most importantline in the sample spectrum. It is thenassumed that the potential of the goldislands reflects the new steady-statecharge of the surface of the sample. Care

PERKIN-ELMER 17

Page 21: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>>>>>>>>> »»>>>»»»>»»»>>»»>»>»must be taken to ensure that the gold ispresent in trace quantities so that theoriginal spectrum is little affected. In thisprocedure there may well be a double cor¬rection. The steady-state potential aftergold is deposited may well be differentfrom the steady-state potential in theoriginal sample before gold deposition.

iii.The use of an internal standard, such as ahydrocarbon moiety in the sample. Thevalue of 284.6 eV for the C1s line isrecommended.

iv.The use of an insulating sample so thinthat it effectively does not insulate. Thiscan be assumed if the spectrum of theunderlying conductor appears in good in¬tensity and line positions are not affectedby changes in electron flux from the chargeneutralizer.

v.For the study of supported catalysts orsimilar materials, one can adopt a suitablevalue for a constituent of the support anduse that to interrelate binding energies ofdifferent samples. One must be certain thattreatments of the various samples are notso different that the inherent bindingenergies of support constituents arechanged.

Some precautions should be borne in mind. Ifthe sample is heterogeneous on even amicrometer scale, particles of differentmaterials can charge to different extents, andinterpretation of the spectrum is complicatedaccordingly. One cannot physically mix a con¬ducting standard like gold or graphite ofmicron dimensions with a powder and validlyuse the gold or graphite line in order to cor¬rect for static charge.

(2)Photoelectron Line Chemical Shifts andSeparations. An important advantage ofESCA is the ability to obtain information onchemical states from the variations in bindingenergies, or chemical shifts, of the photoelec-tron lines. This has been extremely useful inmany studies. While many attempts havebeen made to calculate chemical shifts andabsolute binding energies, the factors in¬volved, especially in the solid state, are im¬perfectly understood and one must rely on ex¬perimental data on standard materials. Thetables accompanying the spectra in thisHandbook record considerable data from theliterature as well as data obtained specificallyfor this Handbook. All literature data havebeen carefully evaluated and corrected, andare believed reliable.0" These data have beenadjusted to the instrumental calibration andstatic charge reference values given above,and are, therefore, directly compa'rable.

Since occasional line interferences do occur,it is sometimes necessary to use a line otherthan the most intense one in the spectrum.Chemical shifts are very uniform among thephotoelectron lines of an element, so that lineseparations rarely vary by more than 0.2 eV.However, exceptional separations can occurin paramagnetic materials because ofmultiplet splitting. Separations of photoelec¬tron lines can be determined approximatelyfrom Tables 1 and 2 in the Appendix (pp. 182and 184).

(3)Auqer Line Chemical Shifts and the Auger

Parameter. Core-type Auger lines (transitions

(a) In some cases, different binding energy values appearing inthe literature for the same material could not be reconciled,and no grounds could be found for choosing one over theother. In such cases, more than one value is included toindicate the degree ol uncertainty.

18 PHYSICAL ELECTRONICS

Page 22: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

<<<<<<<<<<<<<<<<<<<<< <<<<<<<<<ending with double vacancies below thevalence levels) usually have at least one com¬ponent that is narrow and intense, often near¬ly as intense as the strongest photoelectronline (cf. spectra for F, Na, As, In, Te, and Pb).There are four core Auger groups that can begenerated by Mg or Al x-rays: the KLL (Na,Mg); the LMM (Cu, Zn, Ga, Ge, As, and Se); theMNN (Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, and Ba);and the NOO (Au, Hg, Tl, Pb, and Bi). TheMNN lines in the rare earths, while accessi¬ble, are very broad because of multiplet split¬ting and shake-up phenomena with most ofthe compounds. Valence-type Auger lines(final states with vacancies in valence levels),such as those for 0 and F (KLL); Mn, Fe, Co,and Ni (LMM); and Ru, Rh, and Pd (MNN), canbe intense and are, therefore, also useful.Chemical shifts occur with Auger lines aswell as with photoelectron lines. Thechemical shifts are different from those of thephotoelectron lines, however, and usually areconsiderably more pronounced. This can bevery useful for identification of chemicalstates, especially in combination withphotoelectron chemical shift data. If data forthe various chemical states of an element areplotted, with the kinetic energy of thephotoelectron line on the abscissa and that ofthe Auger line on the ordinate, a two-dimensional chemical state plot is obtained.Such plots accompany the spectra for F, Na,Cu, Zn, As, Ag, Cd, In, and Te.

With chemical states displayed in two dimen¬sions, the method becomes more powerful asa tool for identifying the chemical com¬ponents. In the format adopted for the Hand¬book, the kinetic energy of the Auger line isplotted against the binding energy of thephotoelectron line, with the latter plotted inthe -x direction (kinetic energy is still, im¬

plicitly, +x). the kinetic energy of the Augerelectron, referred to the Fermi level, is easilycalculated by subtracting from the photonenergy the position of the Aug'er line on thebinding energy scale.

With this arrangement, each diagonal linerepresents all values of equal sums of Augerkinetic energy and photoelectron bindingenergy. A quantity called the Augerparameter, a, is defined as,

cf = KEa — KEP = BEP — BEa (2)

or, the difference in binding energy betweenthe photoelectron and Auger lines. This dif¬ference can be accurately determinedbecause static charge corrections cancel.Then, with all kinetic energies and bindingenergies referenced to the Fermi level,

KEp = hv — BEa (3)

KEa + BEp = hv + a (4)

or, the sum of the kinetic energy of the Augerline and the binding energy of the photoelec¬tron line equals the Auger parameter plus thephoton energy. A plot showing Auger kineticenergy versus photoelectron binding energythen becomes independent of the energy ofthe photon.

In general, polarizable materials, especiallyconductive materials, have a high Augerparameter, while insulating compounds falllower on the grid. The points on the two-dimensional plot are drawn as rectangularboxes at 45°, reflecting the expected error ofmeasurement in the two perpendicular direc¬tions. At present, sufficient data for the two-dimensional chemical state plots areavailable only for the nine elements listedabove.

PERKIN-ELMER 19

Page 23: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»»>»»>»»>»»»»»»»> »»»»>>>>»(4)Chemical Information From Satellite Lines

and Peak Shapes.

i.Shake-up Lines. These satellite lines haveintensities and separations from the parentphotoelectron line that are unique to eachchemical state (Figure 8). Some Auger linesalso exhibit radical changes with chemicalstate that reflect these processes (Figure9). With transition elements and rare earthsthe absence of shake-up satellites is usual¬ly characteristic of the elemental or

diamagnetic states. Prominent shake-uppatterns typically occur with paramagneticstates. Table 3 has been included as aguide to some expected paramagneticstates.

ii.Multiplet Splitting. On occasion, themultiplet splitting phenomenon can alsobe helpful in identifying chemical states.The 3s lines in the first series of transitionmetals, for example, exhibit separationscharacteristic of each paramagnetic

Table 3 — General guide to paramagnetic species

Multiplet splitting and shake-up lines are generally expected in the paramagnetic states below.

Atomic No. Paramagnetic States Piamagnetic States

22 Ti +2, Ti+3 Ti + 4

23 V +2, y+3 v +4 v+524 Cr +2, Cr +3, Cr + 4, Cr +5 Cr +6

25 Mn+ 2, Mn+3, Mn+4, Mn + 5 Mn + 7

26 Fe+ 2, Fe+ 3 IÿFe (CN)6, Fe (CO)4Br2

27 oo + _to oo +co CoB, Co(N02)3(NH3)3, K3Co(CN)6,Co(NH3)6CI3

28 Ni+2 K2Ni(CN)4, square planar complexes

29 Cu+ 2 Cu + 1

42 Mo+4, Mo+ 5 Mo+ 6, MoS2, ÿMofCNJa

44 Ru+ 3,Ru+4, Ru + 5 Ru+ 2

47 Ag + 2 Ag + 1

58 Ce+ 3 Ce + 4

59-70 Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho,

Er, Tm, Yb compounds

74 W +4,W +5 W + 6, W02, WCI4, WC, K4W(CN)8

75 Re+2,Re +3,Re +4,Re + 5,Re + 6 Re+7, Re0376 Os +3,Os + 4,Os +5 Os +2,Os"l'6,Os + 8

77 lr + 4 lr+ 3

92 U+3,U+4 U+6

20 physicalelectronics

Page 24: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

4 4<<<<<<4<<4<<<<<1<<1<114<1<4<

chemical state. The 3s line, however, isweak and therefore is not often usefulanalytically. The 2p doublet separation isalso affected by multiplet splitting and thelines are more intense. The effect becomesvery evident with cobalt compounds wherethe separation varies up to one electronvolt. Little utilization of this effect has yetbeen made. However, when first row transi¬tion metal compounds are under study, itmay prove useful to record accuratelythese line separations and make com¬parisons with model compounds.

iii.Auger Line Shape. Valence type Auger tran¬sitions form final-state ions with vacanciesin molecular orbitals. The distribution ofthe group of lines is strongly affected,therefore, by the nature of the molecular or¬bitals in the different chemical states.Although little has yet been published onthis subject, the spectroscopist shouldbear in mind the possible utility of Augerline shapes of oxygen, fluorine, the firstrow transition metals (Sc-Ni), and Ru, Rh,and Pd.

D. QUANTITATIVE ANALYSISFor many ESCA investigations, it is important todetermine the relative concentrations of thevarious constituents. Methods for quantifyingthe ESCA measurement utilizing peak area sen¬sitivity factors and peak height sensitivity fac¬tors have been developed. The method whichutilizes peak area sensitivity factors typically isthe more accurate and is discussed below. Themethod for determining peak height and peakarea is shown in Figure 13. This approach issatisfactory for quantitative work except withtransition metal spectra with prominent shake-up lines. For these, it is often better to includethe entire 2p region when measuring peak area.

1 1 lli£ i

\ VERTICAL HEIGHT,\ PEAK TO BASELINE

/\ WIDTH PARALLEL TO\ ÿBASELINE AT HALF THE HEIGHT

y\

/TANGENTIAL BASELINE —-----;

DELINEATING AREA,

Figure 13. Method for determining height, width, and areaof a photoelectron peak.

For a sample that is homogeneous in theanalysis volume, the number of photoelectronsper second in a specific spectral peak is givenby:

I = nfoSyAAT (5)

where n is the number of atoms of the elementper cm3 of sample, f is the x-ray flux inphotons/cm2-sec, a is the photoelectric cross-section for the atomic orbital of interest in cm2,9 is an angular efficiency factor for the in¬strumental arrangement based on the angle bet¬ween the photon path and detected electron, y isthe efficiency in the photoelectric process forformation of photoelectrons of the normalphotoelectron energy, A is the mean free path ofthe photoelectrons in the sample, A is the areaof the sample from which photoelectrons aredetected, and T is the detection efficiency forelectrons emitted from the sample. From (5):

n = l/fo0yAAT (6)

PERKIN-ELMER 21

Page 25: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>»»>> I >> > »»»ÿ»»>»>>»>»»»>>>>>

The denominator in equation 6 can be assignedthe symbol S, defined as the atomic sensitivityfactor. If we consider a strong line from each oftwo elements, then:

n, 1,/S,— = -W- (7>n2 12' ÿ2

This expression may be used for allhomogeneous samples if the ratio S,/S2 is matrixindependent for all materials. It is certainly truethat such quantities as o and A vary somewhatfrom material to material (especially A), but theratio of each of the two quantities o,/o2 and A,/A2,remains nearly constant. Thus, for any spec¬trometer, we may develop a set of relative valuesof S for all of the elements.

A generalized expression for determination ofthe atom fraction of any constituent in a sample,Cx, can be written as an extension of equation 7:

p Uÿx= v- (8)

2jn, 2/|./s,I i

Values of S based on peak area measurementsare indicated in Table 5 of the Appendix. Thesevalues are presentedrelative to the F1s intensity,which has been used as a standard. The valuesof S in the Appendix are based upon calculatedvalues of oa) which have been corrected for thekinetic energy dependence of the spectrometerdetection efficiency and an average value for thedependence of A on kinetic energy of E0-75 (Figure3). The values in the Appendix are only valid for,and should only be applied, when the electronenergy analyzer used has the transmission

a) J. H. Scofield, J. Elect. Spectr. 8, 129 (1976).

characteristics of the double pass cylindrical-mirror type analyzer supplied by Physical Elec¬tronics. An example of the application of equa¬tion 8 to analysis of a nearly ideal sample,polytetrafluoroethylene, is shown in Figure 14.

-:-;-:-1-t-1-1-1-1-F Is

COMPOSITION: ATOMIC PERCENT

THEORETICAL EXPERIMENTALC 33.3 32.2F 66.7 67.7

F AUGERÿ "\l C 1s

• i —\ [ F2*

-1-1-1-1- iiss»1000 800 600 400 200 0

BINDING ENERGY, eV

Figure 14. Quantitative analysis of polytetrafluoroethylene(by peak area of F1s and C1s).

The use of atomic sensitivity factors in the man¬ner described will normally furnish semiquan¬titative results (within 10-20%) except in thefollowing situations.

(1)The technique cannot be applied rigorously toheterogeneous samples. It can be useful withheterogeneous samples in obtaining resultsin terms of the relative number of atomsdetected, but one must be conscious that themicroscopic character of the heterogeneoussystem influences the quantitative results.Moreover, an overlying contamination layerhas the effect of diminishing high bindingenergy peaks more than those with lowbinding energies.

(2)Transition metals, especially of the firstseries, have widely varying and low values ofy, whereas y for the other elements is rather

22 PHYSICAL ELECTRONICS

Page 26: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

4 4 , < , < « , I | < < i ( 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

uniform at about 0.8. Thus, a value of S deter¬mined on one chemical state for a transitionmetal may not be valid for another chemicalstate.

(3)When peak interferences occur, alternativelines must sometimes be used. The ratios ofspin doublets (except 4p) are rather uniformand the weaker of the pair can often besubstituted. Figure 15 is a general guide tothe relative peak height of the minor lines.However, with the minor lines, there is muchvariation in relative peak heights and widths,so the figure should be regarded as a semi¬quantitative guide, of the order of ± 30%. Thesample spectra of the elements may also beconsulted, but caution must be exercised,since the spectra of the elements themselvescan be somewhat different, quantitatively,from the spectra of their compounds.

Occasionally an x-ray satellite from an in¬tense photoelectron line interferes withmeasurement of a weak component. Amathematical approach can then be used tosubtract the x-ray satellite before themeasurement.

For quantitative work it is advisable to check thespectrometer operation frequently to ensurethat analyzer response is constant and op¬timum. A useful test is the recording of the threewidely-spaced spectral lines from copper.Measurement of peak height in counts per se¬cond should be made on 20 volt wide scans ofthe 2p3/2, LMM Auger, and 3p lines, and the peakwidth of the 2p3,2 line should be measured asshown in Figure 13. Maintenance of suchrecords makes it easily noticeable if an in¬strumental change occurs that would affectquantitative analysis.

E. DETERMINATION OF ELEMENT LOCATION

(1) Deÿth. There are four methods of obtaining in¬formation on the depth of an element in thesample. The first two methods below utilizethe characteristics of the spectrum itself, butprovide limited information. The third, depthprofiling by erosion of the surface, providesmore detailed information but is attended bycertain problems. The fourth utilizesmeasurements at two or more electronescape angles.

i.The presence or absence of an energy losspeak or envelope indicates whether theemitting atoms are in the bulk or at the sur¬face. Since electrons from surface atomsdo not traverse the bulk, peaks due to thesurface atoms are symmetrical above levelbaselines on both sides and the energyloss peak is absent.

ii.Elements whose spectra exhibit photo-electron lines widely spaced in kineticenergy can be approximately located bynoting the intensity ratio of the lines. In theenergy range above approximately 100 eV,electrons moving through a solid withlower kinetic energy are attenuated morestrongly than those with higher kineticenergy. Thus, for a surface species, the lowkinetic energy component will be relativelystronger than the high kinetic energy com¬ponent, compared to that observed in thepure material. The data in Figure 15 forhomogeneous bulk solids can be com¬pared with intensity ratios observed onunknowns to determine qualitatively thedistribution of the element in the sample.Suitable elements include Na and Mg (1sand 2s); Zn, Ga, Ge, and As (2p3,2 and 3d);and Cd, In, Sn, Sb, Te, I, Cs, and Ba (3p3,2and 4d, or 3d5(2 and 4d).

PERKIN-EL.MER 23

Page 27: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»>>>>>>>>)>>>>>>»>>>>>>>>>>>>>

l3mZjVKt-ijWj

L3M,SM,S

i

Figure 15. Peak heights of minor lines relative to strong lines (based on survey spectra contained herein).

24 PHYSICAL ELECTRONICS

Page 28: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

4 « 4 4 4 1 ( 1 i

For the situation where the element is in abulk homogeneous layer beneath a thincontaminating layer the characteristic in¬tensity ratio is modified in the oppositedirection. Thus, for a pair of lines due tosubsurface species, the low kinetic energyline will be attenuated more than the highkinetic energy line, distorting thecharacteristic intensity ratio, By observingsuch intensity ratios and comparing themwith the values for pure bulk elements(Figure 15), it is possible to deduce whetherthe observed lines are due to predominant¬ly surface, subsurface, or homogeneouslydistributed material.

iii.Depth profiling can be accomplished bycontrolled erosion of the surface by ionsputtering. In Table 4 are presented somedata on sputter rates as a general guide.One can use this technique on organicmaterials, but few data are available forcalibration. Chemical states are usuallychanged by the sputter technique, butuseful information on elemental distribu¬tion still can be obtained.

Table 4 — Some representative sputter rates

(2 keV argon ion beam with 100 yamps/cm1 impinging onsample)

Target Sputter Rate, A/mina>Ta205 100

Si 90

Si02 85

Pt 220

Cr 140

Al 95

Au 410

a) ± 20%.

Another method of controlled erosion thatis useful, especially with organic materials,is reaction with oxygen atoms from aplasma. This technique may also changethe chemical states in the affected surface.Further, since the elements differ in theirrates of reaction with oxygen atoms, therate of removal of surface materials will besomewhat sample dependent.

iv.One may alter the angle between the planeof the sample surface and the angle of en¬trance to the analyzer. At 90°, with respectto the surface plane, the signal from thebulk is maximized relative to that from thesurface layer. At small angles, the signalfrom the surface becomes greatly en¬hanced, relative to that from the bulk. Thelocation of an element can thus be deduc¬ed by noting how the magnitude of itsspectral peaks change with sample orien¬tation in relation to those from otherelements.

The electron energy analyzer used in theESCA/SAM incorporates a special aperturearrangement that permits angular resolvedstudies. An example of the information thatcan be gained through the use of thiscapability is shown in Figure 16. Data wereobtained at high (near 90°) and low (near15°) exit angles from a silicon sample witha thin silicon oxide overlayer. The observedintensity ratio of oxidized to elementalsilicon is much greater at the small exitangle.

(2)lnsulating Domains on a Conductor. The oc¬currence of steady-state charging of an in¬sulator during analysis sometimes has usefulconsequences. Microscopic insulating do¬mains on a conductor reach their own steady-

PERK1N-ELMER 25

Page 29: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»»»»»>»>

N(E)

114 112 110 108 106 104 102 100BINDING ENERGY, eV

Figure 16. Use of different electron escape angles to deter¬mine depth distribution (Si 2p line from siliconsample with approximately one monolayer Si02overlayer). Angles indicated are electron take-offangles relative to specimen surface.

state charge, while the conductor remains atspectrometer potential. Thus, an element inthe same chemical state in both phases willexhibit two peaks. If a change is made in thesupply of low energy electrons which stabilizethe charge, as from the neutralizer filament,or if a bias is applied to the conductor, thespectral peaks from the insulating phase willmove relative to those from the conductingphase, as shown in Figure 17. For suchheterogeneous systems, this is an extremelyuseful technique. It makes it possible todetermine whether the elements that con¬tribute to the overall spectrum are in the con¬ducting or the insulating phase, or in bothphases.

» ) » » > » > » » \ » ) > ) » > » » »| >

-r \ i i 1-1-1-----1 i

Al METAL

ai2o3 in contact PWITH Al / \

AljOj \INSULATED \

y1

/ 1 \ // 1 ÿ7

NO / 1SPECIMEN / 1

NEUTRALIZER / L.

1

/ N.

/

-j *

l*** >— ÿ -\ 1

l\1 \

SPECIMEN /NEUTRALIZER /

ON J

1 \1 \1 \' \

L V----1 N| N

1

SPECIMEN /NEUTRALIZER /

ON WITH HIGHER /. BIAS VOLTAGE /

,iii 1 1

\ /'\\ / ' \\ / 1 \\ J \ \

1 1 1 —130 128 126 124 122 120 118 116 114 112 110

BINDING ENERGY, eV

Figure 17. Use of specimen neutralizer to shift the partialspectrum from insulating domains (Al 2s linesfrom Al203 on aluminum sample).

(3)Surface Distribution. ESCA is not ordinarilyused to obtain information on X-Y distributionbecause a large analysis area is required forgood signal intensity. With the PHI doublepass cylindrical-mirror analyzer used in theESCA/SAM, however, a circular area of 2-5mm diameter can be imaged, depending uponthe apertures in use and the retarding condi-

26 PHYSICAL ELECTRONICS

Page 30: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

<4I<<I4<<<<4<< J<<<<4<4<<<<<<<<<

tions. This area is expressed as the full widthat half maximum of the photoelectron intensi¬ty observed as a function of distance from thecenter of the imaged area. Thus, the effective

sample area is not large. It is often possible toanalyze different positions on the same sam¬ple when the surface is heterogeneous on ascale larger than two millimeters.

6. How to Use This HandbookFull utilization of this Handbook can best be ac¬complished by following these procedures.

A. FOR QUALITATIVE ANALYSISThe elemental and chemical identification ofsample constituents can be performed mostreadily by combining the information in the stan¬dard survey spectra in Section II with thebinding energy tables (Tables 1-4) presented inthe Appendix.

(1) First identify all major photoelectron peaksutilizing the line position tables (Tables 1-4,pages 182-187).

(2) Check to see that the determinations made instep 1are consistent with the standard surveyspectra.

(3) Identify the Auger electron peaks by theline positions listed in Tables 1-4 in the Ap¬pendix (these are different for Mg and Al x-raysources) and the expanded spectra providedfor many of the elements in Section II.

(4) Review section I.5.A. (p. 12) to account forfine structure such as energy loss lines,shake-up peaks, satellite lines, etc. not identi¬fied in Handbook spectra or energy tables.

(5) Identify any remaining small peaks, assumingthey are intense photoelectron or Auger linesof minor constituents using Tables 3 and 4.

(6)Chemical state identification can be deducedfrom high energy resolution (E < 25 eV)spectra of the strongest photoelectron linesand sharpest Auger lines.

•i.Review Section I.5.C. (p. 17) to correctbinding energies for static charging of in¬sulators. When applicable, chargereference the binding energy scale to thehydrocarbon C1s photoelectron peak(BE = 284.6 eV).

ii.Use the tabulated experimental data andstandard high energy resolution spectra todetermine the chemical state frommeasured shifts in the photoelectronbinding energies (cf section I.5.C., p. 18).

iii.For the elements F, Na, Cu, Zn, As, Cd, In,and Te, convert corrected Auger line posi¬tions to kinetic energies by subtractingfrom the photon energy (Mg = 1253.6, Al =1486.6 eV). Note the location of the pointsfor Auger kinetic energy and photoelectronbinding energy on the respective elementalplot. Proximity of experimental points to

PERKIN ELMER 27

Page 31: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>>>>>>>>>those of recorded chemical states shouldbe considered probable identification, ifconsistent with other elemental findingsand with calculated stoichiometry (seebelow). Note that experimental error inpoint location is much greater along theAuger parameter grid than normal to thegrid lines.

iv.As suggested in the text (Section I.5.C., p.20), much can be determined about thechemical state from the magnitude andposition of shake-up lines as well as theenergy and shape of valence Auger elec¬tron lines.

B. FOR QUANTITATIVE ANALYSISThe atomic sensitivity factors (SJ presented inTable 5 of the Appendix (p. 188) were calculatedaccording to theoretical photoelectron crosssections, the kinetic energy dependence of thePHI Precision Electron Energy Analyzer and anaverage value for the dependence of the elec¬tron escape depth on kinetic energy. Asimplified expression to determine the atomic

concentration (C ) of any element x is given inequation 8:

c =l>/s>2 i/s, (9)i

where lx is the relative peak area of photoelec-trons from element x. However, it must bepointed out that the method is limited in ac¬curacy by the assumptions made (cf SectionI.5.D., p. 21).

The spectrum should be examined with a view tofinding information on the depth of the element(i.e., by peak intensity ratios, or the presence orabsence of loss lines). Further scans withvariable take-off angle, or by erosion of the sur¬face, can be made if this point needs furtherelucidation.

C. FOR A FINAL CHECKA concluding effort should be made to ensurethat quantitative data and the conclusions onchemical state are consistent. This includesquantitative apportionment of an elementamong two or more chemical states, where thatis indicated.

» > > > » \ > » »i >

l

!

28 PHYSICAL ELECTRONICS

Page 32: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

II. STANDARD ESCA SPECTRA OF THEELEMENTS AND LINE ENERGY

INFORMATION

PERKIN ELMER 29

Page 33: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

))))))))>)

This section of the Handbook contains survey(broad scan) spectra of sixty-eight elements, detailspectra of the strongest photoelectron lines, and aphotoelectron binding energy chart or a two-dimensional Auger parameter plot for each of thesixty-eight elements. Used in combination with the•Tables in the Appendix, the survey spectrafacilitate element identification. The detail spectraand charts aid in the identification of chemicalstates.

SURVEY SPECTRA

The broad scans include all of the lines that arenormally useful. The photoelectron and more pro¬minent Auger lines for the element of interest areidentified. Lines that occur due to other elementsare only designated by the elemental symbol, andx-ray satellites and energy loss lines are not noted.Many elements exhibit x-ray generated Auger lineswhich have sufficient sharpness and structure tobe useful. For these elements, the Auger region isdisplayed in expanded form. Exact energies of thesharper Auger lines are noted. The energies ofthose that are less sharp are recorded to thenearest electron volt. The instrumental contribu¬tion to the line width is 1.0 eV (50 volts pass energy)for the broad scans.

The Y scale has been left undesignated because itwas not possible to control the surface roughnessof the standards. However, the general contoursand relative intensity ratios in the spectra shouldbe typical of measurements made with the PHIPrecision Electron Energy Analyzer in the retardmode.

DETAIL SPECTRA

The detail spectra of the strongest photoelectronlines are presented opposite the survey spectra. Inall cases, the binding energy of the main line is in-

30 PHYSICAL ELECTRONICS

>>>>>>>>>>dicated and, where appropriate, the spin doubletseparation is noted. When necessary, checks weremade to ensure that chemical states were un¬changed by the radiation. The lines from insulatorshave been charge-corrected to the adventitioushydrocarbon C1s line at 284.6 eV. The instrumentwas, in all cases, calibrated to place the Au4f7(2line at 83.8, Cu3p3/2 line at 74.9, and the Cu2p3(2 lineat 932.4 eV. The instrumental contribution to theline width for the detail spectra is 0.5 eV (25 voltspass energy).

PHOTOELECTRON BINDING ENERGY ANDTWO-DIMENSIONAL AUGERPARAMETER CHARTS

The photoelectron binding energy charts havebeen constructed utilizing data available in the

literature up to 1978. Data from the experimentalwork contained in this section have been includedand denoted by the symbol 3). Data fronr) literaturereferences have not been included if the method ofcharge referencing is unknown or of questionablevalidity. Data included are all referred to a bindingenergy scale with Au4f7(2 = 83.8 and C1s =284.6eV, although it is recognized at this time thatgeneral agreement has not been reached and thatthe values 84.0 and 284.8 could have been chosenwith equal justification. It is likely that the valuesultimately agreed upon will be within these limits.

Line positions have been shown as bars 0.2 eVwide, although with insulating materials the errormay be somewhat larger. Data available for C, N,O, P, S, CI, K, Cr, Mn, Fe, Co, Ni, Mo, Rh, Pd, Sn andPt were numerous, and selection was made ofthose chemical states deemed most useful. Multi¬ple data on the same chemical state are frequentlyincluded to indicate reproducibility in differentlaboratories. Data that are obviously outlying havebeen rejected, but where some doubt existed onthe selection, disagreeing values were included.

'v

I

I

I

I

Page 34: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

<<<<<<<4<<<<<<<<<<<<< <<<<<<<<<Two-dimensional chemical state plots accompanythe spectra for F, Na, Cu, Zn, As, Ag, Cd, In and Te.In the format adopted, the kinetic energy of theAuger line is plotted against the binding energy ofthe photoelectron line, with the latter plotted in the-x direction (kinetic energy is still, implicitly, -fx).The points on the two-dimensional plot are drawnas rectangular boxes at 45°, reflecting the ex¬pected error of measurement in the two perpen¬dicular directions.

References for the one and two-dimensional plotswere catalogued by initials of the first threeauthors. Where two or more identical symbols forreferences would have resulted, a final differen¬tiating number was added. The entire reference listis presented in Section 11-2 (p. 174).Those in the list

that are marked with an asterisk have many moredata besides those listed here.

Abbreviations used in the tables and plots includethe following:RMeEtPrBuAmPhAcBzbae = ethylenediamine + acetylacetone

(condensation product)salen = ethylenediamine + 2 salicylaldehyde

(condensation product)

= alkyl acac = acetylacetonate= methyl ox = surface oxidized in air- ethyl sulf = surface treated with H2S= propyl P- = para= butyl aq = hydrate= amyl tu = thiourea= phenyl tm = tetramethylthiourea= acetyl cp = cyclopentadiene= benzyl

PERKIN-ELMER 31

Page 35: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»»»»»»»»»»»»Lithium, Li Number 3COMPOUND

501s BINDING ENERGY, eV

55 60

Li 1pLi iLiN3 ____L|'P°<.r%s:bi*ct

LiCr02 ,JY.„ „

Li2CrOa. . f \. ;,F.\ ."1

1C>3 .1.. '•

LiBr 1LiCI l'f"!p V-voÿtÿÿtiCjoyo s--LiF

;yj . i« -• .ri: <2*r

REF.

BCWKL1SGRMVSMVSAC1AC1MVSMVSMVSO

32 PHYSICAL ELECTRONICS

I \ i I ) i \ ) ) I } \ ) ) ) )HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY ,

BINDING ENERGY, eV

Page 36: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

45

, , < ,Lithium, Li Number

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

N(E)

1000

T»l.tin Vt¥- )I|»«W»V

<£900 800 700 600 500 400

BINDING ENERGY. eV300

LiF

Mg Ka

200 100 0

PERKIN-ELMER 33

Page 37: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»>»»»»»»»»»>»Beryllium, Be Atomic

Number

COMPOUND 1s BINDING ENERGY, eV110 115

REF.120

BeBeBeBep/f- nwBeO c

Na2BeF4NaBeF,BeF2BeF,

OHJGB1NGDHJGNKBNKBNKBHJG

34 PHYSICAL ELECTRONICS

»»»>» »>»>>»> >> »»HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

112BINDING ENERGY, eV

11

Page 38: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>PY

102

\ I I I \ I I 1 * * *HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

«<<<(<

1000

Beryllium, Be Atomic ANumber Hr

Mg Ka

Be 1s

900 800 700 600 500BINDING ENERGY, eV

400 300 200 100 0

PERKIN-ELMER 35

Page 39: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

ÿBoron, ti »»»»»»»>»»/viomicNumber O

COMPOUND185

1s BINDING ENERGY, eV REF.190 195

B4CMnB2TiB2•CoB

'

.-•> /•

VB2 ''

HfB2MoB2Fe2BAIB2NaBH4BMe4NB3H8NaBPh4b10h,4B10H,2Pt(PPh3)2B10H12Pt(PEt3)2BNbnBNp-CIC6H4B(OH)2NaBH(OMe)3

JÿBÿ. . _Ph3POBBr3ÿÿtoÿigÿNa2B4O7-10H2O.|:'::iQ;;-rB(OH)3

.

B203Ph3POBCI3

EtNH,BF

NH3BF3NaBF4

36 PHYSICAL ELECTRONICS

) ) ) )))))))) t ) ) >| )HANUoOOK ut- X-RAr PHOIUELEClrlON SPECTROSCOPY 1

190

BINDING ENERGY, eV

Page 40: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I I I < < < I I < < ' ' ' ' f t t < » « » 1)PY

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

<<<<<<<<<Boron, B a5

Mg Ka

B(KVV)

L1100 1000 900 800 700 600 500 400 300

BINDING ENERGY, eV200 100 0

PERKIN-ELMER 37

Page 41: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»)»»>»»>)»>>Carbon, C Number 6COMPOUND

2801s BINDING ENERGY, eV284 288 292

REF.

HfCTiCWCC (graphite) : T"

(CH2)nMn(C5H5)2SnPh4MeCH2NH2Cr(C6H5)2MeCH2CIMeCH2OHMeCH2OEtMeCH2OOCMeCS2Fe(CO)5Me2CO

:(NH2)2CO . •< *.

;C6F6MeCOONaMeCOOEtMeCOOH _

'•Na2C02NaHCOj:COC02(CHFCH2)n(CHFCHF)n[(CHFCF2)n

'

*.*•£*:(CF2CH2)„ '

ÿ :

l(CF2CHF)n;v(CF2)nCFjCOONaCCI4:CF2COMe;CF3COOEt . • 'i

296

<X>38 PHYSICAL ELECTRONICS

»»»>»»>»»»»»>»>ÿHANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY HAL

N(E)E

\

Polyethylene

284.6

274284294BINDING ENERGY. eV

1100

i

Page 42: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

, , , , . ......,.<<<«< t I<I<<<<<<< «Carbon, C ess6HANDBOOK OP X-RAY PHOTOELECTRON SPECTROSCOPY

Polyethylene

Mg KaC(KLL)

KVV990997

C 1s

9801020 1000N(E)

C(KLL)

1100 1000 900 800 700 600 500 400 300 200 100 0

BINDING ENERGY, eVPERKIN-ELMER 39

Page 43: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

Wrogeii, N* „*Js7»>»»»»»»COMPOUND

3941s BINDING ENERGY, eV REF.393 402 406 410

BuNHjPhNH2pyridine

• H2NCsH4N02 ÿ

ÿ

h2nso2c6n4no2"~tetracyanoquinodimethanePhCNPhNHCSNHPhguanidine HCIphthalocyaninePhNNPhh3n+chrcoo-EtNHjCIMe4NBrMe4NCIP-NHj»C8H4SOj- ; .

'

chloranil-pyridineMe3NOAmONOMeN02PhN02WN

•ÿ :

bnNaSCN _K4Fe(CN)6KCNS2N2co(nh3)6ci;.-;n2h5so4(nh3oh)+ci->nh4no,Na2N202NaN3NaN02

'

NaN03 ÿ

$

40 PHYSICAL ELECTRONICS

ÿ ÿ ÿ ÿ ÿ ÿANCuloK uX-RAi PHOTocLEC i..ÿN SPcÿTROaÿOPY ÿ ÿ ÿ

PHOT

398BINDING ENERGY,eV

Page 44: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

Nitrogen, NHANDUOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY AtomicNumber

BNN(KVV)873.4

903

Mg Kar

890.6

N 1s

N(E)

840880920

j

t

/

0100300 2004005001100 1000 900 600BINDING ENERGY. eV

800 700H

perkin-elmer 41

Page 45: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

)»)»)>)) I > I t >) >Oxygen, O Number 8COMPOUND

5251s BINDING ENERGY, eV REF.

530 535

Ru02NiOFe203Ruo2

•' ;wo3Cr203Cu20Ni202Ni(OH)2KOHai2o3Na zeoliteSi02 gelAI(OH),

CaC02Na2S203 ÿ

Na2S03 -T 'Na2S04 '

CsCI04"

Li2Cr04CuCr02

:\>-s

\f::

AI2(Mo04/3AI2(W04)3Cr(CO)6•R,SO • •* •."j&- ÿ ?•;<S,

RjS02H2NC8h2nc,h4so2nh2RS03Napoly (methyl methacrylate)ÿEt2oPhOCOOPh . 1

l1Ir*

Jfp*&,

lJ

KBAKBAKI1KBACRAC1RBOKBAKBAKI1CDMWJMWJFWFS4LHJLHJLHJMVSAC1AC1AC1PCLPCLPCLNH2PFDMLMLHSLHJLHJCTCTCT

542

<x>42 PHYSICAL ELECTRONICS

»»>>>»>>>>)>>»>HANDBOOK OF X-RAY PHOTOtLECTRUN SPECTROSCOPY

H/

532BINDING ENERGY, eV

100C

Page 46: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I<<<<<<<<<<<<<<HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

N(E)

522

1000

<D900 800 700 600

<<<<<<<<<<<<<<<Oxygen, O Atomic Q

Number O

O 1S

805 765

ArAr C I

ai2o3Mg Ka

1

O(KVV)

i i 1 t--r i

745.3

766.7

780.6

• t i 1 i i t

725

Al Al

vi—"nJ_L _L

0 2sW_/U

500 400BINDING ENERGY, eV

300 200 100 0

PERKIN-ELMER 43

Page 47: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

> » > » » t t > I t t > > >Fluorine, F Number 9

1344660 1343

LUzLU

1342 §659

1341 3658

657 1340 2

1339 uj656

LU

655CoSIF,

654

653

652

651

650 Data presented in tabular lorm in Section II. 2.-*C4F and CF are fluorinated graphitesamples.

**MPT is C;7H3aN7, a llgand with three_

methyl-pyridine rings.

689690 687 686688 685 684 6831s BINDING ENERGY, eV

<x>44 PHYSICAL ELECTRONICS

) ) > » > )> » ) > » » t > >HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

684.9

695 685BINDING ENERGY, eV

675

N(E)E

10C

Page 48: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

PY

675

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

, , , { | < ( I i i « « t « <Fluorine, F Number 9

F(KLL) KLÿLjj

598.7

Mg Ka

624.8

643.8

F(KLL)

1000 900 800 700 600 500 400 300 200 100 0

BINDING ENERGY, eVPERKIN-ELMER 45

Page 49: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>ÿ»>»">>»>>»»»Sodium, Na Atomic H "1

Number I I

9972067 2066

2065

2064 cc

2060 S?lu 992

NaAsO

NajHPOi | NajS20

NaOAc

NajCOj

NaPO Na2SONaNO

/Na Zeolite

NajZrFs

Na,AlF

Data presented in tabular form in Section II.2

<E1075 1074 1073 1072 1071 1070

1s BINDING ENERGY, eV1069 1068

46 PHYSICAL ELECTRONICS

1082 1072BINDING ENERGY, eV

1062

>>>>>>>>)HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

1 1s1071.4 Na2HP04

i

N(E)E

I

Page 50: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

t i I i i iPl

| HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

( | ( 4 4 4 4 4 4 *

Na 1s

N(E)

1062

1100 1000 900

Sodium, Na Number 11

Na(KLL)

350

KL.L,331.0

300

"N_L

KLjjLjj263.5

302.5

250

<<:% ÿaftggagaafc

ifeli

Na2HP04Mg Ka

x4

Na2s

800 700 600 500BINDING ENERGY, eV

400 300 200 100 0

PERKIN-EL.MEFI 47

Page 51: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

)))>»>)»>»)>)>)

Magnesium, Mg : 12COMPOUND

452p BINDING ENERGY, eV

50 55REF.

(D

LMKHF1FWFFWFFWFFWFFWFCD

MgMgMgMg

""

Mg3AuMfllCu_Mg3BiMg oxMgF2

ÿi(

<X>48 PHYSICAL ELECTRONICS

I > t I » t I I > I > ) » ) »HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY 1

Mg

49.75

BINDING ENERGY, eV

I

F

1

t

\I

:

i

i

Page 52: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

(<<((<<((<

40

<<<<<<<<<<< <HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

Mg1s

N(E)

<D_L

Mg(KLL)

390

KLiL,

380.2

340

I

T

KL23L23300.9

346.5

290

<<<<<<<<Magnesium, Mg Atomic "J O

Number Iÿ

-r-

Mg(KLL)

..•5T> ,v •.V•

Al Ka

Mg2s

xlO Mg2p

ÿvl

1400 1300 1200 1100 1000 900 800 700 600BINDING ENERGY, eV

500 400 300 200 100 0

perkin-elmer 49

Page 53: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»»»»>!»>»»»»Aluminum, Al Number 13COMPOUND 2p BINDING ENERGY, eV REF.

70 75 80

Al 1 ®Al 1 MSCAlai iAaib2 1

I - B2LMKMEC

Al oxai2o3 1

1 - ... B2®

ai2o2 NSLai2o3 MSCAIA l' : i NGDt-ai2o3 - : ; OW

MWJ7-AL0-7-AI203 1 NH2Na zeolite 1 MWJZriAl204 _. , 1 , OWS°Ai.0.7fsgflagS7soAi=o-:,s3a3fSSsassNiAI204

1

'1

ÿ

L

rfy!' *-

•?' - BGDPCLNH2

AI2(W04)3AI2(Mo04)3

111

NH2PCL

Al acac3 MSC

llf3 w. 1 MSCMSC

<AIBr3 • • •:*L-'

'

MSCAICI, 1 MSCaif3 MSCk3aif6 i r MSC

50 PHYSICAL ELECTRONICS

i ) i I i i i i i i i i i ÿ i iHANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY | HAr

76BINDING ENERGY, eV

76BINDING ENERGY, eV

Page 54: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I <DPY HmNDBOuK of x-ray photoelectron spectroscopy

< I I ( < < < < ' ((((«((<<

1000 900 800

Aluminum, Al Atomic "f QNumber IO

Mg Ka

Al 2s

700 600 500 400BINDING ENERGY, eV

300 200 100 0

PERKIN-ELMER 51

Page 55: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

Silicon, bi 14

COMPOUND98

2p BINDING ENERGY, eV REF.103 108

JV '

SiSiSi

•SiPh4SiPh4SiPh4SiPh3SiSiPh3Ph3SiSiPh3Me3SiSiMe3Me3SiNHSiMe3Me3SiOSiMe3PhjSi(OH)2Ph3SiOHPh3SiOSiPh3_Et3SiCI(Me2SiO)5(Me2SiO)nEt3SiFEt2SiCI2EtSiCI3sit, "V1Na zeoliteJu ,p,

silicates§is2 '

Si02SiO,

Si02SiOj

Si02 gelNa2SiF6K2SiF6

-i-. ll:..

I)

CDBMVHBBMVNBAGCHNBAGCHGCHGCHGCHNBANBAGCHGCHGCHNBAGCHGCHGCHNBAMWJCDBMV(D

NSLMVCDBMWJNSLMV

52 PHYSICAL ELECTRONICS

ÿ ÿ ÿ ÿ ÿ ÿHANuÿJOK JX-Rh AhOiOÿLEC.ÿON SÿcCTRoAoPY ÿ V ÿ

99.15

94104114

BINDING ENERGY, eV

SiO103.4

94114 104BINDING ENERGY, eV

Page 56: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

i i , % i i * < < < < < ' 'HANOBOOK OF X-RAY PHOTOEIECTRON SPECTROSCOPY * I i I ÿ 1 ' ' Silicon, Si Atomic "1/INumber IHT

94

Mg Ka

1000 900 800 700 600 500 400BINDING ENERGY, eV

300 200

PEBKIN-ELMER 53

Page 57: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

))) \ )))))))) \ >Phosphorus, P as15COMPOUND

1282p BINDING ENERGY, eV REF.

133 138

ICrPMnPGaPBP ' ,P "

Ph3PPt(PPh3)4PtCI2(PPh3)2PdCI2(PPh3)2PdBr2(PPh3)2PdI2(PPh3)2 _pto2(pph3)2- v::PtCI4(PMePh2)2Ph3PSBUjPCI

Ph4PBrPh3PO(Phs)3ps(PhS)3Pp3n5Ph2PO(OH) _BaHP03 :> C-K2HP04Na2HPo4kh2po4POBr3JNa,P04Na4P207 , \ > • .. .

(NaP03)j . "ÿ

NaP03 . .v(PhO)3POP205NH4PF9KPFaPBr5

ÿ-T

l

i

PHHPHH(D

PHHPHHPHHRRKBMKBMKBMRLBPHHPHHSRHPHHMSAPHHPHHNBKPHHPHHCDPHHPHHMVSMVSPHHPHHPHHNGDPHHSMAPHH

<D54 PHYSICAL ELECTRONICS

>>>»>»>>) I >>>> >HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

II

Na2HPO

132.9

124134144BINDING ENERGY, eV

11I

Page 58: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I t I <(»<»»<<< '(«<!<<<<

handbook of x-ray photoelectron spectroscopy

N(E)

Na

1100 1000 900

Phosphorus, P Atomic ÿ CNumber |O

O

Na2HP04Mg Ka

Na

- Na

800 700 600 500BINDING ENERGY, eV

400 300 200 100

PERKIN-ELMER 55

Page 59: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>>>>>>>»>>>>>Sulfur, S Number 16COMPOUND

160

2p BINDING ENERGY, eV165

REF.170

Na2Sp-NaSCjHjNOjPbSFeSKFeS2WS2MoS2Na2SS03PhNHCSNHPhPhSCMe3Ph3PStetrahydrothiophenePhSHPh2SPhSSPhs3 ' \--rTSn -thiophene .s2n2 "Me3SI02NC6H.S02NaPh2SO~

BzMeSO . vPhS02NaNa2S03Na2SS03BzMeS02S02 VPhS03Nap-H2NCBH4s62NH2ÿiPhS03Me

. '

Na7S04FeSO.,Fe2(S04)3

v.

IV

1

LHJLHJSFSB4B4NH2PCLLHJPNSPLBMSAMMPLHJLHJLHJLHJ0>LHJSDILHJLHJLHJMLLHJLHJLHJMLLHJW1LHJLHJLHJLHJLHJ

56 PHYSICAL ELECTRONICS

>>>>>>>>>>>>>HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY)

163BINDING ENERGY, eV

Page 60: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

,1 « M HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

(<<<<<

1000 900 800

I I t i «Sulfur, S Alomic 16Number

Mg Ka

»» In*

700 600 500 400BINDING ENERGY, eV

300 200 100 0

pehkin-elmer 57

Page 61: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

'cL ' 'lorine, CI AtomicNumberh)))>)))

COMPOUND195

2p BINDING ENERGY, eV REF.199 203 207 211

CsCIRbClKCINaCILiCIguanidine HCIAgCICuCINiCI2HgCI2ZnCI2CdCI2FeCI,

.

FeCI,CuCI2K2MoCI6 '

K,SnCI6 .

K2ReCI6 • .KjPtClj

.

K2PtCI„Pt(PPh3)2CI2•pt(PEt3)2ci4po(NH3)6CI3ÿÿÿ||Npoly (vinyl"chloride) fogfrchioraniltetrachlorohydroquinonechloranil-pyridineTp-cic6h4)ÿP|-PhCI•o-C,H4Ciÿ

PhCCI3KCI03rcsci ,,

<X>58 PHYSICAL ELECTRONICS

I I I I I ÿHAN-loOK X-I,„ÿPHC.,JeLEÿ.ÿON ..ÿCTh„lcOP . ÿ ÿ ÿ

Poly (Vinyl Chloride)

199.9

190200210BINDING ENERGY, eV

1

Page 62: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I < It

190

I < I < < < <HANDBOOK OF X-RAY PHOTOEIECTRON SPECTROSCOPY

N(E)

CI(LMM)

1-23ÿ23ÿ231304

CI(LMM)

1310 1300 1290 1280

O

•v.

« « 4 « 4 4 4 <Chlorine, CI Number 17

Poly (Vinyl Chloride)

Al Ka

CI 2p

x4

CI 2s

ÿJ—

1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0BINDING ENERGY, eV

perKIN-elmer 59

Page 63: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>>>>>>>>>>>>>Argon, Ar Atomic "4 O

Number IO

COMPOUND235

2p% BINDING ENERGY, eV REF.240 245

Ar (Ar (Ar (Ar (Ar (Ar (Ar (Ar (Ar (

n C)n C)n Fe)n'Cu)ÿ-n Ag)n Ag) ÿ

'

n Pt)n Au)n Au)

/

<X>60 PHYSICAL ELECTRONICS

»»»»>>>»»»>»»»»»HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY ; I

Ar in C

2.2

232242252BINDING ENERGY. eV

J

11C

Page 64: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

<<<<<I<<<<<<<<• Y • HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

232

<<<<<<

N(E)

1100 1000 900

Argon, Ar Atomic H QNumber IO

I 1 1 1 1 1 1 1-| |----Ar in C

— Mg Ka _

(

Iv Ar(L23M2:iM23)

V '\f[ C

-

Ar 2S

-

<11 . 1 1 1 1 1 1 1

1 Ar 2p

-—A---- -800 700 600 500

BINDING ENERGY, eV400 300 200 100 0

PERKIN-ELMER 61

Page 65: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>»»»»>»»»»>>Potassium, K Number 19

» )

COMPOUND290

2p3/j BINDING ENERGY, eV REF.295 300

KBrKBrKCIKCI V?KFKN, _ ,KN02kno2K2Pt(CN)2K2PtCI4 'ÿÿ'H""'-''

K2PtCI0'

K2PtCI6K2ReCI6K2IrCI6K2SnCI6k2mociK2TiF6 -

V;--V: i\

i (D

62 PHYSICAL ELECTRONICS

>»»»» >»> ) ) » > >HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

KBr2p%

292.9

284294304BINDING ENERGY, eV

i

l

ij

1

1

r•ii

Ii

T

Page 66: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

(>Y < I t 'HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

«(<<(<<(

N(E)

234

1100

K(LMM)

Aÿ i

*1

01000

K(LMM)

1050

L23M23M231005.1 1002.7

1010

Potassium, K Atomic H QNumber |ij

970

K 2P3/2

K2p,

K 2sBr

V.900 800 700 600 500

BINDING ENERGY. eV400 300

KBr

Mg Ka

Br

K3p

200 100 0

PERKIN-ELMER 63

Page 67: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>»ÿ»»»»ÿ»»»»»»

Calcium, Ca Number 20COMPOUND 2p3/j BINDING ENERGY, eV REF.

345 350 355

CaO 1 oCaC03 1 (D

CaS04 11

W1

Cap/ • -

' - .

J iW1NSL

CaF2 '-I ÿ 1 i O

<X>64 PHYSICAL ELECTRONICS

ÿ>>>>»>>»»»»>>>>HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

346.8

359 349BINDING ENERGY, eV

339

N(E)

Page 68: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

, < < < < < < 4 < < « < < < < < < < < < < < < 4 < ' ' 4 ' ''Y I HANDBOOK OF X-HAY PHOTOELECTRON SPECTROSCOPY CSlCjlim CB 20

I

Ca(LMM)

i N(E)

Ca(LMM)

950 940960970980

iCa3p

Ca 2si

Ca3s

01000 100900 300 200800 500 400700 600BINDING ENERGY, eV

PEBKIN-ELMER 65

Page 69: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»»>»»>>»»»»>Scandium, Sc Number 21COMPOUND 2p]/a BINDING ENERGY, eV REF.

395 400 405

ScOjHjSCOgHg(C5H5)2ScCI

11

WMWMWM

fSMfM-rV •

ScjOa -V.Sc203 1

STACDNGD

Sc203ScCI3ScF3

1

1

WMW1W1

66 PHYSICAL ELECTRONICS

) I » I »»»»>>>>>)>ÿHANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY I

401.7

415 405BINDING ENERGY. eV

395

10

Page 70: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I 4 [4 4 4 4 4 4 4 4 4 4I HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY•PY

395

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

N(E)

1000

Sc(LMM)

<E

Scandium, Sc Atomic O-4Number ÿ |

T

o

i i i r

Sc(LMM)ÿ L23M23M23918.5

940 890

Sc 2p3/2

Sc 2p,

X

n-r

L23M23V890.9

840

Sc203Mg Ka

Sc 3p

x4

Sc 3s

i>iT>i ml \ ,i I,

900 800 700 600 500BINDING ENERGY, eV

400 300 200 100 0

PERKIN-ELMER 67

Page 71: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>>>>>>>>>>>>>Titanium, Ti Number 22COMPOUND

4532p% BINDING ENERGY, eV REF.

458 463

TiTiTiTiTi'H,TiB2TiB2TiSTiCTiCTiNTiNTiOC5H5TiC7H7(CsHs),TiCI'BaTiOj . .PbTiO,

jSrTi03CaTi03TiOzTi02|Ti02

. •• ; ' . • f-Vi,;...'

,. 'ÿ Vv-*-, ..> 4

TiCUNa2TiF6

\

I

(D

68 PHYSICAL ELECTRONICS

»»»»> »»» >»»»>»HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

6.15

450470 460BINDING ENERGY,eV

TiO

5.7

450470 460BINDING ENERGY, eV

Page 72: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY Titanium, Ti AtomicNumber

870.1Ti(LMM)864.5

Mg Ka

Ti(LMM)

920 820 770870Ti 2p

N(E)

Ti 2s

Ti 3p -

Ti 3si

1000 900 0800 100400 300700 600 500 200BINDING ENERGY, eV

PERKIN-ELMER 69

Page 73: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»>»»>»>»»»>Vanadium, V Number 23

» )

COMPOUND510

2p% BINDING ENERGY, eV REF.515 520

VVVVV -VVVVvb2vcvsVNVN(C5h5)2vIc5h5)2v "

(C5H5)2VCIV. acac,VO acacj

VOSO,VOCI2•VO

v205V205v205

70 PHYSICAL ELECTRONICS

» > >»>»»»>»» » » » ÿ | ÿHANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY I

511.95

525

533

515BINDING ENERGY, eV

523BINDING ENERGY, eV

505

2p3/2517.45

O 1sx-ray

satellite

513

Page 74: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

V(LMM)

Vanadium, V Number 23

V 2py}

o

2Py2

870 820 770

Mg Ka

-1-1-r

V(LMM)' 1 ' '

L3M23M23

1 1 1 1 i -r —1-

815.2

l3m23v781.4

L3W

-11_

L. 1 I . 1 . . I

743.4

1 1 1 _i

720

V 3p

500 400BINDING ENERGY, eV

300 200 100 0

PERKlN-ELMER 71

Page 75: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

ILU

"J CD

LUDC

>O

>ODCLU2UJ

O2Q2CD

aCNJ

O o X II< CD Q Q IE o -r-ÿWQQQChOLLLLWHWÿÿÿh

eÿOOOOQCcoCQa-CLONNOÿÿÿJC

T— T— T— O O O T— t— T— T— 1 T— T T— Ohhl-W(/)(/)hl-hhOOOOh(/)<<<000<<<<<<<<<0

r>r>- 'in

QZDoa5Oo

. rt £ | !

! ' ! '- iÿ ' Iÿ i i i

| i i }

iÿ i .

'

Ml

n——_ÿ — \ j : t j :ÿ_~ V ; i: '

V • t •

mmm:

L.„.' i &

; !:' •' "ÿ-.i

i ' * i L

• - • ' !. "ÿÿi !:-ÿ•/,* "x - ; $! b' (_) to C»ÿ to to ' ÿ .? •'ÿX ÿ ZO ÿ "9ÿ '••*• :

<n »«. vi m ui io ki n •*—___

(N r

XXX oooÿraOOÿ „ 0n"0n ® k in W >—' in f > "—" *ÿ>— M n 1_

V. ) v—m,c/iy.oo z X o o o o s 6 o O o o c>o - ok_ n piUL.ui_jyiU

000000000000,0*:* ,o.oop oj.z

%vj [: v

Ms*« Bm-i h-v-!#sK! I;'-:#

iÿO'v•• ' 1 of- •

! °»d" -! R--ÿ=5,ÿ03 ";-7 -roHM

T U Q) ,lO O Ot r>. n r> -1- ÿ—- n' ÿ u- ,

« IB U O S.o 30,ÿ0 0 LLu_ v_ l_ 'nk_ CO r* cj *— v—;.o,OjO o o * o o;m * * ,o o ©

WUZo

<o

IQ-

Page 76: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY Chromium, Cr AtomicNumber

'i;(1 1i

<I Mg KaCr(LMM)

Cr(LMM)

N(E)

820 770 720 670

Cr3p

Cr3s

J

i

Ar

1000 900 0800 100700 500BINDING ENERGY, eV

400 300600 200

perkin-elmer 73

Page 77: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

> > > > * > I tr * 1 > > * >Manganese, Mn =25COMPOUND

6352p% BINDING ENERGY, eV REF.

640 645

MnMn(C5H5)jMn(C5H5)(CO)3

•MnS • --xMnSa-MnS r|3-MnSMn2(CO),0BrMn(CO)5[BrMn(CO)4]2BrMn(CO)4(PPh3)3Mn2(CO)8(PPh2)2Mnl2K3Mn(CN)sMnBr2MnBr2MnCI2 .MnCi2MnOMnOMnOMnO ""

7-MnOOH .

Mri203Mn203Mn303Mn02Mri02Mn02Mn02KMn04MnF2MnF2MnF3

I

74 PHYSICAL ELECTRONICS

ÿ ÿ ÿ ÿ ÿ ÿANu„l>OK olx-RA, IhOiÿIlEC..I)N S, AtRO-IoPY ÿ ÿ ÿ

2p3/2 Mn638.8

11.25

635640660 655 650 645BINDING ENERGY, eV

2p3/2642.2

MnO )

i\

7

1

660 655 650 645 640 635BINDING ENERGY,eV

t

:1

II i' i

iN(E)

c

10'

Page 78: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

j \ i \ \ i \ I I t i i < <I HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

335

' N(E)

35

Mn(LMM)

Mn 2s Mn 2py2

1000 900 800 700 600

( < | | | < { \ * i \ < < * ÿ

Manganese, Mn Number 25

Mg Ka-i-1-1-r

Mn(LMM)

750

O

(2P3/2)

L3M23M23710.4 LjMjjV

667-° (2p,/2)

L3VV618.0

-I_

I_

I_

L. lilt

Mn 3p

700 650 600

x4

Mn 3s

C1ÿ ii iÿii

Ar

500BINDING ENERGY, eV

400 300 200 100 0

PERKIN-ELMER 75

Page 79: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»»»»»>>»»>»»Iron, Fe Number 26COMPOUND

7052p% BINDING ENERGY, eV REF.

710 715

FeFe28FeBFeS2 . ..Fe(C5H5)j : '

Fe(C5H5)2I3Zn2Fe(CN)6K4Fe(CN)6K„Fe(CN)6Na3Fe(CN)5N2 :

Na2Fe(CN)sNOK3Fe(CN), :Fe2P2S6KFeS2FeSFe(CO)5Fe(CO)2(NO)2 vi '

• wFe(C5H5)(CO)3BPh4FeOFeOFe203

ÿ

Fe203..Fe203FeOOH '

j

FeOOH"

Fs304NaFe02Ni;FeBr2 ta. 7.; + -FeBr3FeCI2FeCI3FeF2FeF3".,iW"'K3FeF6 ÿ :v:

I1

<D76 PHYSICAL ELECTRONICS

»>»»»> »»»>>»»»»»HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

13.2

700710720740 730BINDING ENERGY, eV

Fe20

2p%710.7

ÿ13.6

710 700720730740BINDING ENERGY, eV

Page 80: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

, « I < < I \ i 1 « « < < 1 « * « * * < ' * « * * 1 * ( * 'py HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY If©!") F© Atomic 26

Fe(LMM)

Mg Ka1

ÿ

601.

N(E)

Fe 2s 605 555 505655705

Fe3p

Fe3s

01000 100300900 400 200800 500700 600BINDING ENERGY, eV

PERKIN-ELMER 77

Page 81: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»>>)>)»»>»>)»Cobalt, Co Number 27COMPOUND 2p3/2 BINDING ENERGY, eV REF.

775 780 785

CoCo2BCoBCo(C5H5)jCo(salen) ' " '

Co(bae)Co(CO)3NOC03O4Co304CoOCoOCoOCo(OH)jCoOOHCo203CoFe204 -ÿ

CoCr204 _ V-

CoMn204ZnCo204CoAI204CoAI204coai2o4Cs2CoCI4 - "

CoMo04Co(NH3)3CI3"Co(NH3)6CI3Co(NH3)8CI3KCo(CN),rHCol2 (dimethylgIyoxime)HCoBrj (dimethyIg1yoxime)HCoCI2 (dimeVhyfglyoxime)K3Co(N02)6CoF2 _cof3;CoF2 • 4H20 ÿ>£

VIll

<D78 PHYSICAL ELECTRONICS

»»>>»»»»»»»»»*»»HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

Zp3/2777.9 Co

15.05

770790 780810 800BINDING ENERGY, eV

CoO2p3/2780.0

15.5

770790 780810 800

BINDING ENERGY, eV

Page 82: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

J « « <<I<<4<II<<<<<<HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY Cobalt, Co Number 27

N(E)

770

770

T T-|-1-1-1-1-1-1-r

Co(LMM)

605. 597.7

L3M23V543

L3VV480.2

Co2p3

Co2p,/2

' ÿ '_

L J_

!_ J_

L. J_

I_

I_

L.

MgKa

640 590 540 490 440

Co3p

1000 900 800 700 600 500 400BINDING ENERGY, eV

300 200 100 0

rerkin-elmer 79

Page 83: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

> > > > >Nickel, Ni Atomic

Number

I > )

28COMPOUND

8512p% BINDING ENERGY, eV

856 861

NiNil,Ni(CsH5)2Ni(PPh3)2 ~ .5 '

NiSNi2S3Ni(CO)4

NiBr2Ni (dimethylglyoxime)NiCI2(NBu3)2NiCI2(PBu2)2NiCI2(PPh3)2Ni acac2Me4NNiCI3Ni(CN)2K2Ni(CN)4ZnNi(CN)4 ÿ

NiCOj . '

NiONiONiONi(OH)2Ni(OH)2Ni2o3Ni203Ni203NiCl2NiFe204'Ni(N03)2NiS04NiAI204

'

NiW04NiF2(NH4)2NiF4K2NiF6 ff

\vr*f :ÿ , v--

I'V.-.

I

\y

REF.1

OMYGBCDTRLNH2NH2BC1MYGMYGSTHMYGMYGTRLMYGMYGMYGTRLMYGMRCKDMYGMRCKBAKBANH2KDTRLMCTRLMYGNH2NH2MYGMYGTRL

<£80 PHYSICAL ELECTRONICS

»»»»»»»> »»»»»»HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

I

2P%852.3

17.4

848868878888BINDING ENERGY, eV

NiO

848858888 868878BINDING ENERGY. eV

Page 84: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

i I <PY

848

I

348 1100 1000 900 800 700 600 500BINDING ENERGY, eV

400 300 200 100 0

PERKIN-ELMEH 81

478.9

472.6

Ni(LMM)

44'

ÿ

((((<(<<<(HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

T-1-1-r

Ni(LMM)

<<<<<<<<<<<Nickel, Ni Number 28

MgKal3vv407.2

L2VV390.0

Page 85: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

» > » >»>»»>>»»»Copper, Cu Number 29

923

922

921

920

919

>COa:ILI

5 918

o

v 917

>>

916

915

914

913

ÿ r i r i i i r~r- ÿ T'l 1 ' 1 " I'll i i i i " '» \ T \ till

- /e- /- / /i- /XV/\ /I- / &//$\ >ÿyÿ'-

/ICuS04•5HjO / Y/

y/ÿy

y \ Ar Cu(PTH

/WA

// /<Y -

\///// -

s D

/ *

/\ \ i i

ata presented In

PTisC,4H2rN„srings.

1 1 1 1

tabular (arm in

ligandwith thre

>i<i

section II. 2.

a pyridine_

iiii

938 937 936 935 934 933 932 931

<D2p3/, BINDING ENERGY, eV

82 PHYSICAL ELECTRONICS

>>>))»>>>>>>»»»>HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

2p3/2 Qu932.4

19.8

925935955 945975 .965BINDING ENERGY, eV

CuO

20.0

975 945 935 925965 955

BINDING ENERGY, eV

Page 86: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

( i>P Y

S25

V

925

I, | < I <<<<<<<<< ' « ' ( * i ' ' ' ' ' * *.......— Copper, Cu as29HANOBOOK OF X-HAY PHOTOELECTRON SPECTROSCOPY

I

Cu(LMM)

Mg Ka!

II

»

! 486479I

406.8

tJ

N(E) Cu 2pi/j

300350400450500

Cu(LMM) ÿ ...Cu 3p

Cu 3s

100200300400500BINDING ENERGY, eV

6001000 900 800 700

perKIN-elmer 83

Page 87: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>» I »»»»»»»»» »Zinc, Zn Number 30

995

994

993

992

991>(5ccui2W 990OHLUz

* 989T

5mT

5CO

988

987

986

985

'Zn(PTKBFJ,'

Data presented In tabular form InSection II. 2.

*PT la C24Hj;N7, a llgandwith three pyridinurings.

2014

2013>(JccLUzUJ

2012

2011

OI-OICL<S)

D

2010

2009

ccUJI—UJ

<cc<Q.

CCUJoD<

2008

1026 1025 1024 1023 1022 1021 1020 1019

2p3/ BINDING ENERGY, eV

G>84 PHYSICAL ELECTRONICS

>»»>»»»»»»»»»»»!»HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

Zn2P3/21021.45

23.1

101510251035104510551065BINDING ENERGY, eV

2p3/2 ZnO1021.7 A

23.0

1025 10151045 10351065 1055BINDING ENERGY.eV

Page 88: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

< 4 ii i < i i * * < * * t i < t < < <HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

< { I I I 1 1 ÿ ÿ ÿ

Zinc, Zn Number 30

- Zn2p,/2

N(E)

1015

Zn 2pa,-i-1-r

Zn(LMM)

-i-1-1—L3M45M45

261.2

-1-1-1-r-

L3M23M427

23 v,23L3M23M45

348.4

L2Mj5M45238.2

340.0

L0M23M45325.5

' '_I

_l_ J

_I-1_

L. J_

I-1-L J_

U J_I_

1_L.

460 410 360 310 260 210

Osi

YrOiV ÿ' '-jj

[015 1100 1000 900 800 700 600 500BINDING ENERGY, eV

400 300

Mg Ka

Zn 3pZn 3d

Zn 3s

200 100 0

pebKIN-elmer 85

Page 89: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»»»»»»»»»»»»Gallium, Ga Number 31COMPOUND 3d BINDING ENERGY, eV REF.

15 20 25

GaGaGa i'

®S1LBH

GaAS>ÿ

Ga?'' - ' ÿ

GaSbGa203

... ....

1

..j

LBH®LBHLBHLBH

100

GaGa203Ga20?Ga203

Gal3GaBr3GaF3

3p% BINDING ENERGY, eV105

•/*v \f

110

i

<E86 PHYSICAL ELECTRONICS

»»ÿ»»»»»»»»»>»»»HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

BINDING ENERGY. eV

12

Page 90: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

Gallium, GaiuOK Oh X-RAY PHOTOELECTRON SPECTROSCOPY AtomicNumber

Al Ka

L3M23M4;516.8

A 503.5 391.8

N(E)

370420470520670 570620

Ga(LMM)

.v-v -ÿ .V\--; - *M/=• v' : f '' **' >V- vife

Ga 3pGa 3d

Ga 3s

0100200400 300500600BINDING ENERGY, eV

1200 7001100 1000 900 800

PERKIN-ELMER 87

Page 91: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

> ) ) \ ) > \ ) \ ) ) \ I >Germanium, Ge Number 32COMPOUND

253d BINDING ENERGY, eV

30 35REF.

GeGeGeGeTe,GeTe •

GeTe2GeAs2GeSeGeSGeSGeSjPh4GePhjGelPh3GeBrPh3GeCIGe02

2p% BINDING ENERGY, eV1215 1220 1225

Ge 1 0Ge 1 MVGel2 MVPh4Ge ...

'• • t -• 7'l :1 — M

MVMVMV

Na2Ge03 1 MVGeO 1 MVGe02 MV

•K2GeF6 1 KVMVMV

88 PHYSICAL ELECTRONICS

HANUBOOK OF X-RAY PHOTOELEC TRON SPECTROSCOPY

28.95

_l_l_l_L.

44-I_

I_

I_

l_

34BINDING ENERGY,eV

24

Page 92: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

i « !' <<<««<HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

,,, t 'Germanium, Ge cs£32

N(E)

Ge 2p3/

Ge 2pi/2

1-1-1 I I1-r—i-1-1-1-1-1-1-[-1 i « 1 | 1 ' « 1 p I " I !1

Ge(LMM)

L3M23M23533 524

J_

L-

550 500

L3M45M45341.2

L3M23M45443.5

\433.0 L3M23M45L2M4sM45

310.0

_]_I

_I_

L_ J_I

_1_L -1

_I_

1_

450 400 350 300

1300 1200 1100 1000 900 800 700 600BINDING ENERGY, eV

Al Ka

1 1

500 400 300 200 100 0

PHRKIN-ELMER 89

Page 93: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>>»»»»»>»»>»»Arsenic, as Number 33

1227 § t i i i | i i~[ i—iiii—i—[—i—i i i | i i i—r

w -j 222

UAsOOH

Me-iAsOOH

Na-HAsO

Data presented in tabular form in Section II. 2

1267

1266

1265

1264

1263

1262

CD45 44 43 42

3d BINDING ENERGY, eV

90 PHYSICAL ELECTRONICS

ÿ ÿ ÿ ÿ ÿ ÿ HmiÿDBOuJoF X-riÿY PhOÿOELtÿTRON fpECiHÿSCUPÿ ÿ

BINDING ENERGY, eV

Page 94: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I <<<<<<<<< 'UAwnonni/ rÿc v n»u nunmci CATnnn cncrrnn

<<<<<< < < I « <HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

< I < < < ' ' 'Arsenic, As Atomic OO

Number

30

N(E)

As 2py2

As 2p3

t-r

As(LMM)

L3M45MJ5261.0

L3M23MJ5370.8 L2M45M45

225.4334.5

' ÿ_I_L. -1

_L. I 1_I_I

_L.

385 335 285 235 185

Ga

GaAs

Al Ka

As 3p As 3d

1400 1300 1200 1100 1000 900 800 700 600BINDING ENERGY, eV

500 400 300 200 100 0

perKIN-elmer 91

Page 95: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>»>»>»»>>»»»»»Selenium, Se Number 34COMPOUND

52

3d BINDING ENERGY, eV57 62

PbSePbSeSnSeSnSeBi2Se3NbSe2Nb3Se4GeSeAs2Se3SeSeSeSeSeC,6H33SeSeC,sH33BrC8H4SeC6H4BrR0C2H4SSeSC2hi40H.Na2SeS4O0 ; V~(PhCH2)2SeO(BrC8H4)2SeO[HOOC(CH2)4]2SeO.C16H33SeO(OH):r.:,phSeO(OH)Ph2SeCI2Na2Se03Na2Se03CIC6H4SeO(OH)"H2Se03f— 1 3 - /. •/[Se°2Se02CIC6H4Sed2(OH)Na2Se04Na2Se04

M'

1

REF.

SFSWSPSFSWSPDRB3B3SFSWSPSFSB3CDWSPMTHMTHMTHWSPWSPMTHMTHMTHMTHMTHMTHW1WSPMTHMTHMTHWSPMTHW1WSP

65

92 PHYSICAL ELECTRONICS

>>»))>>)))»»»HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY H

55BINDING ENERGY, eV

Page 96: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

, , , . ......i <« i « i <«««<«« 'PY HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY SGlGniUrTl SG A,Ofnic0ÿ

I N(E)

Se3p,/2

M —M<M +4f7 Se 3p:>

Se 3d

1000 900 800 700 600 500 400 300 200 100 0

BINDING ENERGY, eVPERKIN-ELMER 93

Page 97: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>„> >. > _> > ' > > » » » » »Bromine, Br • 35COMPOUND

673d BINDING ENERGY, eV REF.

72 77

KBrKBrCsBrRbBrNaBrLiBrHgBr2CdBr2ZnBr2C18H33Me3NBrC3H5Ni(PPh3)BrPd(PPh3)2Br2Pd(NH3)2Br2Pt(NH3)2Br2Pt(NH3)3Br2Co(NH3)aSbBra "

Rb3Sb2Br9Cs3Sb2Br9 v.K2PdBr4K2PtBr4K2PtBrsbromanilbromphenolKBr03 .

I

fs*&

(D

94 PHYSICAL ELECTRONICS

>»»>>»»>>>>)>>»>HANUBOOK OF X-RAY PHO IOELEC IRON SPECTROSCOPY

70BINDING ENERGY, eV

Page 98: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

<<<<4<<<<<<<<<PV , HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

N(E)

1100 1000 900 800 700

| \ < { \ \ I i < < * * < 1 ' *Bromine, Br Number 35

KBr

Mg Ka

Br 3s

600 500BINDING ENERGY, eV

400 300 200 100 0

PERKIN-ELMER 95

Page 99: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»»»»»»»»»»»»»»Strontium, Sr Number 38COMPOUND

SrF2SrF,

3d BINDING ENERGY, eV REF.130 135 140—I I I >L I I I I I bI W1

143

096 PHYSICAL ELECTRONICS

»»»»»»»»»>>»HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

I I1ÿ

133BINDING ENERGY,eV

Page 100: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I3Y

<4 4 I 4 4 t < < < ' <HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

4 4 * < < i « < '

123

4 ««<<<< 'Strontium, Sr Number 38

i700 600 500 400

BINDING ENERGY, eV100 0

perkin-elmer 97

Page 101: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

i i i i I I I #Yttrium, Y nt,z39

))>>)>>)

COMPOUND

y3o3y2o3YF,

3d5/3 BINDING ENERGY, eV155 160 165

REF.

CDNGDW1

ti

167

CD98 PHYSICAL ELECTRONICS

»»»»»»>»>*»»»»HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY ,

157BINDING ENERGY.eV

147

I <

Page 102: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

,,<(<<<<<<<<< 4 4 1 « 4 < 4 « < 1HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

147

1000

I I * i i * <Yttrium, Y NAur;cr39

Mg Ka

li *

i900 800 700 600 500

BINDING ENERGY, eV400 300 200 100 0

PERKIN-ELMER 99

Page 103: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»>>»ÿ)Zirconium, Zr Atomic

Number

I I I I I I I I40

COMPOUND175

ZrZrZrHz

W"".Zr02 •

Zr4(OH)„alanineaCI8- 12H20KjZrF,K2ZrF6Na2ZrF6KZrF5 ;HjOZrF,

73d% BINDING ENERGY, eV REF.

180 185

<£100 PHYSICAL ELECTRONICS

>»»»»»>»»>»»*»>!»HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY j

3dV2178.7

3d;

2.4

173193 183BINDING ENERGY, eV

10

i

Page 104: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPYip r

N(E)

173

1000

4 4 < < « 4 < 4 4 < « < « < 1 « ' « < « * ' 1

Zirconium, Zr Atomic A ONumber ÿrU

—r ,, .

MasNjNja

1 1 1 i i ÿ "T

ÿ\1160

MÿNÿNÿ

1135

m45n23v1104

i i 1 i i---i l

0900

Zr 3d

Zr 3d%

Zr 3p3/2

Zr 3py2

V2

Ar

Mg Ka

Zr4p

x4

Zr4s

-JJI

800 700 600 500 400BINDING ENERGY, eV

300 200 100 0

rerkin-elmer 101

Page 105: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

)))))))))))))))

Niobium, Nb Number 41COMPOUND 3d% BINDING ENERGY, eV

200REF.

205

NbNbNbNbNbNbNbNbH2NbCNbONbONb02Nb02KNbONb205Nbj0

NbBrsNbCI5K2NbF7NbF5

i

i

210

i

RH2SPBB3MSCFCFNSCNSCRH2SPBFCFFCFSPBMSCSPBMSCFCFNGDMSCMSCMSCMSC

217

<E102 PHYSICAL ELECTRONICS

)\)\ })\)))) )) \)HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY HA>-

"1-r

202.2

207BINDING ENERGY,eV

197

Nt

N(E)

1100

Page 106: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

< <PY

i ( ( ( ( < M < ( i <HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

I I I < < I I < I < I < 4 < < 'Niobium, Nb 41

Nb(MNN)

N(E)

i i r r

Nb(MNN)1 1 i i

N m45Nj3n23\ 1118

M.1SN,V

\ 1109 m.,5n23v1086

mJ5vv

i i i i I

1054

' i

1140

1090 1040

Nb3p3/2

Nb 3piÿ

iitii **11ÿ nyf'tn

Nb 3s

Nb 3d

Nb 3d%

%

\

Mg Ka

Nb 4p

X4

Nb 4s_U1/1100 1000 900 800 700 600 500

BINDING ENERGY, eV400 300 200 100 0

PERKIN-ELMER 103

Page 107: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

) ) I ) > I "i I I ) ) i IMolybdenum, Mo NAurÿ42

COMPOUND225

3ds/2 BINDING ENERGY, eV REF.230 235

MOMo(CO)j bipyridyl[C5H5Mo(CO)3]2Mo(CO)4(PBu3)2 v-

Mo(CO)5PPh3 '

MoB2MoSe2C7H3Mo(CO)3C7H7Mo(CO)3+BF4MoCI2(CO)3(PPh3)2MoS2MoS2

ÿ MoCI3(PMe2Ph)3MoCI3(C5H5N)3Mo02Mo02MoCI,MoCI4MoCI5MoCI2(NO)2(PPh3)2MoCI4(PPh3)2:"MoOC:3(C5H5N)2';Mooci3(pph3)2 ;

MoCI4(C5H5N)2 .JMoCI„ bipyridylMo02CI2 bipyridylMo02 acac2Na2Mo04

ft.

Na2Mc04-2H20 -r "

AI2(Mo04)3CoMo04Mo03Mo03m6o3 ;ÿ '

(nh4)6mo;o2 • 4H20 I

/\l

OGMGMGMHBMECGMGMGMHBGMPCLLBCELPCLKBAGM

- . GMGMHBHB

1 ÿÿrCELHB

1

CELCELCELGM

r NSLÿ v . GMi

jÿ ~-

PCLPCLGM0>PCLGM

CD104 PHYSICAL ELECTRONICS

»»»»»»»>»>»>»>>.>>HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY | HAN:

227.7

240

240

230

BINDING ENERGY,eV

230BINDING ENERGY, eV

220

232.65

_M

I

N(E)E

1100

Page 108: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

Molybdenum, Mo AtomicNumber

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

Mo(MNN)

Mg Ka_ Mo(MNN) :

1132

Mo 3d;

N(E)

Mo 3d:101010601160 1110

Mo 4pO Mo 3s

T

Mo4s

JL

0100200300400500600BINDING ENERGY, eV

1100 1000 900 700800

PERKIN-ELMER 105

Page 109: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»>»>»»>»»(»»»»Ruthenium, Ru Number 44COMPOUND 3ds/j BINDING ENERGY, eV REF.

275 280 285

Ru 1- CPRu 1 KWRu F

Ru(NH3)5N2I2 :cRu(NH3KN3Br5T«,%';Pÿ5'"V;n-

11

'

1

1i

•BHHFF

Ru(NH3)5N2CI2Ru(NH3)5(MeCN)Br2Ru(NH3)5(MeCN)Br3

11

1

FBFMBFM

Ruo2RuOj V.

ÿÿÿ

L.•'

1 .i!t. KWFF

Ru03 1 KWRu04 1 KW

<x>106 PHYSICAL ELECTRONICS

>>>>ÿ>>»>>>)>>>>HANljBOOK OF X-hAY PHOlOELEi-rRON aPECTHOSCOPY

Ru3d%280.0

3d:

272282292BINDING ENERGY, eV

i

1

Page 110: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

J < <

272

< < < « I <<<I<<<<<< < ' * (

HANOBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

Ru(MNN)

N(E)

<D1100 1000

1 1 1 I

Ru(MNN)1 1 i i | .

v M45N1N23Xÿ1102

m45n,vÿS. 1052

m45n23v1023 M45VV

_ _J---! 1 1 1 I

979.2

i i t

900

1015 965

Ru 3s o

Ru 3p3/2Ru3p./2j

In

800 700 600 500BINDING ENERGY, eV

400

4 « 4 < « 4 « <Ruthenium, Ru Number 44

Ru 3d

Ru 3d'3/2

******

5/2

300

Mg Ka

x4

Ru 4p

200 100 0

perkin-elmer 107

Page 111: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

CE

UJcc exzzzzzzz

ÿ iE *:wtnÿmwtowo] ÿwcocotnwwwÿÿmmÿmwm

zzzz_jz2zzzzzzz5§zz5zzz

>0>

>OccUJzUJ

oO oZQ

CO

X)n

IDOa

Ou

'• J * I

fc

o— h- xzo m - n" «

O O O y °mÿÿOOOOOn n cc cc cc cc <mn ci r> ri n rt n o£££££!!££CLCLQ-CLCLCLCLQ-ÿ_D.Q_Q.CLCLQ.CL

O<

oo2o

ccXcc

.W;q

!•- <:V'j

x Z o o

_C SZQ_ CL

, CL CL££££££££££££££arcnarcrcrcccrci: a: a: oc tr.cc cc

o o< <O O

cc ccx: jc

a: .a:

x: xiQ. CL

cc cca) a>

SZ SZDCia:

zo

CM

o> <-1

ooo

cc

rtXIQ_Q_

SZOC

xO ;

cc ÿ

O :n

X ZiUJx: 'x:X X

.- '"J I

tv.<.••••, rr>:

OK[ ${%ÿ?* ÿ>

o,x

njr

xX-CX

-CX/

_r OiO, ~s. z' X? ~r —-X X„0.°-0ÿx: x: xx x ÿ

o o

Li-?.*

VT' r-M

o „XX

Xft SZ SZ SZ

iZjQC-'OCjOC

ocdocd

O Z Oo'zozZ-C-CC•ÿx X XX- CI rl PI

X * ©

COo2Ocr

<o>X

COo

Page 112: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

4 4 I t 4 4 4 4 I < 4 4 4 4 4 4 4 4 4PY HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

4 4 4 'Rhodium, Rh Number 45

300

' Rh(MNN)

1100

1 1 1

Rh(MNN)

1 1 1 1 ' ' 1 ' ' ' '

m45n,vV 1031

M45N23V1001 M45W

952.1

i i i .1 L, 1_

1— ÿ 1 1.1 1 1 1

1050 1000 950

Rh 3p3/2Rh 3pi/2

Rh 3s

Rh 3d

900

Rh 3d3/2

S/2

Mg Ka

x4Rh 4p

Rh 4s

1000 900 800 700 600 500BINDING ENERGY, eV

400 300 200 100 0

PERKINELMER 109

Page 113: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>»»>»»»ÿ»»»»»»Palladium, Pd Number 46COMPOUND

' !':ÿ;

!»•:ii !

i i .

3303d5/j BINDING ENERGY, eV REF.

335 340

Pd 1 OPd 1 KBMPdO KGWPdl2 1 KBM[Pd(C3H5)Br]2Pd(C3H5)(PPh3)CI[Pd(C3H5)CI]2PdBr2

1 NZMNZMNZMKBM

K2PdBr4 1 NZMK2PdBr4 KBMPd2(PBu3)2CI4 CABPdCI2 1 KBMPdCI, | NZMPd(PPh3)2Br2 1 NZMPd02 1 KGWPd(PPh3)2CI2 ' 7-~; "

Pd(PPh3)2CI2Pd(PPh3)2C03 '-WlG

-t

• } — —1

1 —KBMBNSNZM

Pd(C5H5N)2CI2Pd(NH3)2Br2Pd(NH3)2CI2 V

NZMNZMNZM

Pd(PPh3)2(CN)ÿ; .

K2PdCI4 - ÿÿ

"• ""T

ÿrh ÿjj-C

KBMKBM

K2PdCI4 ' -'.'r £11 NZMPd[P(OPh)3]2Br2Pd(NH3)4CI2 ( NZM

NZMPd(OAc)2 NZMPd(NH3)2(N02)2 ÿ

K2Pd(N02)4K2Pd(No2)4 ;

' :'\b

""Jljr

1""

NZMNZMKBM

K2Pd(CN)41

K2Pd(CN)4Pd(CN)2

11

NZMKBMKBM

K2PdCI6 ..." 'r *

ny*:

• • - -*r

'• 1 NZMK2PdCls

ÿ 1 vÿ.« • KBM

<£110 PHYSICAL ELECTRONICS

>ÿ »»»»»»»»»>»»HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

Pd3d%334.9

3d;

5.25

330340350BINDING ENERGY. eV

I

i

Page 114: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I<<<<<<<<<<' W AMnnAnw nc v r» a v ntiArnn c/»Tnn»i enermnf

330

<<<<<<<<<< <<<<<<<<'HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY Palladium, Pd Atomic A CZ

Number 40

Pd(MNN)

N(E)

; . •:?|_ i ' Vfvf -•

\ r ; * - 1

rV

~l-r

Pd(MNN)

wuVVM.5N,V1011 925.6

1050

01000 900

-I_L.

1000 950

Pd 3p3/2

_L

900 Pd 3d,

Pd3d3/2

S/2

Mg Ka

x4Pd 4p

Pd 4s

800 700 600 500BINDING ENERGY, eV

400 300 200 100 0

PERKIN-EUMEIR 111

Page 115: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>»>»>»»»»»»»»»»Silver, Ag Alomic /\ *7

Number T1I

361

360

359

358

357

>OccLUzoi

Oh-

x 356>>

355

354

356

352

1 1 1 1 —r r i i I I 1 \ i i n T I I T I i i y -T"

- /\- ////!-

/ /&y/ ///I-

/y (

/ Afl ;0 //Iy' A/ / -

y /AgOOCC

/ \J /> ÿW/4\y*3f

-

y/ /A-/ <A

ÿAg.So"

y / -

y/ -

y -

\ .1111. i i i i

Da

1 I 1 1 lla preserved In I

.111!

abular lorm in S

-J. 1 1 • jBCtion II. 2.

1 1 1 1

726

725

724

723

722

721

<X>371 370 369 368 367 366

3d5/2 BINDING ENERGY, eV

365 364

112 PHYSICAL ELECTRONICS

> > > > t > > » I t > > > ) »HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

367.9

6.00

360370380BINDING ENERGY,eV

i

i

i

Page 116: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

Silver, Ag Number 47PY HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

Ag(MNN)Ag 3d,

Mg Kaÿ

Ag(MNN)Ag 3d:

N(E)1005 975 915 885945

!{

Ag 3si

Ag4p

Ag 4s

1000 900 800 700 600 500 400 300 200 100 0

BINDING ENERGY, eVperkin-elmer 113

Page 117: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

))))))))))))}))

Cadmium, Cd Number 48789

Oa:UJ2LU

OHHIz

385

384

383

382

381

380

379

378

377

376

* 1 1 1 —r T"T~T" 1 1 1 1 ! i i r r rr1i \

\ÿr™y --rrr-ÿ

- //ÿ//-

< //\- / $49//- // /$

CCI, / A

/ 'yy\/

rXdS

Y //1/// 6. / -

/ / -

:/// -

;/// -

/ -

111! till

Dal

,,,,presented In ta

,,,,bular lorm in So

—l_i -L..L

• lion II. 2.

1 1 1 1

787

786

785

784

<x>409 408 407 406 405 404

3d5/z BINDING ENERGY, eV403 402

V114 PHYSICAL ELECTRONICS

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY i

Cd404.i

3d-

6.76

398408418BINDING ENERGY, eV

Page 118: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

)PYÿ HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY CSClmiUm Od ÿ'ornic

-1--—i-1-1 i i r i i i< < i i | r~* i i i j i i i i I

Cd(MNN) M5Nj5N45

876.4

MjNjsNaj

\869.8

Cd 3d

Cd 3dCd(MNN)

Cd4d

Cd4s

1000 900 800 700 600 500 400 300 200 100 0

BINDING ENERGY, eVPERKIN-ELMER 115

Page 119: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>>>>>>>>>>>>>)Indium, In Atomic /\ Q

Number

855

[NHjiInF,

Data presented In tabular form InSection II. 2.

1 1 ' ' l 1 1 1 1 l 1 I ' ' l 1 I

449 448

<X>447 446 445 444 443 442

>Ooc

Zo\~OIQ.

cnD_i

Q.

CC

<CC<CL

trLUo

3d5/2 BINDING ENERGY, eV

458

116 PHYSICAL ELECTRONICS

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

T-1-1-1-]-1-1-1 t-3d% In443.6

448BINDING ENERGY,eV

II

t

(

! N(£)E

100(

Page 120: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

< < l< < « IJ HANOBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

i i ( < \ i i i < i < * < * 1PY

438

N(E)

1000

(<<<<<<<

Indium, In AtomicNumber 49

Tr r —r -r . i

In(MNN)

—1— r 1 [ > • 1 1

M5N45NJ5851.0

•V

YI4N45N45143.0

- 1 1 1 » I 1 I 1 1 J. -1 1_

1_

J-

MgKa

In3ds/2

In3d960 910 860 810

3A

In(MNN).feiiSfes

r«.v£

25s£sSskrmsvm."M00j

In3P3/2

•y yy»M>Wii*»ÿ

In4d

x4

In4s In4P

900 800 700 600 500 400BINDING ENERGY, eV

300 200 100 0

PERKIN-ELMEH 117

Page 121: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»»>>»»»»»»»>»Tin, Sn 50

r i i

; : I,i[ | .

'I !

COMPOUND480

3d% BINDING ENERGY, eV REF.485 490

SnSnSnSnAuSnSnSeSnTeSnPh4SnPh4SnPh4SnSSnSSnS2Snl2SnBr2Me4NSnCI3Na2Sn03SnOSnOSn02Sn02*Sn02 -

(NH4)2SnClaÿsÿv(C5H5N)2SnCI4v:PhjSnCISnCI2SnCI2-2H20,Me2Sn acac2;(Ph3P)4SnCI .ÿv:=rix, ;

(Ph3P)4SnF '' '

SnF2SnF2SnF4KSnFjKjSnF,- r'r:- • :V

-ÿit.; .,1-. -vr' V -

I

IT

\Ti

TITui'ÿV

<X>118 PHYSICAL ELECTRONICS

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

Sn484.65

3d:

8.5

480500 490BINDING ENERGY,eV

3ds/j486.4 SnO

8.5

480490500BINDING ENERGY, eV

Page 122: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

i iDP Y

480

ÿ ÿ..ANofuOK|X-RAÿHHOTOtLEC*niON SPECTROSCOPY< i < i I i < < < < * < < I I < i i ( < <

Tin, Sn ;X50

1000

—i-1-1-rSn(MNN)

920 870

I-1-1-1-1-1-1-r

msn45n45824.4

M4N4SN45815.8

_1_

I_

L. J_I_

I_

I-L.

Mg Ka

Sn 3d

820 770

Sn 3d%

"4SntMNN)V£yg§

:'mtKH

%

Sn 4d

<E900

x4

Sn 4s Sn 4p

800 700 600 500BINDING ENERGY, eV

400 300 200 100

PERKIN-HLMER 119

Page 123: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

*Aj /tin/onÿ, ob NAumbeÿ5i)))))))

COMPOUND 3ds/j BINDING ENERGY, eV

ir!i.i

525REF.

530

SbSbSbAlSb ..JT"""'"'BujSb r ''Ph3SbPhjSbSPh3SbOSbjS5Sb2S3Sb2S3Ph3SbBr2Me3SbBr2BuNH3SbI4Sb203 _ _Sb2Oj - •• •" ;.r

NaSbOjSbS(C12H25)3 •

ÿ '.ÿÿÿÿ • •• ÿ

Sb(OAc)3

Sb205Sb205 ___Cs2Sb2I9 • ,;

ÿCs3Sb2Clsÿvvfei|?ÿ|V-,Cs3Sb2Br9"v>rCs2SbF5CsSb2F7CsSbF„K2H2Sb2OÿH2ÿÿ,,

SbCI5(POPh3)KSbF6NaSbF6Et4NSbF6

(

II

535

CDMSVSFSMSVBC4BC4BC4BC4MSVMSVBC4BC4BC4BC4MSVBC4MSVMSVMSVBC4BC4BC4BC4BC4BC4BC4BC4MSVMSVMSVMSVMSVBC4BC4

$

120 PHYSICAL ELECTRONICS

I I I I I Ianl.Iok >,.Vra. )hoi - \ec. Ins, Itrc.Iopy I I

Sb3d5/2528.05

3d-

9.35

523543 533BINDING ENERGY, eV

i

Page 124: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

< <OPY

i i ( ( i i < i « ' ' 'i < <HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

' i i i ÿ i l | I l" ' 1 "1--T T ' T

Sb(MNN) M5N45N45798.7

hYI4N45N45(3P'/2) 1 789.5

1 1 1 1 1 1 1 1 1

\ (3pa/2)

1 1 1 1 1 . L

890

N(E)

523

1000

Sb3dsA

Sb 3da/

810 730

• Sb(MNN)

, Sb3pV4

L iic »nt

CDi

i i { \ i i i * * * * *Antimony, Sb Atomic CH

Number 3 |

MgKa _

Sb4d

x4

Sb4sb04s Sb4p

I900 800 700 600 500

BINDING ENERGY, eV400 300 200 100 0

PERKIN-ELMER 1?1

Page 125: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>>>>>>>>>>>>>Tellurium, Te Number 52

Te(H-HCSNH;);CI; /

'|PhTc<cyCÿHÿ*Br

<ÿ/"p-MeOCflH4TeCl3

Data presented in tabular form in Section II. 2.

579 578 577 576 575 574 573 572

3dS/ BINDING ENERGY, eV

<E122 PHYSICAL ELECTRONICS

>>>>>>)>>>))>>>>HANDUOOK Oh X-RAY PHOTCJtLECTnON SPECTROSCOPY

572.7

10.34

588 578BINDING ENERGY,eV

568

N(E)E

100\

Page 126: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I t 1 (<()<(<<<<HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

N(E)

568

1000

<D900 800 700

Tellurium, Te

Te3ds/,

Te 3d3/

Te(MNN)

Atomic CONumber

800

Te(MNN)

i | i >

m5n45n45771.5

/\a m4n45n45/ \ 761.2

i ilit770

600 500 400BINDING ENERGY, eV

300

740

MgKa _

Te4d

x4

Te4s Te4p

200 100 0

perkin-elmer 123

Page 127: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

locWlWs.' ...... ' ' 'COMPOUND

6153d% BINDING ENERGY, eV

620 625REF.

®MVSMVSMVSMVSMVSNNNOYKTW1

iodan .

Rb3Sb2I9J .

(\

637

124 PHYSICAL ELECTRONICS

HANDbxJOK Or X-RAV PHOTOcLECThUN SPtCTROSCOPY

3d%619.5

627 622BINDING ENERGY, eV

V

I10(

Page 128: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

< <PY

< f ( I *<«<<< <HANOBOOK OF X-RAY PHOTOEIECTRON SPECTROSCOPY

\ f \ \ i i t ÿ ÿ 1

N(E)

612

l(MNN)

1100

<x>1000

I(MNN) M5N45N45748.1

M4N45N45736.4

775

I3d

I3d%

V2

745

O

715

*«*««<<Iodine, I,is;53

C

: 4s

900 800 700 600 500BINDING ENERGY, eV

400 300

Lil

Mg Ka

x4

I4p

[ 4d

(+LI)

200 100 0

PERKIN-ELMER 125

Page 129: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>>>>>>>>>>>>>Xenon, Xe Number 54COMPOUND

6653ds/j BINDING ENERGY, eV REF.

670 675

Xe (in C)Xe (in Fe)Xe (in Cu)Xe (in.Ag) XjS.

Xe?(iÿAu)W.Na4XeOa •

<DW1CH2CH2CH2W1

<J>126 PHYSICAL ELECTRONICS

»»»»)»»»»»»»»»!»HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

678 673BINDING ENERGY, eV

Page 130: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

< \•Y

663

i « « < < < t ' « i i <HANOBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

N(E)

1000

1 1Xe(MNN)

1 I 1

m5n45n45721.5

M4N45Njs

1 I

708.2

1

Xe 3p3/2

<X>900

720

Xe 3d

Xe(MNN)

%

Xe 3d%

710 700

V-V—<

« 4 4 4 4 < < <Xenon, Xe Number 54

Xe in C

Mg Ka

x4

Xe 4s Xe 4py2

Xe 4d

800 700 600 500BINDING ENERGY, eV

400 300 200 100 0

PERKIN-ELMER 127

Page 131: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»»»»>>Cesium, Cs Number 55

>>»>»>»

COMPOUND 3d5/j BINDING ENERGY, eV720

REF.725 730

CsOH cDCsCI 1 MVSCsBr J MVS

fesIj,"

~'?s

-V;«

1

•••MVSMVSSGR

Cs3P04 MVSCs4P207 1 MVSCsCI04 MVS

743

<D128 PHYSICAL ELECTRONICS

I I I I » I I I I I I I I I IHANDBOOK OF X-RAY PHOTOELECTHON SPECTROSCOPY

CsOH

723.95

738 733 728BINDING ENERGY, eV

723 718

N(E)E

11C

Page 132: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

< <( i i i

3C0PY

H

718

C Atomic CIVÿO Number Ox

' N(E)

0

Cs(MNN)(

j

usessSWi*?!

J-

CsOHMg Ka

Cs 4d

v.v

P'/2Cs 4s

1100 1000 900 800 700 600 500BINDING ENERGY, eV

400 300 200 100 C

PERKIN-ELMER 129

, « 4 4 4 < 4 4 < 4 « « < < < < « « < < « « < <HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY Cesium,

MJN45N45684.7

1-1-Cs(MNN)

m45n45v

3d,

-1-rM5N45N45ÿ

698.4

Page 133: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»>»»»>»»»»»»»Barium, Ba Number 56COMPOUND

7783d5/2 BINDING ENERGY,

783eV REF.

788

BaOBa erucateBa chloranilate

11

BaSO<W ' • •• : •>"

BaFr vÿ ; 1

1

cDW3W3W3W3

130 PHYSICAL ELECTRONICS

i »»»»»»»»»» I ÿ » ÿ >HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

779.65

800 795 790 785BINDING ENERGY.eV

780 775

Page 134: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

< < i

775

i < < «««<««<« 4 « I « <HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

Ba3d

655

:Ba(MNN).-. j

J\ ' ' 1'\ \ Wv ÿ j

-;v\ >; . j

±.

4 4 4<444<<<<Barium, Ba Number 56

605

-r~ —i—Ba(MNN)

i i | i i i i

m5n45n45

| 1 7 I 1

668.7

/ \M4N45N45\ 655.9

i i 1 1 1 1 1 1 1

M45N45V

1 1 t 1 1

555

X4

Ba4p1/2

Ba4s \

Ba4p3.

BaO

Mg Ka

Ba4d

V—t1100 1000 900 800 700 600 500

BINDING ENERGY, eV400 300 200 100 0

PERKIN-ELMER 131

Page 135: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

k i,) i i, > r v * > > i i *Lantnanum, La :si)7

:•: I!! !

COMPOUND 3ds/j BINDING ENERGY, eV830

REF.835 840

La203LaF,

d>W1

/

r! i

Ji :

$>i

, 132 PHYSICAL ELECTRONICS

»»>>>»)>»»ÿ»»>ÿHANulSOOK UF X-RAY PHOl OELEC IRON SPECTROSCOPY t

3dV,834.92

16.8

830 820840860 850870BINDING ENERGY, eV

)

\

i

Page 136: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

-PY

« <<<<4<4<<< <HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY Lanthanum, La Atomic 57Number

=>a

820

y

La(MNN)

La 4p3jLa 4s La 4py2

1000 900 800 700 600 500 400 300 200 100 0

BINDING ENERGY, eVPERKIN-ELMER 133

La3d3/, La3ds/j-1-TLa(MNN)

La203Mg Ka _

La 4d3/jJj La 4d5/z

x4

Page 137: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I >> I >>>>>>>>> >Cerium, Ce Number 58COMPOUND

CeCe02CeO,

3ds/j BINDING ENERGY, eV REF.875 880 885

134 PHYSICAL ELECTRONICS

» »»»> »»>»>»>»»»,»HANO0OOK OF X-RAY PHOTOELECTRON SPECTROSCOPY j

I

S=Satellite lines

905 895

BINDING ENERGY. eV

Page 138: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I < II <<<<<< <<<<<<<<<< '1 ' nANDBUOK OF X-RAY PHOTOELECTRON SPECTROSCOPY)PY

N(E)' E

875

Ce 3d

1000 900

Ce(M4sN45N45)

I'

C0(M45N45V)

<<<<<<<<<<Cerium, Ce Number 58

800 700 600 500 400BINDING ENERGY, eV

Ce02Mg Ka

x4o a Ce 4dCe 4p .

4>iHj mNa

«*¥» 'yNÿ -jM

300 200 100 0

PERKINELMER 135

Page 139: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

* bknikriumÿSin ixo2} 1 *

COMPOUND

SmSm203SrrijOj

10803d5/,2 BINDING ENERGY, eV

1085REF.

1090

tDKMDKM0

136 PHYSICAL ELECTRONICS

1096 1086BINDING ENERGY, eV

Page 140: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

Samarium, Sm AtomicNumber

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

Sm203Mg KaSm(MNN)

Sm 3d;

!

N(E)

360 310410460

Sm(MNN) Sm 4d

J

01002003004005001100 1000 900 700 600BINDING ENERGY, eV

800

PERKIN-ELMER 137

Page 141: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

))>))))))>>>))Terbium, Tb Number 65COMPOUND 4d5/j BINDING ENERGY, eV

145

REF.150 155

Tb 0)

»»»»>»»»»»»»»»»HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

190 180 170 160BINDING ENERGY, eV

150 140

l I

<x>!

w138 PHYSICAL ELECTRONICS

Page 142: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

•SuOPY I HANDBOOK OF X-RAY PHOTOeLECTRON SPECTROSCOPY

"b

140

N(E)

Tb 3d

V

%

Tb 3d

\

V,

CDI

O

I1300 1200 1100 1000 900

I 4<<<44<44<4 < f i «Terbium, Tb Number 6

Al Ka

Tb(M45N45V)

_!_L_i_800 700 600

BINDING ENERGY, eV200 100

PERKIN-ELMER 13

Tb(M45N45N45)Tb 4d

Page 143: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

) ) i ) )

Erbium, Er>>>>>>>>>

Atomic £QNumber UU

COMPOUND

ErEr203Er203

1654ds/j BINDING ENERGY, eV REF.

170 175

<DNGD(D

180 170

BINDING ENERGY,eV160

0

168.5

180 170BINDING ENERGY, eV

160

140 PHYSICAL ELECTRONICS

T-1-1-1-1-1-1-r

4d

169.2

»»»»»»> »»>>»»»»HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

Page 144: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

<(<»<»<PY HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY Erbium, Er Number 68

160

160

N(E)

I I 1 1 1 1 1 1 1

Al Ka _

o

ylEr 4s —and

)ErtM45N45N45)

V Er 4pVa\ A Er(M45N45V)

\ Er4d

xyiEr(M5VV)

\ y \ Er(M4VV)

<E1 1 1 1 III!

Er 5p A

'1000 900 800 700 600 500 400BINDING ENERGY, eV

300 200 100 0

PERKIN-ELMEH 141

Page 145: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

1)1)1Hafnium, Hf

))))))))))Atomic 7Q

Number t £L

COMPOUND 4f% BINDING ENERGY, eV10 15 20

REF.)

CDW1

HfHfF<

210

Hf02Hf4(OH)Balanine8CI8- 12H20

4d5/2 BINDING ENERGY, eV215 220

NGDKNP

25

142 PHYSICAL ELECTRONICS

)))))))))))))))HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

1.55

515BINDING ENERGY, eV

1000

Page 146: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

< <PYi i < i < * < * i <

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

1000 900 800

I , < i « t i < « • ' « < * ' 'Hafnium, Hf Number 72

Hf 4d

Hf 4d

700 600 500BINDING ENERGY, eV

400 300 200 100 0

PERKIN-ELMER 143

Page 147: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»»»»»»>>»»>>Tantalum, Ta Number 73COMPOUND

204f7/z BINDING ENERGY, eV

25

TaTaTa

ias,JaSj _TaSi2Ta5Si3KTa03

r.--; r.ÿuc:

ÿ"aB1*5TaCi,TaF5K2TaF7

:P%'. ;-V.'•' ' 'T'

:.g-'

30REF.

i

<DRH2MSCRH2MSCMSCMSCMSCMSCMSCNGDMSCMSCMSCMSC

<D144 PHYSICAL ELECTRONICS

I I t t I t I t ) t t t ) t ) )HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

25BINDING ENERGY. eV

Page 148: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

<<<<I<4<4<<<<<<<<<<<<<<<<<<<<<Y . HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

Tantalum, Ta AlomicNumber

i

Al KaTa 4fTa 4d,

Ta 4d:

\- O

Ta 4s

i

1000 900 800 700 600 500BINDING ENERGY, eV

400 300 200 100

PERKIN-ELMER 145

Page 149: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»»>»>»»»»»»»»Tungsten, W Atomic ~7/\

Number f 4

COMPOUND 4f% BINDING ENERGY, eV30

REF.35 40

wwww

111

WBWC ' . 1WCws2WN

1i

wo2.......' .

1W02WCI4(PMe2Ph)2WCI4(PEt3)2k2wci6

iÿi

- -

W03 1wo3 .....IJ ; IW03 ..ÿwo3 1

1 -/ •

wo3wo3wo3

11

H2W04LI.WO. .L ;• -V. .NiW04 -• 'i

r*i> .

rr1?.t.'

ai2(W04)3ai2(W04)3(NH4)6W7024-4H20

1

WBr. ' '? -y 'ÿ ÿ ':0?Y- ÿ

& mmmmWOCI4 .

1i

$

146 PHYSICAL ELECTRONICS

»»» >*»» »>»»>»»•HANDBOOK OF X-RAY PHOTOELECTHON SPECTROSCOPY

45

_1_I_I_

L.

35BINDING ENERGY,eV

w

_l_

I-1-L.

25

Page 150: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

4 4 4)PY

f I t I 4 4 4 4 4 4 4 4 4 4 4 4 4HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

1000 900 800

4 4 4 4 4 4 4 4 4 4

Tungsten, W Number 74

Al Ka

700 600 500BINDING ENERGY, eV

400 200 100 0

PERKIN-ELMER 147

Page 151: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

Rhenium, Re ÿ 75COMPOUND

ReReReCiN2(Ph2PCH2PPh2)2ReCIN2(PMe2"Ph)4 " '

ReOCI3(PPh3)2ReCIN2(PMe2Ph)4 .ReCI2(PMe2Ph)4ReCI3(PMe2Ph)3ReCI4(PMe2Ph)2ReCI4(Et3P)KjP.eCIs ÿ r.k2ReCI8KRe04 .'-VV;

4f% BINDING ENERGY, eV38 43

y.

ÿ sv"

48

REF.i

<DFFFFLBLBLBLBLBLBCH1W1

CP148 PHYSICAL ELECTRONICS

» t > > > » I » ) > » > > I > >HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY ,

i

44BINDING ENERGY, eV

Page 152: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

(I n »«««<<<« < ««(<<<<,PY HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

' N(E)

1000

<X>900

Re 4s

Rhenium, Re Atomic "7CNumber f O

800 700 600 500 400BINDING ENERGY, eV

Re 4d

Re 4d3

Re 4p3

%

300

Al Ka

Re 4f

Re 4f:5/2\

%

200 100 0

PERKIN-ELMER 149

Page 153: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>>>>>>Iridium, Ir Number 77

»»»»»»»COMPOUND

604f% BINDING ENERGY, eV REF.

65 70

IrIrIrIr(PPh3]Ir(PPh3],Ir(PPh3]Ir(PPh3)Ir(PPh3)

2CIN22CI02(CO)2CI(CO)22I02(C0)2CI(CO)(C2F4)

Ir(PMe2Ph)3CI3Ir(PPh3)2CI[C2(CN)4]KIr2(CO)4CI4K2Ir2(CO)4CI5 ... .Ir(PMe2Ph)2CI4Ir(PEt3)2CI4IrCI,;Ir(CO)3CI•Ir (ethylenediamine)3I3ÿIr (ethylenediamine)3(SCN)3_Ir (ethylenediamine)3(N02)3Ir (ethylenediamine)3CI3Ir (ethylenediamine)3(N03)3

rK3IrBr6 ' .....--••••••-

~K3lrCI8!K2IrBr6 '

K3Ir(CN)6K2IrCI3

J<2IrCI6:K2IrC!s "

;K3Ir(N02)6:(NH4)3IrCI6(NH4)2IrCI6KIrCI5(NO)

I

150 PHYSICAL ELECTRONICS

» »» >»»»»»>»»»»>HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

N(E)

BINDING ENERGY, eV

10C

Page 154: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY Iridium, Ir Number 77

N(E)

0

Al KaIr 4f

Ir 4f,%

%

y1000 900 800 700 600 500

BINDING ENERGY, eV400 300 200 100

PERKIN-ELMER 151

Page 155: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

z<I

ooo

LU

zLU

CMO>

U-LUcr

>0>

ocrUJzLU

ozQzCD

CD CD< <exaroocrccxcrcrxo

m a: cr cr5 < 2 2 2 oo > o > 9 o o o

Q-Q- >cl>>clclcocl mm —' —'cccnirLUiiJixÿuJiÿLiJLiJ-iLUir-imcnoo

Qz

oa.5Oo

J i

ri. ':- '4

i .

i " "•

I

I"

V ÿ#,:;.»# '•*»4

!•'.|. :'•••. t. • •. -»l 5

>pff

ÿ

ÿ i

.c _cCL CLm a

cl mm

C< Mrvi

<N 0o o

c* nO 2

<n r*

r>3 _c

n m

n nm cl CL CLm m m mÿ*-'

0- CL-»—> .+_<

CL CL

.C OT -T

X Xr* cn N M <N *

LvL;OiCS ;

a „"i o a O O O Qÿ_cj n

Tf x .n r* r* rj n

T i*-noor r r

rsi r» o

pr no n r>

_ —rlr JT- - o----- ' -t

CL CL CL X X X X Q- X LU O O oX X CL O Q-ÿX m ma,g. £ £ O CL O O «CL CL CL CL. CL CL DL CL CL CL *:.X CL ÿ clcl S-;!

<D to CO . QJ

O O O 2 UJ

SEt-.'1®?

CL bcC CL ©

COozoGC

<o>-I

CMIX)

Page 156: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

( | < ( I I ÿ I I ' ÿ 1 ÿ 1

Platinum, Pt Number 78

Mg Ka

500 400BINDING ENERGY, eV

300 200 100 0

PEHKIN-HLMER 153

Page 157: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

> ». » ( > > > I ÿ » > » )Gold, Au najs;79

COMPOUND 4f7/j BINDING ENERGY, eV REF.80 85 90

Au I JHBAu r FKWAu

' ... .... MKLLPY

AgAufeMr '

aiau2 '-v'- *• -ÿ vAljAu

..... -- — ii

WHPFKWFKW

AI2Au 1 WHPGa2Au

ÿi1 WHP

SnAuÿppy; . . • . . ..AuCN ra .

". ...

, FHPFHPKI2

AuCI KI2NaAuCI, i i KI2

<E154 PHYSICAL ELECTRONICS

ÿ ÿ ÿ ÿ ÿ ÿhaniÿook x-r«Aho. .Alec.ÿon Sr !ctru.ÿcop< ÿ ÿ ÿ

87BINDING ENERGY,eV

t1C

Page 158: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY)PY

77

i «»<«<<<< < 'Gold, Au Number 79

MgKaAu 4f7A

Au4d

Au4d

Au 5p3/.

500BINDING ENERGY, eV

100 0

PERKIN-ELMER 155

Page 159: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»»»»»»»»>>»»Mercury, Hg Number 80COMPOUND

HgHgHg

4f% BINDING ENERGY, eV REE.98 103 108

CPSMBBM

<X>156 PHYSICAL ELECTRONICS

»>>»»>»»»»>»»>»»HANDBOOK OF X-BAY PHOTOELECTRON SPECTROSCOPY (

99.7

103BINDING ENERGY, eV

113

i

i

Page 160: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I \OPY HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

<(<<»<

93

1000 900

Mercury, Hg Atomic 0ÿNumber OU

Mg Ka

Hg 4p3

Hg 4py

800 700 600 500BINDING ENERGY, eV

400 300 200 100 0

PERKIN-ELMER 157

Page 161: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

Thallium, 11I K > I I l l l I

Atomic W"iNumber UI

COMPOUND 4f% BINDING ENERGY, eV REF.115 120 125

TI,Si \

158 PHYSICAL ELECTRONICS

» » ÿ » » >.......)>>>.>>.. > L » » ÿHANUdOOK OF X-RAr PHOTDELECT RON SPECTROSCOPY

122BINDING ENERGY, eV

Page 162: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY Thallium, T! Atomic Q-fNumber O I

Mg

1000 900 800 700 600 500 400 300 200 100 0BINDING ENERGY, eV

PERKIN-ELMER 159

Page 163: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>»»»»»»»»»»»>»»Lead, Pb Atomic OQ

Number

COMPOUND 4f

i; ;

135Vz BINDING ENERGY, eV REF.

140 145

PbPbPbPbPbPb ;PbTePbSePbSF>bS 1,Ph<Pb nPblj ....._iLPbOPbOPbOPbO "pb3o4' ;

.Pb30PbOjPb02Ph3PbCI

PbF2

I

OLKMBMMWMSFSKOWSFSSFSSFSMVMVMVKOW0MVTTMVKOWKOWMVMVMVMV

<x>160 PHYSICAL ELECTRONICS

>>>>>>>>>>>>>>HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

Pb136.6

4.94

150 140BINDING ENERGY,eV

130

PbO137.5

4.9'

130150 140BINDING ENERGY, eV

Page 164: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I ( <OPY

130

130

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

N(E)

1000

<D900

1 1

Pb(NOO)

1 1N7OJ5O45

1--1— ÿ 1

1160.45

NgOasOas

1157.15

' > I 1 1 1 * 1

\ x0.1

1 1

1150

y>* 0 yVn

800 700 600 500 400BINDING ENERGY, eV

300

Lead, Pb Alomic QONumber fi/

Pb 4f

Pb 4f %

% •

Mg Ka

Pb 5d

Pb 5p

J.200 100 0

PERKIN-ELMER 161

Page 165: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I » > I '»Bismuth, Bi

>»»»»>»>»Atomic

Number 83COMPOUND

1554f% BINDING ENERGY, eV REF.

160 165

BiBiBiBY-;rBiBiBi2Te3Bi2Se3Bi2S3Bi2S,

"A.

ISb, v.II#S|':§r2o3Bi203BijOj- 2H20BijMoOinadiu3(BiO)2Crfo7ÿÿlÿ;ÿBi2Ti207BiOCIBi2(S04)3-H20BiF.

'.f "

7

i

7~.

$

162 PHYSICAL ELECTRONICS

»»» >»»»>>»»»>>>>HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

160BINDING ENERGY, eV

Page 166: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

(<<<<<>y HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

((<«<<<<<*

Bismuth, Bi Number 83

N(E)

150

1000

<D900 800

Ri ArL Bi 4d«

I700 600 500 400

BINDING ENERGY, eV300

Bi 4f

Bi 4f %

%

Mg Ka

Bi 5d

200 100 0

PERKIN-ELMER 163

Page 167: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

) ) I I I I ) ) ) I I I ) )

Thorium, Th Number 90COMPOUND

ThTh

•Th ox".Th ox(ThF4VThF«

_____...

4f% BINDING ENERGY, eV330 335 340

REF.3

(D

FBWW1VLDW1<D

ThTh oxTh ox•ThOjiThOj v

'

.'JhCI4:

Th(OAc4)Th3(P04)4ThBr4-10H2OtTh'u

FBWFBWVLDNGDNMSNMSNMSNMSNMSNMSNMSNMS

5d% BINDING ENERGY, eV80 85

I

164 PHYSICAL ELECTRONICS

III)) )))))))))HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

I

IH>

333.05

OxideOxide

ÿ9.2-

330340350BINDING ENERGY, eV

ThF

336.25

9.3

330340350BINDING ENERGY, eV

Page 168: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

I <:opyi i \ < i t t < < ' * ' *' HANOBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

I « < t < « ' «

330

330 1000 900

<«(<(<<

Thorium, Th Number 90

Th 4f7/Th 4f% %

Mg Ka

Th 4d3/2 Th 4d

Th 5d,

Th 5d

Th 5s

800 700 600 500 400BINDING ENERGY, eV

300 200 100 0

PERKIN-ELMER 165

Page 169: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

» f i » » » >>»»>>»» »Uranium, U Number 92COMPOUND 4f7/j BINDING ENERGY, eV REF.

3752

380 385

u 1 CDu 1 VRPu 1 AT2U./Y ÿ L-v • . 1

ÿ 1FBWFBW

UOj •-'.Til-'"' ; 1 .... AT2U02 1 VRPU02 1 CGu308Im 'V/.r- '< 'ÿ

yO

UF4 y/ .

k2uFs;tff

i' •

'$ÿ

:'•

ji, 1ÿ

1

1

CGCGVRPPMDPMD

.i

jii .

\:i

<J>

i

166 PHYSICAL ELECTRONICS

> » > I t » ) » » ) > I > >HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

II/

377.2

10.85

394 384BINDING ENERGY, eV

374

Page 170: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

PY

<<<<4<<<<<<<<<[ HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

; n(E)

1000 900

<<<<I<<<<<<<<<<Uranium, U Number 92

Mg Ka

U(N67045V)

800 700 600 500 400BINDING ENERGY, eV

300 200 100 0

PERKIN-ELMER 167

Page 171: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»»»!»>»> » »»»»»» »»»»»»» »»»»»»

1. Tables of Auger Parameter DataLine position data from the literature that are in¬cluded along with the elemental spectra for F, Na,Cu, Zn, As, Ag, Cd, In, and Te in Section II arepresented as two-dimensional plots, rather thanthe one-dimensional binding energy charts in¬cluded with the rest of the elements. While thesetwo-dimensional plots are more useful for

chemical state identification, they lack thenecessary space for inclusion of some chemicalstates, and references cannot be included. Thetabulations presented in this section are the basisfor the two-dimensional charts in Section II. Itshould be noted that a number of chemical statesincluded here were not incorporated in the plots.

ACKNOWLEDGEMENTS

Gratitude is expressed to Shell Development Com¬pany for the use of some unpublished energy data,and especially for permission to publish severaltwo-dimensional chemical state plots in a formsimilar to that in the comprehensive paper by C. D.Wagner, L. H. Gale, and R. H. Raymond, submittedfor publication.

168 PHYSICAL ELECTRONICS

Page 172: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

«<»<<»< < I < « * < < 4 <

Fluorine, F Atomic QNumber

Compound 1s kl23l23 a + hu

LiF 684.9 654.9 1339.8LiF* 684.6 655.8 1340.4NaBF4 686.8 653.0 1339.8c4f5> 687.2

'

656.7 1343.9CF0) 689.2 653.1 1342.3(CF2)n 689.1 652.1 1341.2Ni(OOCCF3)2 688.2 653.1 1341.3NaF 684.2 655.2 1339.4MgF2 685.3 654.3 1339.6(nh4)3aif6 684.5 655.4

" 1339.9Na3AIF8* 685.3 654.3 1339.6k.aif* _ . . 7. 685.1 654.4 1339.5Na2SiF6 685.8 653.2 1339.0CoSiF6 685.8 654.5 1340.3CaF2 684.6 655.6 1340.2

"Na2TiFa 7. 77685.1 7;"7655.3 *ÿ"1340.4ÿ•KjTiFe* • "684.8 .'!• 655.9 '* 1340.7f-MnF2*

'

684.6 655.7 . 1340.3"K3FeF6 " ""

683.8 656.2 '1340.0Fe(MPT)PF6a> 686.1 654.3 1340.4NiF2 684.9 655.6 1340.5"NiF2* 684.8 655.8

"

1340.6CuF2 684.1 657.2 1341.3CuF2 684.5 656.4 1340.9

"Omitted from plot because of crowdinga) MPT = C..H,,N, a ligand with three methylpyridine rings.

b) C.F and CF are fluorinated graphite samples.

4 4 4 i 4 4 4 4 4 4 4 4 4 4

Ref. Compound 1s KL23L23 a + hu Ref.

O ZnF2 684.3 655.8 1340.3 GWVV1 ZnF2* 684.8 655.8 1340.6 W3W1 Na2GeF6" 685.7 _ 654.2 1339.9 W1

ÿ—

W1 "i 'SrF2 .............7~T"

684.8 V "" 656.5 1341.3 W1W1 I YF3 685.1 656.0 1341.1 W1

ÿ W3 j Na2ZrF67 . 684.8 655.3 1340.1 W1W1 K2NbF7" 685.2 655.4 1340.6 W1W3 AgF 682.5 659.5 1342.0 GWW3 CdF2 684.4 656.0 1340.4 GW

'ÿ.......W1 "1 CdF2 73~ ""-77 7 684.2 " 656.4 7 . .1340.6 77 W1 ' "

W1 i InF3 '.v.'V . -177' 685.0 656.6 .7r\341.6 .: W1

W1 | NaSnF3* v. : 7'

. 685.1 ;. 654.6 - 1339.7 W1W3 KSbF6......."...............686.4

""654.1

" ......1339.5"

W3W1 CsF 685.7 654.0 1339.7 W1W1 BaF2 683.5 656.4 1340.0 W1

3W3 "1 XaF3 ----ÿ—T684.33ÿr658.2Tÿ1342.5 :;£syW1 ' '

';W1 V ,PrF3 X.7'v : 684.4 657.4 341.8 W1 |VV1 j NdF3* 684.6 -# 657.2 Jÿ'l341.8ÿW1 j

'•""W1 '

SmFj'" * "684.4 """'657.2 1341.6 "'W1

W1 HfF4* 685.2 655.5 1340.7 W1GW K2TaF7* 685.0 655.2 1340.2 W1

" "

W1 7 PbF2 """77 77" ' 683.4 ""'"658.7 '1342.1"

W1 ;

GW ThF4 7- 684.7 657.2 1341.9 Wl IW1 '

poEnKINI-ÿl Ik/terra

Page 173: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»»»»»>»»>>»>»

Sodium, Na Number 11Compound 1s kl22l22 a + hu Ref.

Na 1071.5 994.4 2065.9 KL1Na 1071.8 994.5 2066.3 BSNa ox 1072.5 990.0 2062.5 BSNaF

1071.1 988.8 2059.9 W3NaCI 1071.4 990.4 2061.8 W3NaBr ' 1071.6 990.8 . 2062.4 W3Nal 1071.5 991.4 2062.9 W1NaOAc 1070.8 990.2 2061.0 W3Na2C03 1071.3 990.0 2061.3 W1NaHC03* 1071.1 990.0 2061.1 W1

• NaOOCH* 1070.9 990.0 2060.9 W1:Na2C204 a. i' _y* .1070.6 990.7 ...2061.3 . W1Na thioglycollate* 1071.0 990.6 2061.6 W1Na EDTAa)* 1070.6 990.6 2061.2 W1NaN02* 1071.4 990.0 2061.4 W3

tfNaNOj 1071.2 - 989.6 2060.8 T'ws"vNaBF4 .£?, 1072.5 ' 987.3 2059.8 W3tNa3AI £1071.7 f • : 988.4 £.2060.1 ÿ;£:W3

Na2SiF6 1071.5 987.9 2059.4 ~"W3Na2TiF3* 1071.4 988.7 2060.1 W3Na2GeF6 1071.5 988.3 2059.8 W3

"Omitted from plot because of crowdinga) NaEDTA = Na salt of ethylenediaminetetracetic acidb) Chloramine-T =CH..C,H,SO,NNaCI

<D170 PHYSICAL ELECTRONICS

»>»»»»»»»»»»»»»» »

Compound 1s kl23l23 a + hp Ref.

Na2ZrF„ 1071.4 988.8 2060.2 W3Na zeolite 1071.6 989.0 2060.6 W3

NaP03 1071.6 989.4 2061.0 W3Na2HP04 1071.4 990.1 2061.5 CD

Na2S02* 1071.2 990.4 2061.6 W3Na2S203* . .. 1071.4 990.3 2061.7 W3Na2S204 1071.0 990.8 2061.8 W3Na2S04 1071.0 990.0 2061.0 W3Na benzenesulfonate* 1071.1 989.9 2061.0 W1Chloramine-Tw* 1071.6 989.2 2060.8 W1Na2Cr04 1071.0 991.1 2062.1 W3Na2Cr207* 1071.4 990.6 2062.0 W1 jNaAs02 1070.7

"

990.8 2061.5"

W3Na2Se03 1070.6 991.1 2061.7 W3Na2MoO; 1070.7 990.2 2060.9 W3Na2PdCI4*.

: ""Tf; 1071.6'

990.4 2062.0 W3 ÿ

'.Na2SnO73H20* I"£"£ 1070.9 •, 990.5 2061.4 W1 j:Na2Te04*ÿÿ'.,£££££££? •1070.9J&£ 990.6 £•2061.5 , ; W3 I

Na2W04* 1071.1~

990.6 2061.7'

W3Na2lrCI5-6H20* 1071.7 989.4 2061.1 W3NaBi03* 1071.1 991.1 2062.2 W1

Page 174: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

<<<<<<<<<<<<<<<<I

Copper, Cu Number 29Compound 2PVz l3m45mJ5 a + hu

Cu 932.4 918.6 1851.0Cu* 932.0 919.2 1851.2Cu" 932.4 919.0 1851.4Cu* 932.2 919.2 1851.4Cu* 932.6 918.2 1850.8Cu* 932.5 918.8 1851.3Cu* 932.4 918.8 1851.2AI2Cu 933.6 918.3 1851.9CUjO 932.2 917.4 1849.6CujO* 932.2 917.6 1849.8Cu20* 932.2 916.9 1849.1CuCN • ' 932.9 . 914.7 1847.6CuCI 932.2 915.8 1848.0CuCI 932.4 915.2 1847.6Cu2S 932.3 917.6 1849.9CuC03r" ~

CuO - .... 7934.8 "" 7 916.5 77:; 1851.3 "7..933.5.. ......917.9 .1851.4 %

CuO*' 933.4 918.3 1851.7'CuO*

'

933.0 917.9 1850.9"

CuF2 936.8 915.0 1851.8CuF2 935.9 916.2 1852.1CuSiOj 934.7 915.4 1850.1CuS04 aq 935.3 :>• 916.1. -n 1851.4 JCuCI2*

'

934.2 : 915.7 ÿ 1849.9CuCI2* 935.0 915.3' 1850.3'CuPT(PF6)2a) 933.8 916.1 1849.9

"Omitted from plot because of crowdinga) PT = ligand, C,.H„N„ containing three pyridine rings.

CD

< < <<<4<<<<<<<<

Zinc, Zn Number 30Ref. Compound 2P% l3m45m45 a -f hit Ref.

(!) Zn 1021.4 992.4 2013.8 ©S3 Zn* 1021.7 992.2 2013.9 W3GW Zn* 1021.5 992.7 2014.2 S1MRC '• Zn *

." '

1021.7 992.6 2014.3 CEkpm : Zn* 1021.8 992.0 2013.8 KL2 ÿ

FKW ; Zn* 1021.6 992.0 2013.6 KPMW3 Zn* 1022.1 992.0 2014.1 GWFKW Zn* 1021.9 992.3 2014.2 HF2GW Zn* 1021.4 992.5 2013.9 MDMRC"; ZnO 1021.7 ' 988.8 2010.5 0W3 ] ZnO 1022.5 987.7 2010.2 GW •

W3 ZnO* 1022.5 987.6 2010.0 HF2 :GW

"' 'Zn ox 1021.8 988.2

'

2010.0 W3W3 Zn ox 1021.9 989.1 2011.0 CEW3 Zn acac2 1021.2 987.9 2009.1 W3wi q • ZnF2 . 7 1022.4 •

' 986.7 ?:"2009.1 :,"-W3 "7MRC 4 1 1 ' 2 ' ' : V 1022.2 986.2 S•72008.4 -i.V: GW :<gw ; Zns ; 7;-"" r-qr" "V1022.4 988.2 • " 2010.6 HF2 :

S3 ZnS...

1022.0 989.7"""""2011.7 GWW1 ZnBr2 1023.2 987.5 2010.7 W3GW Znl2 1022.9 988.7 2011.6 GWW1 ; ZnPT(BFj2a,:.Sr?:ÿ7-" 1021.1 " ' 988.5 7ÿ"72009.6" ÿ?•-:• wi "•© q ZnTe

'1022.0 ' 991.3':7; 2011.3 •%'i* HF2 •>

GW "*'iW1W1

PERKIN-ELMER 171

Page 175: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>)>>> I > * * * 1

Arsenic, As Number 33Compound 3d l3m45m45 a + hu Ref.

As 41.3 1225.4 1266.7 W1As 41.3 1226.3 1267.6 RWJAs 41.6 1225.2 1266.8 BWW

"NbAs 40.6 1226.2 1266.8 BWWGaAs ') " Vv' 40.7 1225.6 1266.3 (D

As2Se3 : ÿ 42.8 1223.5 1266.3 BWWAslj 43.3 1223.1 1266.4

'

BWWMeAsI2 43.3 1222.5 1265.8 BWWAs2S3 43.3 1222.2 1265.5 BWW

~As4S4 "42.9 1222.9 1265.8"

BWW"

Ph3As 42.2 1221.3 1263.5 BWW_Ph,AsS " . i-'J V '• 43.9 1220.2

'

1264.1 ... BWWMe3AsS 43.8 1219.5 1263.3 BWWAsBr3 45.1 1218.3 1263.4 BWWAs203 44.2 1219.1 1263.3 BWW

• As203 ~" '44.8 1219.0 .....1263.8' 'W1

ÿ2o5 #£46.0 :£&1217.6 263.6 .V'i.BWW-;NaAs02__..... • I*-T r*3«- *r 'if JMi44-0 1219.6 :'Mi263.6 W1Na2HAs04 45.3 1217.3 ""

1262.6 W1Ph3AsO* 44.1 1219.7 1263.8 BWWPh2AsO(OH)* 44.2 1219.2 1263.4 BWW

?PhAsO(OH);*ÿTpSJkÿ45.0 "J218.6 "•7'.'1263.6 "bww"4BuAsO(OH)2ÿ|SP&44.9 i#1218.5 ÿ1263.4 ÿ' iVBWWt(PioH21)2AsO(OH) 33$g?<t3.8 1219.2 'ÿ#1263.0 bwwMe2AsO(OH) 44.4 1218.6 1263.0 BWWKAsF9a) 47.6 1214.0 1261.6 W1

"Omitted from plot because of crowdinga) Displayed at edge of chart at proper Auger parameter, although true point is off chart.b) 6.0eV added to kinetic energy data on M,N„N„ to obtain kinetic energy of M4N,5N„ line.c) CdO believed hydrated.

CD172 PHYSICAL ELECTRONICS

| I >> I >**>>>> * I > > *Silver, Ag ÿ£'47

Compound 3d5/, m4n45n45 a 4- hu Ref.

Ag 367.9 358.1 726.0 OAg* 368.0 358.4 726.4 W3Ag* 368.1 358.2 726.3 S2Ag* ,4:i:-,.:-i.

ÿ , 368.0 . 357.8b) 725.8""

GW . ÿ

Ag**

367.9 358.0 725.9 FKW :AlAg, : 368.4 . 358.0 726.4 FKW_;Ag20 367.6 356.9b| 724.5 GWAg20 367.7 356.8 724.5 S2AgO 367.2 356.8b| 724.0 GWAg° . ;,™ •:

"367.4 .

"

357.4 '7 724.8'

S2 '\:JAgO " 367.8 ;! 355.7 723.5 W1 -:jAgl ;• 367.8 356.3b> -K-724.1AgOOCCFj 368.6 355.3 723.9 W3Ag2S04 368.1 354.4 722.5 W3Ag2S04

ÿ

_ _ 367.7 _ 355.3b| _ 723.0 _GW"AgF • -''::r™::;::rv;367.5 \ÿ355.5b>ÿ&723.0AgF2 '%Y'355.8b»;-ÿ"722.9 GW

Cadmium, Cd Number 48Compound 3d5/2 m4n45n45 a + hu Ref.

Cd 404.8 383.9 788.7 CDCd* 404.7 383.9 788.6 W3Cd* 404.7 384.2b) 788.9 GWCdTe T 404.8 382.7b)

"

. 787.5 GW !CdSe 405.1 381.7b) ' ,786.8 GW iCdS . .. ' . : 405.1 . ,_381.4b| 4-786.5 ...GW JCdl2 405.2 381.3b| 786.5 GWCdO 404.0 382.5b| 786.5 GWCd(OH)2cl 404.9 380.2 785.1 W1CdF2 405.7 " " 379.1b) ' ""

784.8 GW .CdF2 405.6 379.0 . 784.6 W3

i

Page 176: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

<<I<<4I<4<<<<<<<<<<<<<< < ' ' < 1 ' 1

Indium, In 49 Tellurium, Te *"52Compound 3d5/2 M4N45N45 a + hu Ref. Compound 3ds/j m4n45n45 a + hu Ref.

In 443.6 410.6 854.2 Te 572.7 492.4 1065.1 ®

In 444.0 410.6 854.6 W3 Te 573.2 491.7 1064.9 W3In 443.6 410.9 854.5 LAK Te 572.9 492.0 1064.9 BWIInTe 444.1 '409.4 853.5 W1 ; Ph2Te2 573.7 498.7 1062.4 BWI •

In2Te3 444.3 409.1 853.4 wi ; PhTeI3 575.6 498.4 1064.0 BWIInSe 444.8 408.2 853.0 W1 i Ph2TeI2 575.2 497.8 1062.9 BWIIn2Se3 444.6 408.5 853.1 W1 Et2TeI2 575.1 497.8 1062.9 BWIInS 444.3 408.5 852.8 W1 Me2TeI2* 575.4 497.8 1063.2 BWIIn2S3 _ 444.5 407.5 852.0 W3 TeBr4 576.5 497.5 1064.0 BWIInl3 ÿ "<.-"445.6 "ÿ ÿ 406.0 "851.6 7 ;w3 PhTeBr, "576.4 ;

497.0 **•" 1063.4"

BWIInBr3 445.8 405.0 850.8 " W3 I R*Br- a) 575.0 497.3 1062.3 BWI . iInCI 444.6 405.9 850.5 W3 j (FC6H4)TeBr3* . 576.1 497.2 1063.3 BWI iInCI3 445.8 404.8 850.6 W3 MeCsH4TeBr2* 575.8 496.8 1062.6 BWIln20 444.1 407.0 851.1 W3 BuTeBr3* 576.4 496.7 1063.1 BWIln203 444.7 406.9' 851.6 LAK Ph2TeBr2* 576.0 496.9 1062.9 BWIln203 ; ÿ _ .. "'"444.1 -".5/406.6 sT?•"850.7 i;ÿW3 -P.] • Te02 v :r 575.9 '}--•-'- 497.3 '1£"1063.2 ' & TBWI :]In ox '.7 . •' 445.3 .L'38 .406.4 .in*-;851.7 - : -3W2 Te03 S-L' ÿ 577.1 'V. 495.7 .. 1062.8 %•ÿ v BWI ]

In(OH)3 : 444.8 405.2 . ÿ 850.0' "

W1 j Te(OH)6 576.5 •? ?: 495.7 1062.2 .'TO•rlBWI J

InF3 ""445.8 "404.2 "850.0 .....W3"

Te ox* 576.9 "'496.5 "" "

1063.4 W3(NH4)3InFs 445.4 404.3 849.7 W3 Na2Te04 576.6 496.5 1063.1 W3

TeCI4 576.7 496.3 1063.0 BWIPh2TeCI2 576.0

""" 496.5 '1062.5 BWI j(p-MeOC6H4)TeCI3 576.5 496.1 .1062.6 BWI 1

JTe tu2 Cl2 .. ... 574.1 498.9 1063.0 BWI

!

..iTe tu tm CI* 576.1

"

496.8 1062.9 BWI(NH4)2TeCI* 576.3 497.0 1063.3 BWI(p-MeCaH4)TeOOH 575.9 496.8 1062.7 BWI

"Omitted Irom plot because of crowdinga) R =(PhTe Q )

CDPERKIN-ELMER 173

Page 177: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

)»»»)»»» » » »»»»»»»»> » >»>»»>» » > >I

2. References for Line Energy Informationi

numbers have been used. An asterisk by areference indicates that it contains many datathat were not used in this Handbook. All data havebeen charge referenced to a C1s binding energyof 284.6 eV or a Au4f7/2 binding energy of 83.8 eV.

I

> I

j '

Ii

Line position data from the literature that arepresented with the elemental spectra in Section IIwere obtained from the following references. Thereferences are listed according to the first lettersof the authors' names, to a maximum of threeauthors. In cases of ambiguity, concluding

174 PHYSICAL ELECTRONICS

Page 178: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

<< l< <<<< <<<<<<<<<< 1

A A. Aoki, Japan J. App. Phys. 15, 305 (1976)AC1 G. C. Allen, M. T. Curtis, A. J. Hooper, and P. M. Tucker, J. Chem. Soc.

(Dalton) 1973 1675AC2 G. C. Allen, M. T. Curtis, A. J. Hooper, and P. M. Tucker, J. Chem. Soc.

(Dalton) 1974 1526AT1 G. C. Allen and P. M. Tucker, Inorg. Chim. Acta, 16 41 (1976)AT2 G. C. Allen and P. M. Tucker, J. Chem. Soc. (Dalton) 1973 470B1 T. L. Barr, Chem. Phys. Lett. 43, 89 (1976)B2 A. Barrie, Chem. Phys. Lett. 19, 1 (1973)B3 M. K. Bahl, J. Phys. Chem. Solids 36, 485 (1975)B4 H. Binder, 2. fur Naturforsch. B28 5, 256 (1973)

"BAL G. M. Bancroft, I. Adams, H. Lampe, and T. K. Sham, J. Elect.Spectros. 9, 191 (1976)

BC1 M. Barber, J. A. Connor, M. F. Guest, M. B. Hall, I. H. Hillier, and W. N.E. Meredith, J. Chem. Soc. Far. Disc. 54, 220 (1972)

BC2 M. Barber, J. A. Connor, M. F. Guest, I. H. Hillier, M. Schwarz, and M.Stacey, J. Chem. Soc. Far. II, 69, 551 (1973)

BC3 M. Barber, J. A. Connor, I. H. Hillier, and W. N. E. Meredith, J. Elect.Spectros. 1, 110 (1972)

BC4 T. Birchall, J. A. Connor, and I. H. Hillier, J. Chem. Soc. (Dalton) 19752003

BCD M. Barber, J. A. Connor, L. M. R. Derrick, M. B. Hall, and I. H. Hillier, J.Chem. Soc. Far. II, 69 559 (1973)

BCW Y. Baer, P. H. Citrin, and G. K. Wertheim, Phys. Rev. Lett. 37, 51 (1976)BDT J. H. Burness, J. G. Dillard, and L. T. Taylor, J. Am. Chem. Soc. 97.

6080 (1975)BF K. Burger and E. Fluck, Z. Anorg. Algem. Chem. 408, 304 (1974)

BFM C. Battistoni, C. Furlani, G. Mattogno, and G. Tom, Inorg. Chim. Acta21, L25 (1977)

BGD J. P. Bonnelle, J. Grimblot, A. D. D'Huysser, J. Elect. Spectros. 7, 151(1975)

BHH Y. Baer, P. F. Heden, J. Hedman, M. Klasson, C. Nordling, and K.Siegbahn, Phys. Scr. 1, 55 (1970)

BM J. S. Brinen and J. E. McClure, Anal. Lett. 5, 737 (1972)BMG P. Baybutt, W. N. E. Meredith, M. F. Guest, V. R. Saunders, I. H.

Hillier, and J. A. Connor, Molec. Phys. 25, 1011 (1973)BNS J. R. Blackburn, R. Nordberg, F. Stevie, R. G. Albrldge, and M. M.

Jones, Inorg. Chem. 9. 2374 (1970)BP P. Biloen and G. T. Pott, J. Catal. 30, 169 (1973)BS A. Barrie and F. J. Street, J. Elect. Spectros. 7, 1 (1975)

BWI M. K. Bahl, R. L. Watson, and K. J. Irgolic, J. Chem. Phys. 66 5526(1977), 68, 3272 (1978)

BWW M. K. Bahl, R. D. Woodall, R. L. Watson, and K. J. Irgolic, J. Chem.Phys. 64 1210 (1976)

BZ Y. Baer and Ch. Zurcher, Phys. Rev. lett. 39, 956 (1977)CAB D. T. Clark, I. Adams, and D. Briggs, Chem. Comm. 1971, 603CDB B. Carriere, J. P. Deville, D. Brion, and J. Escard, J. Elect. Spectros.

10, 85 (1977)"Many data not used

<4<<<<I<<<<<

CDH J. A. Connor, L. M. R. Derrick, and I. H. Hillier, J. Chem. Soc. Far. II 70941 (1974) ~'

CE J. E. Castle and D. Epler, Proc. Roy. Soc. A339, 49 (1974)"CEL J. Chatt, C. M. Elson, G. J. Leigh, and J. A. Connor, J. Chem. Soc.

(Dalton) 1976 1352CFK D. T. Clark, W. J. Feast, D. Kiicast, and W. K. R. Musgrave, J. Polym

Sci. 11, 389 (1973)CG D. Chadwick and J. Graham, Nature Phys. Sci. 237, 127 (1972)

CH1 L. E. Cox and D. M. Hercules, J. Elect. Spectros. 1, 197 (1972)CH2 P. H. Citrin and D. R. Hamann, Phys. Rev. B]0, 4948 (1974)CKA D. T. Clark, D. Kiicast, D. B. Adams, and W. K. R. Musgrave, J. Elect.

Spectros. 6, 117 (1975)CKM D. T. Clark, D. Kiicast, and W. K. R. Musgrave, Chem. Comm. 1971,

516CL D. Cahen and J. E. Lester, Chem. Phys. Lett. 18, 109 (1973)CR R. J. Colton and J. W. Rabalais, Inorg. Chem. 15, 237 (1976)

CSC J. C. Carver, G. K. Schweitzer, and T. A. Carlson, J. Chem. Phys. 57,980 (1972)

CT D. T. Clark and H. R. Thomas, J. Polym. Sci. Polym. Chem. 16, 791(1978)

DKM G. Dufour, R. C. Karnatak, J.-M. Mariot, and C. Bonnelle, Chem. Phys.Lett. 42, 433 (1976)

DR T. P. Debies and J. W. Rabalais, Chem. Phys. 20, 277 (1977)ELC J. Escard, G. Leclere, and J. P. Contour, Compt. rendu. 274C. 1645

(1972)EPC J. Escard, B. Pontvianne. and J. P. Contour, J. Elect. Spectros. 6, 17

(1975)F B. Folkesson, Acta Chem. Scand. 27, 287 (1973)

FBW J. C. Fuggle, A. F. Burr, L. M. Watson, D. J. Fabian, and W. Lang, J.Phys. F.: Metal Phys. 4, 335 (1974)

FCF R. Fontaine, R. Caillat, L. Feve, and M. J. Guittet, J. Elect. Spectros.10, 349 (1977)

FHP R. M. Friedman, J. Hudis, M. L. Perlman, and R. E. Watson, Phys. Rev.B8, 2434 (1973)

FKW J. C. Fuggle, E. Kallne, L. M. Watson, & D. J. Fabian, Phys. Rev. B16.750 (1977)

FS H. F. Franzen and G. A. Sawatzky, J. Solid State Chem. 15, 229 (1975)FUM H. F. Franzen, M. X. Umana, J. R. McCreary, and R. J. Thorn, J. Solid

State Chem. 1J, 363 (1976)FWF J. C. Fuggle, L. M. Watson, D. J. Fabian, and S. Affrossman, J. Phys.

F.: Metal Phys. 5, 375 (1975)"GCH R. C. Gray, J. C. Carver, and D. M. Hercules. J. Elect. Spectros. 8, 343

(1976)*GHH U. Gelius, P. F. Heden, J. Hedman, B. J. Lindberg, R. Manne, R.

Nordberg. C. Nordling, and K. Siegbahn, Phys. Scr. 2, 70 (1970)*GM S. O. Grim and L. J. Matienzo, Inorg. Chem. 14, 1015 (1975)

GSM C. J. Groenenboom, G. Sawatzky, H. J. deL. Meijer, and F. Jellinek, J.Organometall. Chem. 7§, C4, (1974)

PERKIN-ELMER 175

Page 179: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

» » >»>>»»>»>>ÿ

GW S. W. Gaarenstroom and N. Winograd. J. Chem. Phys. 67, 3500 (1977)GZF P. A. Grutsch, M.V. Zeller, and T. P. Fehlner, Inorg, Chem. 12, 1432

(1973)HB W. B. Hughes, and B. A. Baldwin, Inorg. Chem. 13, 1531 (1974)

HBB J. Hedman, Y. Baer, A. Berndtsson, M. Klasson, G. Leonhardt, R.Nilsson, and C. Nordling, J. Elect. Spectros. 1, 101 (1972)

HF1 R. Hoogewigs, L. Fiermans, and J. Vennik, J. Elect. Spectros. 11, 171(1977)

HF2 R. Hoogewijs, L. Fiermans, and J. Vennik, J. Microsc. & Spectros.Electron. 1, 109 (1976)

"HHJ D. N. Hendrickson, J. M. Hollander, and W. I.Jolly, Inorg. Chem. 9,612 (1970)

HJG K. Hamrin, G. Johansson, U. Gelius, C. Nordling, and K. Siegbahn,Phys. Scr. J, 277 (1970)

HKM G. Hollinger, P. Kumurdjian, J. M. Mackowski, P. Pertosa, L. Porte,and Tran Minh Due, J. Elect. Spectros. 5, 237 (1974)

HKN J. Hedman, M. Klasson, R. Nilsson, C. Nordling, M. F. Sorokina, D. I.Kljushnikov, S. A. Nemnonov, V. A. Trapeznikov, and V. G. Zyryanov,Phys. Scr. 4, 195 (1971)

HS H. Harker and P. M. A. Sherwood, Phil. Mag. 27, 124 (1973)HW J. S. Hammond and N. Winograd, J. Electroanal. Chem. Interfacial

Electrochem. 80, 123 (1977)HVB J. M. Honig, L. L. VanZandt, R. D. Board, and H. E. Weaver, Phys. Rev.

B6, 1323 (1972)HWV S. Hoste, H. Willeman, D. Van de Vondel, and G. P. Van der Kelen, J.

Elect. Spectros. 5, 227 (1974)IIK I. Ikemoto, K. Ishii, S. Kinoshita, H. Kuroda, M. A. A. Franco, and J. M.

Thomas, J. Solid State Chem. 17, 425 (1976)IKI H. Ihara, Y. Kumashiro, A. Itoh, and K. Maeda, Japan J. Appl. Phys.

12, 1462 (1973)JB C. K. Jdrgensen and H. Berthou, "Photoelectron Spectra Induced by

X-Rays of Above 600 Non-Metallic Compounds Containing 77Elements," Det Kongelige Danske Videnskabernes SelskabMatematisk-fysiske Meddelelser 38, 15 (1972) Kdbenhavn

JHB G. Johansson, J. Hedman, A. Berndtsson, M. Klasson, and R. Nilsson,J. Elect. Spectros. 2, 295 (1973)

K K. S. Kim, Phys. Rev. B11, 2177 (1975)KBA K. S. Kim, W. E. Baitinger, J. W. Amy, and N. Winograd, J. Elect.

Spectros. 5, 351 (1974)KBM G. Kumar, J. R. Blackburn, W. E. Moddeman, R.G. Albridge, and M. M.

Jones, Inorg. Chem. 11, 296 (1972)KD K. S. Kim and R. E. Davis, J. Elect. Spectros. 1, 254 (1972)

KGW K. S. Kim, A. F. Gossmann, and N. Winograd, Anal. Chem. 46, 197(1974)

KM K. Kishi and S. Ikeda, Bull. Chem. Soc. Japan 46, 342 (1973)KI2 K. Kishi and S. Ikeda, J. Phys. Chem. 78, 107 (1974)KL1 S. P. Kowalczyk, L. Ley, F. R. McFeely, R. A. Pollak, and D. A. Shirley,

Phys. Rev. B8, 3583 (1973)

176 PHYSICAL ELECTRONICS

KL2 S. P. Kowalczyk, L. Ley, F. R. McFeely, R. A. Pollak, and D. A. Shirley,Phys. Rev. B9, 381 (1974)

KNP L. C. Kharitonova, V. I. Nefedov, L. N. Pankratova, and V. L. Pershin,Zh. Neorg. Kh. 19, 860 (1974)

KOW K. S. Kim, T. J. O'Leary, and N. Winograd, Anal. Chem. 45, 2214 (1973)

KPM S. P. Kowalczyk, R. A. Pollak, F. R. McFeely, L. Ley, and D. A. Shirley,Phys. Rev. B8, 2387 (1973)

KSP M. G. Kaplunov, Yu. M. Shulga, K. I. Pokhodnya, and Yu. G. Borodko,Phys. Stat. Solidi, 73, 336 (1976)

KW K. S. Kim and N. Winograd, J. Catal. 35, 66 (1974)

KWD K. S. Kim, N. Winograd, and R. E. Davis, J. Am. Chem. Soc. 93, 6296(1971)

LAK A. W. C. Lin, N. R. Armstrong, and T. Kuwana, Anal. Chem. 49, 1228 t

(1977)LB G. J. Leigh and W. Bremser, J. Chem. Soc. (Dalton) 1972 1217

LBH G. Leonhardt, A. Berndtsson, J. Hedman, M. Klasson, R. Nilsson, & C.Nordling, Phys. Stat. Sol. 60, 241 (1973)

LFS R. Larsson, B. Folkesson, and G. Schbn, Chem. Scr. 3, 88 (1973)LHJ B. J. Lindberg, K. Hamrin, G. Johansson, U. Gelius, A. Fahlmann, C.

Nordling, and K. Siegbahn, Phys. Scr. 1, 277 (1970)LK L. Lavielle and H. Kessler, J. Elect. Spectros. 8, 95 (1976)

LKM L. Ley, S. P. Kowalczyk, F. R. McFeely, R. A. Pollak, and D. A. Shirley,Phys. Rev. B8, 2392(1973)

LMK L. Ley, F. R. McFeely, S. P. Kowalczyk, J. G. Jenkin, and D. A. Shirley,Phys. Rev. B11, 600 (1975)

LPY I. Lindau, P. Pianetta, K. Y. Yu, and W. E. Spicer, Phys. Rev. B13. 492(1976)

LR T. H. Lee and J. W. Rabalais, J. Elect. Spectros. VI, 123 (1977)

MC N. S. Mclntyre and M. G. Cook, Anal. Chem. 47, 2210 (1975)

MD J.-M. Mariot and G. Dufour, Chem. Phys. Lett. 50, 219 (1977)MEC G. Mavel, J. Escard, P. Costa, and J. Castaing, Surf. Sci 35, 109 (1973)MKL F. R. McFeely, S. P. Kowalczyk, L. Ley, R. A. Pollak, and D. A. Shirley,

Phys. Rev. B7, 5228 (1973)ML C. E. Mixan and J. B. Lambert, J. Org. Chem. 38, 1351 (1973)

MMP G. Maccagnani, A. Mangini, and S. Pignataro, Tetrahedron Lett. 36,3853 (1972)

MMR R. Mason, D. M. P. Mingos, G. Rucci, and J. A. Connor, J. Chem. Soc.(Dalton) 1972 1730

MRC N. S. Mclntyre, T. E. Rummery, M. G. Cook, and D. Owen, J.Electrochem. Soc. 123, 1165 (1976)

*MSA W. E. Morgan. W. J, Stec, R. G. Albridge, and J. R. Van Wazer, Inorg.Chem. 10, 926 (1971)

MSC G. E. McGuire, G. K. Schweitzer, and T. A. Carlson, Inorg. Chem. 12,2451 (1973)

MSV W. E. Morgan, W. J. Stec, and J. R. Van Wazer, Inorg. Chem. 12, 953(1973)

*MTH G. Malmsten, I. Thoren, S. Hogberg, J. E. Bergmark, and S. E.Karlsson; Phys. Scr. 3, 96 (1971) .

•Many data not used J

Page 180: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

( 1 ~ <«<»<<<<<» I f ( < <

MV W. E. Morgan and J. R. Van Wazer, J. Phys. Chem. 77, 96 (1973)MVS W. E. Morgan, J. R. Van Wazer, and W. J. Stec, J. Am. Chem. Soc. 95,

751 (1973)MW I. Matsuura and M. W. J. Wolfs, J. Catal, 37, 174 (1975)

MWI M. Murata, K. Wakino, and S. Ikeda, J. Elect. Spectros. 6, 459 (1975)

MWJ T. E. Madey, C. D. Wagner, and A. Joshi, J. Elect. Spectros. 10, 359(1977)

MWM J. F. McGilp, P. Weightman, and E. J. McGuire, J. Phys. C: Solid StatePhys. 10, 3445 (1977)

"MYG L. J. Matienzo, L. 0. Yin, S. O. Grim, and W. E. Swartz, Inorg. Chem.12, 2764 (1973)

MZ N. S. Mclntyre and D. G. Zetaruk, Anal. Chem. 49, 1521 (1977)*N V. I. Nefedov, J. Elect. Spectros. 12, 459 (1977)

NAB R. Nordberg, R. G. Albridge, T. Bergmark, U. Ericson, J. Hedman, C.Nordling, K. Siegbahn, and B. J. Lindberg, Arkiv Kemi 28, 257 (1968)

NB V. I. Nefedov & I. B. Baranovskii, Zh. Neorg. Khim. 17, 466 (1972)NBA R. Nordberg, H. Brecht, R. G. Albridge, A. Fahlmann, and J. R. Van

Wazer, Inorg. Chem. 9, 2469 (1970)*NBK V. I. Nefedov, Yu. A. Buslaev, A. A. Kuznetsova, and L. F. Yan'kina, Zh.

Neorg. Khim. 19, 1416 (1974)NBM V. I. Nefedov. I. B. Baranowskii, A. K. Molodkin, and V. 0. Omuralieva,

Zh. Neorg. Khim. 18, 1295 (1973)NGD V. I. Nefedov, D. Gati. B. F. Ozhurinskii, N. P. Sergushin, and Ya. V.

Salyn, Zh. Neorg. Khim. 20, 2307 (1975)NH1 K. T. Ng, and D. M. Hercules, J. Am. Chem. Soc. 97, 4169 (1974)

NH2 K. T. Ng, and D. M. Hercules, J. Phys. Chem. 80, 2095 (1976)NKB V. I. Nefedov. Yu. V. Kokunov, Yu. A. Buslaev, M. A. Porai-Koshits, M.

P. Gustyakova, & E. G. Il'in, Zh. Neorg. Khim. 1_8, 931 (1973)NKT Y. Niwa, H. Kobayashi, and T. Tsuchiya, Inorg. Chem. 13, 2891 (1974)

*NMS V. I. Nefedov, A. K. Molodkin, Ya. V. Salyn, O. M. Ivanova, M. A. Porai-Koshits, T. A. Balakaeva, and Z. V. Belyakova, Zh. Neorg. Khim. 19,2628 (1974)

NSB V. I. Nefedov, Ya. V. Salyn, I. B. Baranovskii, and A. B. Nikolskii, Zh.Neorg. Khim. 22, 1715 (1977)

NSC V. I. Nefedov, Ya. V. Salyn, A. A. Chertkov, and L. N. Padurets, Zh.Neorg. Khim. 19, 1443 (1974)

"NSK V. I. Nefedov, E. F. Schubochkina, I. S. Kolomnikov, I. B. Baranovskii.V. P. Kukolev, M. A. Golubnichaya, L. K. Shubochkin, M. A. Porai-Koshits, and M. E. Vol'pin, Zh. Neorg. Khim. 18, 845 (1973)

NSL V. I. Nefedov, Ya. V. Salyn, G. Leonhardt, and R. Scheibe, J. Elect.Spectros. 10, 121 (1977)

"NSM V. I. Nefedov, Ya. V. Salyn, A. G. Mairova, L. A. Nazarova, and I. B.Baronovskii, Zh. Neorg. Khim 19, 1353 (1974)

NZM V. I. Nefedov, I. A. Zakharova, I. I. Moiseev, M. A. Porai-Koshits, N. N.Vargaftik, and A. P. Belov, Zh. Neorg. Khim. 18, 3264 (1973)

OH M. Oku, and K. Hirokawa, J. Elect. Spectros. 8, 475 (1976)OHI M. Oku, K. Hirokawa, and S. Ikeda, J. Elect. Spectros. 7, 465 (1975)OW J. L. Ogilvie and A. Wolberg, Appl. Spec. 26, 402 (1972)

'Many data not used

1 < < i 1 1 1 1 1 t 1 < 1

OYK T. Ohta, M. Yamada, and H. Kuroda, Bull. Chem: Soc. Japan, 47, 1158(1974)

PCL T. A. Patterson, J. C. Carver, D. E. Leyden, and D. M. Hercules, J.Phys. Chem. 80, 1702 (1976)

PFD S. Pignataro, A. Foffani, and G. Distefano, Chem. Phys. Lett. 20, 351(1973)

*PHH M. Pelavin. D. N. Hendrickson. J. M. Hollander, and W. L. Jolly, J.Phys. Chem. 74, 1116 (1970)

PJH A. Platau, L. I. Johansson, A. L. Hagstrom, S. E. Karlsson, and S. B.M. Hagstrom, Surf. Sci. 63, 153 (1977)

PLB S. Pignataro, L. Lunazzi, C. A. Boicelli, R. DiMarino, A. Ricci, A.Mangini, R. Danieli, and D. Emilia, Tetrahedron Letters 52, 5341 (1972)

PMD J. J. Pireaux, N. Martensson, R. Didriksson, K. Siegbahn, J. Riga, andJ. Verbist, Chem. Phys. Lett. 46, 215 (1977)

PNS O. M. Petrukhin, V. I. Nefedov, Ya. V. Salyn, and V. N. Shevchenko, ZhNeorg. Khim. 19, 1418(1974)

*R W. M. Riggs, Anal. Chem. 44, 830 (1972)RBO T. Robert, M. Bartel, and G. Offergeld, Surf. Sci. 33, 128 (1972)RH1 L. Ramqvist, K. Hamrin, G. Johansson, A. Fahlmann, and C. Nordling,

J. Phys. Chem. Solids 30, 1835 (1969)RH2 L. Ramqvist, K. Hamrin, G. Johansson, U. Gelius, and C. Nordling, J.

Phys. Chem. Solids 31, 2669 (1970)RR M. Romand, and M. Roubin, Analusis 4, 309 (1976)

RWJ E. D. Roberts, P. Weightman, and C. E. Johnson, J. Phys. C: SolidState Physics 8, 1301 (1975)

S1 G. Schon, J. Elect. Spectros. 2, 75 (1973)S2 G. Schon, Acta Chem. Scand. 27, 2623 (1973)S3 G. Schon, Surf. Sci. 35, 96 (1973)S4 S. Sommer, Amer. Mineralogist 60, 483 (1975)SA G. A. Sawatzky and E. Antonides, J. de Physique Colloque C4 Suppl.

37 C4-117

SDI J. Sharma, D. S. Downs, Z. Iqbal, and F. J. Owens, J. Chem. Phys. 67,3045 (1977)

SF H. Schultheiss, and E. Fluck, J. Inorg. Nucl. Chem. 37, 2109 (1975)SFS R. B. Shalvoy, G. B. Fisher, and P. J. Stiles, Phys. Rev. B15, 1680

(1977)SGC W. E. Swartz, R. C. Gray, J. C. Carver, R. C. Taylor, and D. M.

Hercules, Spectrochimica Acta 30A, 1561 (1974)SGR J. Sharma, T. Gora, J. D. Rimstidt, and R. Staley, Chem. Phys. Lett. 15,

233 (1972)*SMA W. J. Stec, W. E. Morgan, R. G. Albridge, and J. R. Van Wazer, Inorg.

Chem. 10, 926 (1971)SMB S. Svensson, N. Martensson, E. Basilier, P. A. Mamqvist, U.

Gelius,and K. Siegbahn, J. Elect. Spectros. 9, 51 (1976)

SNF K. Siegbahn, C. Nordling, A. Fahlmann, R. Nordberg, K. Hamrin, J.Hedman, G. Johansson, T. Bergmark, E. S. Karlsson, I. Lindgren, andB. Lindberg, "ESCA, Atomic, Molecular, and Solid State StructureStudied by Means of Electron Spectroscopy," Almqvist and Wiksells,Uppsala, 1967

PERKIN-ELMER 177

Page 181: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»>»»»>))»>>»»>

SPB D. Simon, C. Perrin, and P. Baillif, C. R. Acad. Sci. Paris C241, 283 W1(1976) W2

SRH W. E. Swartz, J. K. Ruff, and D. M. Hercules, J. Am. Chem. Soc. 94, W35277(1972)

STA Yu. M. Shulga, V. N. Troitskii, M. A. Aivazov, and Yu. G. Borod'ko, Zh.Neorg. Khim. 21, 2621 (1976) WHP

ÿ*STH M. Seno, S. Tsuchiya, M. Hidai, and Y. Uchida, Bull. Chem. Soc. Japan WM49, 1184 (1976)

T M. J. Tricker, Inorg. Chem. 13, 743 (1974) WSP*TRL C. A. Tolman, W. M. Riggs, W. J. Linn, C. M. King, and R. C. Wendf, *YN1

Inorg. Chem. 12, 2770 (1973)

TT J. M. Thomas and M. J. Tricker, J. Chem. Soc. Far II 71, 329 (1975)

V N. • G. Vannerberg, Chem. Scr. 9, 122 (1976) YN2

VLD B. W. Veal, D. J. Lam, H. Diamond, and H. R. Hoekstra, Phys. Rev.B15. 2929 (1977)

VRP J. Verbist, J. Riga, J. J. Pireaux, and R. Caudano, J. Elect. Spectros. 5, ZH193 (1974)

VWV D. F. Van de Vondel L. F. Wuyts, G. P. Van der Kelen, and L.Bevernage, J. Elect. Spectros. 10, 389 (1977)

178 PHYSICAL ELECTRONICS

>>>>>>>>>>>C. D. Wagner, Shell Development Company unpublished data.C. D. Wagner, J. Chem. Soc. Far. Disc. 60, 306 (1975)C. D. Wagner, Chapter 7, Handbook of X-Ray and Ultra-VioletPhotoelectron Spectroscopy, D. Briggs, editor, Heyden & Sons,London, 1977R. E. Watson, J. Hudis, and M. Perlman, Phys. Rev. B4, 4139 (1971)

A. Westerhof and H. J. deL. Meijer, J. Organometal. Chem. 1_44, 61(1978)U. Weser, G. Sokolowski, and W. Pilz, J. Elect. Spectros. 10, 429 (1977)

K. B. Yatsimirskii, V. V. Nemoshkalenko, Yu. P. Nazarenko, V. G.Aleshin, V. V. Zhilinskaya, and Yu. D. Taldenko, Dokl. Akad. Nauk 217,1374 (1974)K. B. Yatsimirskii, V. V. Nemoshkalenko, Yu. P. Nazarenko, V. G.Aleshin, V. V. Zhilinskaya, and N. A. Tomashevsky, J. Elect. Spectros. |

1_0, 239 (1977)

M.V. Zeller and R.G. Hayes, Chem. Phys. Lett. 10, 610 (1971)

"Many data not used

Page 182: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

(((((( i f f f n ( (<(<<(<<<<<(<<

III. appendix

Page 183: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

<<<<<<<<<<<<<<<<<<<<<The tables presented in this section of the Hand¬book greatly facilitate the interpretation of ESCAdata. Table 5, a compilation of relative elementalsensitivity factors for the various elements basedon peak areas, will assist in data quantification. Abrief description is included with the table. Tables1 through 4. compilations of photoelectron andAuger line energies, are essential to the inter¬pretation of the ESCA spectrum itself.

The first two tables are comprehensive listings ofline positions on a binding energy scale for all ofthe lines of the various elements that can begenerated by MgKo and AlKa photons. All of thecore photoelectron lines with a binding energygreater than 10 eV plus most of the Auger lineswith the intensity and sharpness to be observableare included. (Additional small Auger lines,displayed in differentiated form, can be found inthe Handbook of Auger Electron Spectroscopy,also published by Physical Electronics.

The energies of the strongest photoelectron linesin Tables 1 and 2 indicate the center of the rangeof energies exhibited by the various chemicalstates of each element, with certain exceptions:1) the elemental state was not included in therange for alkali and alkaline earth metals, 2) theoxygenated halogen anions were not included inthe range for the halogens, and 3) the data for therare gases are for implanted rare gas ions inmetals. The reason for 1) and 2) is that the valuesotherwise shown would be between extremes andwould be characteristic of no chemical state atall. With these exceptions, the ranges shown en¬compass data on all chemical forms. These dataare derived from the literature and from the ex¬perience of the authors.

<<<<<<<<<

After the appropriate center value for the strongphotoelectron line was chosen, the values for theother lines were calculated utilizing averaged linedifference data from the literature and from ourlaboratory. The same was done independently forthe Auger line ranges and energies. Almost all ofthe line energies were calculable from those ex¬perimental data. Some interpolations werenecessary for 3s and 4s lines. For some of theminor lines of the heavier elements, the line sep¬arations in the original table by Siegbahn, et al.*,were used. Because of the large number ofreferences used, they are not enumerated here,except for the extremely helpful and extensive ar¬ticle by Jorgensen and Berthou* which suppliedmany of the data on the line separations that weredifficult to obtain elsewhere.

Tables 3 and 4 are designed to facilitate the iden¬tification of unknown lines in the spectrum. Linesfrom elements that do not occur naturally are notincluded in these tables. Otherwise, Tables 3 and4 are based upon the data in Tables 1 and 2. How¬ever, they include only one Auger line per ele¬ment, and two photoelectron lines which are notboth members of one spin doublet. The lines arethe most intense and sharpest in the spectrum—those most likely to be detected when the ele¬ment is present in trace amounts. In the case of aspin doublet, the number following a line designa¬tion indicates the energy interval, to higher bin¬ding energy, where the less intense member ofthe spin doublet should be found. (This was notdone, however, for 4p doublets because of thevariability and low intensity of the 4p1/2 line nor forthe 4d lines of some rare earths where complexprocesses make the character of the doubletvariable with chemical state.)

•Refer to Section II. 2 (p. 174) for references (SNF and JB).

HDprrDK'lM-cri * * c=m 1Q1

Page 184: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

J »»>>>)>»»>>»>»>»» t >>>>>>>> • 1 *Table 1. Line Positions11' from Mg X-rays, by Element

ElementAtomic

No.Range(eV) 1s 2s 2pt 2p3

Photoelectron Lines 1

3s 3pt 3p3 3d3 3d5 4p> 4p3Range(eV)

Auger Lines

KL,L, KL,L„ KLjjLjjÿ

a1294602

* 246

. 0

8110

• 1"2

.U.6 „

866

642

~2"4;-

„7870

7"1 .

56113191287402531686063

1072

23304164901

119153

.191

1431

' 51l_,

1031 102T.134 133

229 166 165270 201 199319 243 241378 "296 293439 350 347

;J.501 _407 .402565 464 458630 523 515698 586 577

•-c:-r,T "770 '652 ' 641847 723 710

• V- • 927 ' 796 7811009 873 8551Q9S 95.4" 9341196 1045 1022

"1144 1117v

:-!

, - >

"v-ifT

121080

14

779645491332

LjM23M„" LaMnM„°' LjM23M«s LjM„M45 L3Mj3M4j LjM0Mi5" l2m4Sm<5

1717223344

..53626977

'8393

103112124140160"

.-,184„ 207

232256287

,322358

-395431

•1725

. .:_313740

46» 49,56"63 .

697992

"108 "

.128148169189216247280313345

„B106

4543 " fjy' rrr*5?r.rr~nvs-rtv.v55

. 61 ,677789

105124.143.163182208

-J

32.45587089

238 111;269 135'301 .160:331 '183

10"20

576988

110'133'158;181

• 6 " *"CTf\T '! "•"715 * •• . .6 .

7 - ÿÿ604- • 659597

7 548 5425 486 4797 429 422

"7" 368 361;;10 ;1~,305 Vl-* 297.

,-x620 - ...

553541 483 _ 468 _

. ... J...—.,476 410 393408 396 337 317343 329 265 242275 ""ÿ -'•ÿ"* 257 -T .... 1fig

__ÿ"".""162

205 184 113 .82

45j&%;jj;V25 ,51 :tT ÿ .29 • .

.Vv* /OCZ-i ;ÿ &:?ÿ

& ssyÿvisite. -J- :jt

a) Lines enclosed in boxes are the most intense and are the most suitable lor use ol line energies in identifying chemical states.b) For'brevity, 2p3 equals 2ÿ2' 3d5 equals 3d5,2, etc.c) Includes KVV designation when L23 is not a core level.d) Designation is oversimplified.

e) Includes LVV when M levels are not in core, and MVV when N levels are not in core.f) No simple 4p1/2 line exists for this group of elements.g) The 4d doublet for these elements is complex and is variable with chemical state because of multiple! splitting and multielectron processes.

ÿ! i182 PHYSICAL ELECTRONICS

Page 185: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

i ( 1 < < ( ( ( <<<<<< { I—I—( —( —{ —( —( —I—f ÿ ÿ —'

Element Atomic Range Photoelectron Lines2' RangeNo. (eV) 3s 3pt 3p, 3d, 3d, 4s 4p i 4p, 4dn 4d5 4»5 4f f 5s 5pi 5pi 5d, 5ds 6s 6p, 6p, (eV)

41 8 470 379 364 209 206 59 3542 6 508 413 396 233 230 65 3843 544 445 425 257 253 68 3944 4 587 485 463 286 282 77 45') 4

45 4 629 522 498 314 309 83 49" 546 5 673 561 534 .342 337 88 540 4

47 2 718 • 604 573 374 368 97 58'' 4

48 2 772 652 618 412 405 109 68'' 11 549 3 828 704 666 453 445 123 79" 19 750 3 884 757 715 494 486 137 91" 26 25 751 4 946 814 -768 539 530 155 105" 35 34 1052 5 1009 873 822 585 575 171 114" 14 43 14 653 6 1071 930 874 630 619 186 123" 52 50 16 4

54 4 1144 997 936 685 672 209 141" 65 63 19 4

55 2 1064 997 738 724 230 170 158 77 75 2456 2 1137 1062 795 780 254 192 179 92 90

'

2357 1126 851 834 274 210 195 104 101 34 1758 1184 900 882 290 222 207 112 .108 ,. .. 37 18 ....... _ . . ....59 950 930 305 237 218 114«> 38 2060 1001 980 318 248 227 120«) 38 2361 1060 1034 337 264 242 129 38 2262 .. ÿ1110 1083 349 ""283 250 132 41 20 77* 77 " 7-63 -»r' - 1166 1136 366 '289 261 136 34 24 : •:t; " vi.. * "ÿ .•'. •!•*64

ÿÿ ÿ

1186 380 '.301 270 141 ...- •£-..36 ÿ '73721 . " • p.'.'i-'r '.. . -w. .«2 . —-..V-

65 398 317 284 150 42 2866 412 329 293 154 63 2667 431 345 306 161 51 2068 - , ,

"" 451 ""362 320 ~ 169 ... •"*. 61 25• 69 ' -V*' -3--/ . . 470 378 333'-'. 180 '54 ";32 •'26 . - i .v \ir.:+ -"70 "• . Y 483 7 392 ' 342 194] 1851 • .7 •'?- ÿ 55 •".33 ÿ22671

VI

507 412 359 207 1 197 | 58 34 2772 6 537 437 382 224 213 19 17 64 37 3073 8 566 464 403 241 229 27 25 71 45 3774 " r"6 594 491 •' 425 257 245 "36 "'34 77 ~ "47 7*37 x-\75 "> 6 3 628 521 449 277 263 • 45 •43 81 .'44 -,'33 -C-

..76... .3_y". 657 549 ..,.475 .. .294 279 55. J52 .86 .,60."ÿ48 '' r« •

77 4 692 579 497 313 297 65 62 98 65 5378 5 726 610 521 333 316 76 73 105 69 5479 3 763 643 547 354 336 89 85 110 75 5780

" "2 803 681 577 379 359 104" 100 127 '84 ' 6581 2 845 721 608 406 385 122 118 137 100 76 15 1382 3 893 762 645 435 413 143 138 148 107 84 22 1983 4 942 307 681 467 443 164 159 161 120 94 29 2690 3 1168 968 714 677 344 335 290 226 179 94 87 43 26 1892 5 1046 781 739 391 380 325 262 197 104 96 46 29 1993 1086 816 771 414 402 206 101 ..29 ' 1894 1121 850 802 439 427

351216 105 31 18

'"*95 " "*"* " " 883 832 463 449 "216 119 109 31 "1896 919 865 487 473 232 '113 " 32 1897 958 901 514 498 246 120 34 1898 994 933 541 523 124 35 19

Auger Lines

M45N23V M5N,5N<se' M4N4SN4S0>NbMoTc

" FluRbPdAgCdInSnSbTeIXeCs

. "BaLa

.'...CePrNdPm

*7-'-'Sm

ii.Gd _TbDyHo

-77-Er '

rÿwTm

/•>Yb . .LuHfTa

pw .AReÿ'Os :

IrPtAu

r" Hg *

Tl,.Pb

BiThU

"T/NpPu

"TT'7'AmCmBkCI

10881068

10561C33

;0t/10251002979

1008981954928

903 897889 872853 846827 819803 794

.775 765748 737724 711598 684

"671 ' 657 "

632594555519481440402362

...!

" *-*

'V:WM';W5

i1

N;04S045 n9o45o45 n67o45v

11921184

11761169

11621155

1173

11591151

1100"1064

1005970

J

i

Page 186: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>>>>>>>>>>)>>>>>)>>>>>>>>>)>>

Table 2. Line Positions3' from Al X-rays, by Element

ElementAtomic

No.

Li 3Be 4B 5.. C 6N 7O 8F 9Ne 10Na 11Mg 12Al 13Si 14...P 15

4P. <Pj

Photooloctron Linos

3s 3pi 3p} 3dRango

1250

238 7ÿ111 Irt4 A-" ' 358

301 -.160331 .183

Range(eV)

Auger Lines

KLiLt KLiLi3 KL„L„CI

161718

' 19 "

20--21

222324

725-*.v-26 •?ÿ-'ÿ 27 Si

li.33343536

?'37

M£i40

12108048

--810

6.... 6~" ',6:L;.7

757

"T77•10

A. 118

1012 .878724565384

.997859701536350

LjMj.M,," L2M33M,.ÿp 3p lp

L:M,sM15

127012381197

13361304

-.J268_

'.--1236 ...:rii94

1153 *

...... .....1125

110610551000948 * V? ";if

10721017962

ÿ"903

2"i

,1

21.837

781719662

'601.538

•830..775712655

*594 "

715649585

. .-i." : ÿ-L,:>-517 i:i; ; 530 .ÿ•'.>r448tiV. 376 „

300

.tf.Z-j:- ÿy&Vrr.t-

a) Lines enclosed in boxes are the most intense and are the most suitable (or use of line energies in identifying chemical slates.b) For brevity, 2p3 equals 2qÿ2' 3cI5 equals Odÿ. etc.

c) Includes KVV designation when L23 is not a core level.d) Designation is oversimplified.

e) Includes LVV when M levels are not in core, and MVV when N levels are not in core.I) No simple 4p1/2 line exists for this group of elements.g) The 4d doublet for these elements is complex and is variable with chemical state because of multiplet splitting and multielectron processes.h) Often observable, induced by bremsstrahlung.

i

184 PHYSICAL ELECTRONICS •

Page 187: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

(( 1 t < 1 ({ i t 1 t i i i ( 1 1 <<< t * ( * 1 1 < t 1

Element Atomic Range Photoelectron Lines Range Auger LinosNo. (eV) 3s 3p, 3pj 3d, 3d, 4s 4Pi 4pi ÿ4d r 4ds 4'j 41, 5s 5p, 5p, 5d, 5d, 6s 6Pi 6p3 (eV) M<sN23V M,N»sN m4n45n15 m4Sn4Sv M,VV m4vv

Nb 41 8 470 379 364 209 206 59 35 1321 1289Mo 42 6 508 413 396 233 230 65 38 1301 1266Tc 43 544 445 425 257 253 68 39 1280 1241

• Ru 44 4 587 485 463 286 282 77 451 4 1258 1214 - — .Rh 45 • 4 629 522 498 314 309 83 49° 5 1235 1187

. Pd 46 5 673 561 534 342 337 88 541 4 1212 1161Ag 47 2 718 604 573 374 368 97 581 4 1136 1130Cd 48 2 772 652 618 412 405 109 68" 11 5 1112 1105In 49 3 828 704 666 453 445 123 79') 19 7 1086 1079

;Sn ' 50 3 884 757 715 494 486 137 91n 26 25 7 1060 1052. Sb 51 4 946 814 768 539 530 155 105" 35 34 10 1036 1027

Te 52 .5 . 1009 873 822 585 575 171 1141 44 43 14 6 1008 998I 53 6 1071 930 874 630 619 186 123!» 52 50 16 4 981 970

1

Xe 54 4 1144 997 936 685 672 209 141 65 63 19 4 957 944Cs 55 2 1216 1064 997 738 724 230 170 158 77 75 24 931 917

* '

Ba 56 "'2 " 1292 1137 1062 795 780 254 192 179 92 90 23 904 890• La 57 1207 1126 851 834 274 210 195 104 101 34 17 865 i

Ce 58 1271 1184 900 882 290 222 207 112 108 37 . .18 . . 827 |Pr 59 1337 1242 950 930 305 237 218 1148' 38 20 788 **

Nd 60 1299 1001 980 318 248 227 1200> 38 23 752Pm 61 1060 1034 337 264 242 129 38 22 714

V Sm 62 . - 1110 1083 349 "283 **250 "132 ' '41 - -*20 • *r-* 673•'v Eu .. 63 . ; Y : 1166 1136 366 :289 261 136 34 -24 ÿ ' .v.- 635 !ti Gd i_ 64 .JL—. 1219 1186 380 301 270 141 36 •

21 - 1 .V »

A ' . 595 -ÿ ' ."• ÿÿ•7 jTb 65 1279 1244 398 317 284 150 42 28 568 426 265 235Dy 66 1334 1295 412 329 293 154 63 *26 527 375 195 155Ho 67 431 345 306 161 51 20 490 325 142 100

gfEr * 'V 68 ""V •

ÿ>." ' - - • .451 362 .320 169 ÿ

ÿ' ÿ 61 "25 . "7*-Tp- --T- r -~ VT *•" 454 - - 273 f ' 93 T58 *!Tm " 69 :* ÿ

ÿ * . r'— "i* • 470 378 -333 180 54 ~ *32 • '26 ''vU.' : ' • . ? *c • I2ÿYb.£. 70 — j jiJ. .. 483 392 ,>342 A ,194 185 1J21,77-.... 55 _.33 26 -WV. .ÿ u'iilwj

Lu 71 507 412 359 207 [ 197 J 58 34 27Hf 72 6 537 437 382 224 213 19 17 64 37 30Ta 73 8 566 464 403 241 229 27 25 71 45 37

74 ••TT6T - .."594 - "491 *'.'7425 :•257 "245 "736" ~34 77 -'A7 — 37--T

. ...; " p-j'.V - -yrrp > .* """ - ÿ

ii>- :Re 75 - 6 628 .521 .449 '277 - 263 .'45' '43 81 '•'44 33"'* •. ÿ'! - • *V1 7'7'' '':- ;i' iÿ'Os .' •' ,._76 >./*'- ÿ - •3 - 657 --549 - -475 :;294 279 .55 752 .86.•.v60l.48__ 7 • T:,•"•.;*7. ÿf - :

j,..; _J

n7o45o*5 NbO*sO«5 N9;045VIr 77 4 692 579 497 313 297 65 62 98 65 53Pt 78 5 726 610 521 333 316 76 73 105 69 54 1425Au 79 3 763 643 547 354 336 89 85 110 75 57 1417

"80':" TC27' *>* T 803 681 T.7577 -* "379 "359 7.104 s

.100 127 .5r84**",65"77r"~**7?:." *"7;»7. - ~v— ---- a-1409 1406 " " .' *T

S*V-TI ... 81 2 845 _72i 608 ' 406 385 122 118 137 "100 76 ' ' 15 ii13 -X 1402 v 7 -7*. J~vj;Pb • 82 .3 'A.'* 893 v-762 S"645 435 413 .143 138 148ÿ«:"107." 84j." 22 ÿ 19 — »Jvj.—. ":0 L- £.1395 ...r1392Bi 83 4

*"*'942 807 681 "*467 443 164 159 161 *120" ~94 "29 "*" 26 '1388 1384 ""

Th 90 3 1330 1168 968 714 677 344 335 290 226 179 94 87 43 26 18 1333 1238U 92 Jj _ _ 1274 1046 781 739 391 380 325_ 262 197 104 96 46 29 19 1297 1203

-•*£ ÿP" "*93 1327 1086 -816 771 "41*4* '402 - --206 77"'7101 -yjrrr-~*29 :>7.18 T "j -p'iTi*rv.- ÿ * * ' - /> 1 —3

.f'r.Pu 94 r';?yVv . *7 -• 3 •- •••;.1121- 850 802 439 427 ÿ , iv 216 > >105 ÿ 31>;>18 i17 ;y-'tyi

XlV-Am . • 95 . 7SS. -' * * '883 832 "463 449 351 ' -fir 216 '-119 >109 317ÿ18 V ÿ .77;.' ' ' j- * {'Xj

Cm 96 " " 919 "865'"487 473' 232 "113 ""32 18Bk 97 958 901 514 498 246 120 34 18Cf 98 994 933 541 523 124 35 19

PERKIN-ELMER 185

Page 188: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

»ÿ»>>>ÿ > »>»»»»»»»»»> > >)»»»» »

Table 3. Line Positions from Mg X-rays, in Numerical Order

illif

ji.

f! i

r I

17 Hf 4f7 (2) 102 Si 2p3 (1) 206 Nb3ds (3) 359 Lu 4p3 (53) 575 Te3ds (10) 863 Ne 1s23 0 2s 105 Ga3p3 (3) 208 Kr3p3 (8) 359 Hg4d5 (20) 577 Cr2p3 (9) 872 Cd (A)25 Ta4f7 (2) 108 Ce4d5 (4) 213 Hf 4d5 (11) 362' Gd (A) 594 Ce (A) 875 N (A)30 F 2s 110 Rb3ds (1) 229 S 2s 364 Nb3p3 (15) 599 F (A) 882 Ce3ds (18)31 Ge3d5 (1) 113 Be 1s 229 Ta4ds (12) 368 Ag3ds (6) 618 Cd3p3 (34) 897 Ag (A)

34 W4f7 (2) 113 Ge (A) 230 Mo3d5 (3) 378 K 2s 619 13d5 (11) 920 Sc (A)40 V 3p 114 Pr 4d 238 Rb3p3 . (9) 380 U4f7 (11) 632 La (A) 928 Pd (A)41 Ne 2s 118 Tl 4f7 (4) 241 Ar2p3 (2) 385 Tl 4d5 (21) 641 Mn2p3 (11) 930 Pr3d5 (20)43 Re4f7 (2) 119 Al 2s 245 W4ds (12) 396 Mo3p3 (17) 657 Ba (A) 934 Cu2p3 (20)44 As3ds (1) 120 Nd 4d 263 Re4d5 (14) 402 N 1s 666 !n3p3 (38) 954 Rh (A)45 Cr3pa (1) 124 Ge 3p3 (4) 264 Na (A) 402 Eu (A) 670 Mn (A) 961 Ca (A)48 Mn3p3 (1) 132 Sm 4d 265 Zn (A) 402 Sc2p3 (5) 672 Xe3ds (13) 970 U (A)50 I4d5 (2) 133 P2p3 (1) 269 Sr3p3 (11) 405 Cd 3d5 (7) 677 Th4d5 (37) 980 Nd3d5 (21)51 Mg 2p 133 Sr3ds (2) 270 CI 2s 410 Ni (A) 684 Cs (A) 981 Ru (A)52 Os4f7 (3) 136 Eu 4d 279 Os4d5 (15) 413 Pb4d5 (22) 686 F 1s 993 C (A)55 Fe3p3 (1) 138 Pb4f7 (5) 282 Ru3d5 (4) 435 Ne (A) 710 Fe2p3 (13) 1003 K (A)56 Li 1s 143 As3p3 (5) 284 Tb 4p3 (33) 439 Ca 2s 711 Xe (A) 1005 Th (A)57 Se3ds (1) 150 Tb 4d 287 C 1s 440 Sm (A) 715 Sit 3p3 (42) 1022 Zn2p3 (23)61 Co3p3 (2) 153 Si 2s 293 Dy 4p3 (36) 443 Bi4d5 (24) 724 Cs3d5 (14) 1035 Ar (A)62 Ir4f7 (3) 154 Dy 4d 293 K2p3 (3) 445 In3ds (8) 729 Cr (A) 1071 CI (A)63 Xe4d5 (2) 158 Y3d5 (2) 297 Ir4ds (16) 458 Ti 2p3 (6) 737 1 (A) 1072 Na 1s64 Na 2s 159 Bi4f7 (5) 301 Y 3p3 (12) 463 Ru3p3 (22) 739 U4d5 (42) 1082 B (A)67 Ni3p3 (2) 161 Ho 4d 306 Ho4p3 (39) •483 Co (A) 743 O (A) 1083 Sm3d5 (27)69 Br3d5 (1) 163 Se3p3 (6) 309 Rh3d5 (5) 486 Sn3d5 (8) 765 Te (A) 1088 Nb (A)73 Pt 4f 7 (3) 165 S2p3 (1) 316 Pt4d5 (17) 498 Rh3p3 (24) 768 Sb3p3 (46) 1103 S (A)74 Al 2p 169 Er 4d 319 Ar 2s 501 Sc 2s 780 Ba3d5 (15) 1117 Ga2p3 (27)75 Cs4d5 (2) 180 Tm 4d 320 Er4p3 (42) 515 V 2p3 (8) 781 Co2p3 (15) 1136 Eu3d5 (30)77 Cu3p3 (2) 181 Zr3d5 (2) 331 Zr3p3 (14) 519 Nd (A) 784 V (A) 1155 Bi (A)85 Au4f7 (4) 182 Br3p3 (7) 333 Tm 4p3 (45) 530 Sb3ds (9) 794 Sb (A) 1162 Pb (A)87 Zn3p3 (3) 185 Yb4d5 (9) 335 Th 4f7 (9) 531 O 1s 819 Sn (A) 1169 Tl (A)88 Kr3d5 (1) 189 Ga (A) 336 Au4d5 (18) 534 Pd3p3 (27) 822 Te3p3 (51) 1176 Hg (A)90 Ba4d5 (2) 191 B 1s 337 Pd3d5 (5) 553 Fe (A) 834 La3d5 (17) 1184 Au (A)90 Mg 2s 191 P 2s 337 Cu (A) 555 Pr (A) 839 Ti (A) 1186 Gd 3d5 (33)

100 Hg4f7 (4) 197 Lu 4d5 (10) 342 Yb 4p3 (50) 565 Ti 2s 846 In (A) 1192 Pt (A)101 La4d5 (3) 199 CI 2p3 (2) 347 Ca2p3 (3) 573 Ag 3p3 (31) 855 Ni2p3 (18)

An A in parentheses denotes Auger line. Numbers in parentheses are spin doublet separations in electron volts. The sharpest Auger line and the two most intensephotoelectron lines per element are included in the table. For brevity, 2p3 equals 2p3)2, 3d5 equals 3d5/2, etc.

186 PHYSICAL ELECTRONICS

Page 189: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

Table 4. Line Positions from Al X-rays, in Numerical Order17 Hf 4f 7 (2) 110 Rb3d5 (1) 229 Ta4d5 (12) 385 TI4d5 (21) , 677 Th -d5 (37) 1072 Na 1s23 0 2s 113 Be 1s 230 Mo3d5 (3) 396 Mo?p3 i / »

*• / 686 F 1s 1072 Ti (A)

25 Ta4f7 (2) 114 Pr4d 223 n;-,T,,V~>/ 402 N 1s 710 Fe2p3 (13) 1079 In (A)

30 F 2s 118 TI4f7 (4) 241 Ar2p3 (2) 402 Sc2p3 (5) 715 Sn3p3 (42) 1083 Sm3ds (27)34 W4f7 (2) 119 Al 2s 245 W4d5 (12) 405 Cd3ds (7) 716 Co (A) 1105 Cd (A)40 V 3p 120 Nd 4d 263 Re4d5 (14) 413 Pb4d5 (22) 724 Cs3d5 (14) 1108 N (A)41 Ne2s 124 Ge3p3 (4) 265 Tb (A) 422 Ga (A) 739 U4ds (42) 1117 Ga2p3 (27)43 Re4f7 (2) 132 Sm 4d 266 As (A) 439 Ca 2s 752 Nd (A) 1130 Ag (A)44 As3d5 (1) 133 P2pj (1) 269 Sr3p3 (11) 443 Bi4ds (24) 768 Sb3p3 (46) 1136 Eu3ds (30)45 Cr3p3 (1) 133 Sr3d5 (2) 270 CI 2s 445 In3d5 (8) 780 Ba3ds (15) 1153 Sc (A)48 Mn3p3 (1) 136 Eu 4d 279 Os4d5 (15) 458 Ti 2p3 (6) 731 uo 2p3 (15) 1161 Pd (A)50 I4ds (2) 138 Pb4f7 (5) 282 Ru3ds (4) 463 Ru3p3 (22) 786 Fe (A) 1186 Gd3d5 (33)52 Os4f7 (3) 141 Gd 4d 287 C 1s 486 Sn3d5 (8) 788 Pr (A) 1187 Rh (A)55 Fe3p3 (1) 142 Ho (A) 293 K2p3 (3) 497 Na (A) 822 Te3p3 (51) 1194 Ca (A)56 Li 1s 150 Tb 4d 297 Ir4ds (16) 498 Zn (A) 827 Ce (A) 1205 U (A)57 Se3ds (1) 153 Si 2s 301 Y3p3 (12) 498 Rh3p3 (24) 832 F (A) 1214 Ru (A)61 Co3p3 (2) 154 Dy4d 305 Mg (A) 501 Sc 2s 834 La3d5 (17) 1219 Ge2p3 (31)62 Ir4f7 (3) 158 Y3ds (2) 306 Ho4p3 (39) 515 V2p3 (8) 855 Ni2p3 (18) 1226 C (A)63 Xe4d5 (2) 159 Bi4f7 (5) 309 Rh3ds (5) 530 Sb3d5 (9) 863 Ne 1s 1230 Th (A)64 Na 2s 161 Ho 4d 316 Pt4ds (17) 531 0 1s 865 La (A) 1236 K (A)67 Ni3p3 (2) 163 Se3p3 (6) 319 Ar2s 534 Pd3p3 (27) 882 Ce3ds (18) 1244 Tb 3d5 (35)69 Br3d5 (1) 165 S2p3 (1) 320 Er 4p3 (42) 565 Ti 2s 890 Ba (A) 1268 Ar (A)73 Pt4f7 (3) 169 Er 4d 331 Zr3p3 (14) 570 Cu (A) 903 Mn (A) 1295 Dy3d5 (39)74 Al 2p 180 Tm 4d 333 Tm 4p3 (45) 573 Ag3p3 (31) 917 Cs (A) 1301 Mo (A)75 Cs4d5 (2) 181 Zr3d5 (2) 335 Th4f7 (9) 575 Te3ds (10) 930 Pr3d5 (20) 1304 CI (A)77 Cu3p3 (2) 182 Br3p3 (7) 336 Au4d5 (18) 577 Cr2p3 (9) 934 Cu2p3 (20) 1305 Mg 1s85 Au4f7 (4) 184 Se (A) 337 Pd3d5 (5) 595 Gd (A) 944 Xe (A) 1315 B (A)87 Zn3p3 (3) 185 Yb4d5 (9) 342 Yb 4p3 (50) 618 Cd3p3 (34) 962 Cr (A) 1321 Nb (A)88 Kr3d5 (1) 191 B 1s 346 Ge (A) 619 I3ds (11) 970 I (A) 1326 As2p390 Ba4d5 (2) 191 P 2s 347 Ca2p3 (3) 635 Eu (A) 976 O (A) 1336 S (A)90 Mg 2s 195 Dy (A) 359 Lu 4p3 (53) 641 Mn2p3 (11) 980 Nd3d5 (21) 1388 Bi (A)99 Er (A) 197 Lu4d5 (10) 359 Hg4d5 (20) 643 Ni (A) 998 Te (A) 1395 Pb (A)

100 Hg4f7 (4) 199 CI 2p3 (2) 364 Nb3p3 (15) 666 In3p3 (38) 1017 V (A) 1402 TI (A)101 La4d5 (3) 206 Nb3d5 (3) 368 Ag 3d5 (6) 668 Ne (A) 1022 Zn2p3 (23) 1409 Hg (A)102 Si 2p3 (1) 208 Kr3p3 (8) 378 K 2s 672 Xe3d5 (13) 1027 Sb (A) 1417 Au (A)105 Ga3pj (3) 213 Hf4d5 (9). 380 U4f7 (11) 673 Sm (A) 1052 Sn (A) 1425 Pt (A)108 Ce4d5 (4) 229 S 2sAn A in parentheses denotes Auger line. Numbers in parentheses are spin doublet separations in electron volts. The sharpest Auger line and the two most intensephotoelectron lines per element are included in the table. For brevity, 2p3 equals 2p3,2, 3d5 equals Sdÿ, etc.

PEBKIN-ELMER 187

Page 190: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

>>> t >»>>>>»ÿ*>>>•>ÿ>>)ÿ>>>»>> >

Table 5. Atomic Sensitivity Factors (ASF)

IIu.CO 1.00. This table is based upon caicu! ated cross-sections cor- ed has the transmission characteristics of the double-pass"rected for the kinetic energy dependence of the spectrometer cylind 'ical-mirror type analyzer supplied by Physical Electronics.detection efficiency and an average value for the dependence of A Data are for Mg x-rays except for those in parentheses that areon kinetic energy (of section I.5.D). The values are only valid for, calculated for Al x-rays. Otherwise, the atomic sensitivity factorsand should only be applied, when the electron energy analyzer us- for Mg and Al agree within ten percent.

ASF ASF ASF ASFz Element Line (Area) Z Element Line (Area) z Elemenl Line (Area) z Element Line (Area)

3 Li 1s .012 27 Co 2pa> 4.5 49 In 3d5/2 2.85 65 Tba| 3d (26.7)4 Be 1s .039 28 Ni 2pal 5.4 50 Sn 3d5/2 3.2 4d 1.935 B 1s .088 29 Cu 2Pa/2 4.3 51 Sb 3d5/2 3.55 66 Dya) 3d (30.0)6 C 1s .205 30 Zn 2p3/2 5.3 52 Te 3d5,2 4.0 4d 2.037 N 1s .38 31 Ga 2P3/2 6.9 53 I 3d5/2 4.4 67 Hoa) 4d 2.128 0 1s .63 2P3/2 (5.8) 54 Xe 3ds/2 4.9 68 Era> 4d 2.199 F 1s 1.00 32 Ge 2P3T2 9.2 55 Cs 3d5/2 5.5 69 Tma| 4d 2.28

10 Ne 1s 1.54 2Pa/2 (7.2) 56 Ba 3d5/2 6.1 70 Yba) 4d 2.3611 Na 1s 2.51 3d .30 57 La 3d5/2 6.7 71 Lua) 4d 2.45

Na 1s (2.27) 33 As 2P3/2 (9.1) 4da) 1.22 72 Hf 4f 1.5512 Mg 1s (3.65) 3d .38 58 Cea) 3d 12.5 73 Ta 4f 1.75

Mg 2p .07 34 Se 3d .48 4d 1.29 74 W 4f 2.013 Al 2P .11 35 Br 3d .59 59 pra> 3d 14.0 75 Re Af 7/2 1.2514 Si 2p .17 36 Kr 3d .72 4d 1.38 76 Os 4f 7/2 1.415 P 2p .25 37 Rb 3d .88 60 Nda) 3d 15.7 77 Ir ÿtf 7/2 1.5516 S 2p .35 38 Sr 3d 1.05 4d 1.48 78 Pt Af7/2 1.7517 CI 2p .48 39 Y 3d 1.25 61 Pma) 3d 17.6 79 Au A'f 7/2 1.918 Ar 2P3/2 .42 40 Zr 3d5/2 .87

Sma)4d 1.57 80 Hg Af7/2 2.1

19 K 2P3/2 .55 41 Nb 3d5,2 1.00 62 3d 20.3 81 TI 4(7/2 2.320 Ca 2P3T2 .71 42 Mo 3d5;2 1.2 4d 1.66 82 Pb 4(7/2 2.5521 Sc 2P3J2 .90 43 Tc 3d5/2 1.35 63 Eu 3d 23.8 83 Bi 4(7/2 2.822 Ti 2Par2 1.1 44 Ru 3d5/2 1.55 3d (20.2) 90 Th 4(7/2 4.823 V 2Pa/2 1.4 45 Rh 3d5/2 1.75

Gda)4d 1.76 92 U 4f7/2 5.6

24 Cr 2P3/2 1.7 46 Pd 3d5/2 2.0 64 3d 29.425 Mn 2Pa;2 2.1 47 Ag 3d5;2 2.25 3d (22.6)26 Fe 2pa) 3.8 48 Cd 3d5/2 2.55 4d 1.84

rf\a) Variable and complex pattern makes it usually desirable to measure areas of entire doublet region. CD

188 PHYSICAL ELECTRONICS)

Page 191: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

Table 6. Periodic Table of the Elements

1

H

3

Li

11

Ma

19

K

37

Rb

55

Cs

87

Fr

4

Be

12

Mg

20

Ca

38

Sr

56

Ba

88

Ra

21

Sc

39

Y

57

La

89

Ac

22

Ti

40

Zr

72

Hf

23

V

41

Mb

73

Ta

24

Cr

42

Mo

74

W

25

Mn

43

Tc

75

Re

26

Fe

44

Ru

76

Os

27

Co

45

Rh

77

lr

28

Mi

46

Pd

78

Pt

29

Cu

47

Ag

79

Au

30

Zn

48

Cd

80

Hg

5

B

13

A!

31

Ga

49

In

81

TI

6

C

14

Si

32

Ge

50

Sn

82

Pb

7

M

15

P

33

As

51

Sb

83

Bi

8

0

16

s

34

Se

52

Te

84

Po

9

F

17

CI

35

Br

53

I

85

At

2

He

10

Me

18

Ar

36

Kr

54

Xe

86

Rn

58 59 60 61 62 63 64 65 66 67 68 69 70 71

Ce Pr Md Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

90 91 92 93 94 95 96 97 98 99 100 101 102 103

Th Pa U Mp Pu Am Cm Bk Cf Es Fm Md Mo Lw

Page 192: [John F. Moulder] PHI Handbook of XRay Photoelectron Spectroscopy

i ii

.('ÿi

-1:!rill

I!'

!• I 1

)» I I >»>>)» t )>)»»>> )

Table 7. Alphabetical Index of the Spectra

>>>»>»>»)

Atomic AtomicName Symbol Number Page Name Symbol Number Page

Aluminum Al 13 - ,• 50 Molybdenum Mo 42 104Antimony Sb 51 120 Nickel Ni 28 80Argon Ar 18 60 Niobium Nb 41 102Arsenic As 33 90 Nitrogen N 7 40Barium Ba • 56 ' 130 Oxygen O 8 42Beryllium Be 4 34 Palladium Pd 46 110Bismuth Bi 83 162 Phosphorus P 15 54Boron B 5 36 Platinum Pt 78 152Bromine Br 35 94 Potassium K 19 62Cadmium Cd 48 114 Rhenium Re 75 148Calcium Ca 20 64 Rhodium Rh 45 108Carbon C 6 38 Ruthenium Ru 44 106Cerium Ce 58 134 Samarium Sm 62 136Cesium Cs 55 128 Scandium Sc 21 66Chlorine CI 17 58 Selenium Se 34 92Chromium Cr 24 72 Silicon Si 14 52Cobalt Co 27 78 Silver Ag 47 112Copper Cu 29 82 Sodium Na 11 46Erbium Er 68 140 Strontium Sr 38 96Fluorine F 9 44 Sulfur S 16 56Gallium Ga 31 86 Tantalum Ta 73 144Germanium Ge 32 88 Tellurium Te 52 122Gold Au 79 154 Terbium Tb - 65 138Hafnium Hf 72 142 Thallium Tl 81 158Indium In 49 116 Thorium Th '• 90 164Iodine I 53 124 Tin Sn 50 118Iridium Ir 77 150 Titanium Ti 22 68Iron Fe 26 76 Tungsten W 74 146Lanthanum La 57 132 Uranium u 92 166Lead Pb 82 160 Vanadium V 23 70Lithium Li 3 32 Xenon Xe 54 126Magnesium Mg 12 48 Yttrium Y 39 98Manganese Mn 25 74 Zinc Zn 30 84Mercury Hg 80 156 Zirconium Zr 40 100

Ml !

190 PHYSICAL ELECTRONICS