35
Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt, 05.03.2008

Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

Embed Size (px)

Citation preview

Page 1: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

Joint Institute for Nuclear Research

Further optimization of the solenoid design

A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov

GSI, Darmstadt, 05.03.2008

Page 2: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

2

Coil and yoke dimensions

Barrel part1490 mm < r < 2300 mm60 mm + 11×30 mm + 60 mm steel; 12 gaps of 30 mm

Upstream doorUpper radius: -1970 mm < z < -1585 mmLower radius: -1970 mm < z < -1734 mm

Downstream door2465 mm < z < 2865 mm5×60 mm steel; 4 gaps of 25 mm

Cryostat-1190 mm < z < 1900 mm

Gaps between the coil and cryostat ends: 170 mm (upstream) and 155 mm (downstream)

In ZEUS: both gaps are 150 mm

Page 3: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

3

Solenoid cross-section

Side view

Page 4: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

4

Solenoid cross-section

Top view

Page 5: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

5

Coil parameters

Coil axial dimensions -1020 mm < z < 1745 mm

Cable cross-section (without insulation)

3.4 mm × 24.6 mm

Design current density 54 A/mm2

Subcoil turns in each of 2 layers 225, 116, 211

Operation current 5.1 kA

Axial magnetic force (coil rated position)

+99 kN

Field inhomogeneity (coil rated position)

ΔB/B < 1.8%

Radial component integral (coil rated position)

|Iup| < 1.72 mm

Page 6: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

6

Magnetic flux density distribution

The flux density in the upstream door is B < 1.7 T and the flux density near it in the downstream direction is B < 1 T.

Page 7: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

7

Magnetic flux density distribution

Page 8: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

8

Field homogeneity

%100),(

0

0

B

BzrB B0 = 2T

|δ| < 1.78%

Page 9: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

9

Radial component integral

0

400

0 ),(/),(),(Z

Zrup dzzRBzRBZRI

|Iup| < 1.72 mm

Page 10: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

10

Dependence of parameterson the coil position

dzBz

BrΔZ [mm] Fz [kN] ΔB/B [%] [mm]

0 +99 -1.78 ÷ 1.61 -1.72 ÷ 1.39

-10 +51 -1.96 ÷ 1.66 -1.52 ÷ 2.00

+10 +148 -1.60 ÷ 1.55 -1.98 ÷ 0.75

Coil configuration is defined using our computer code

Page 11: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

11

Barrel part of the solenoid

Page 12: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

12

Impact of the cable passages across the barrel part of

solenoid

800 x 60 mm2 at the octagon corners

both at the upstream and downstream barrel ends

Axisymmetric model: use of effective magnetic permeability

fill factor: 446.0total

steel

S

Sc

Stotal and Ssteel – cross-sections of barrel beam and its steel part

in the plane crossing the gaps perpendicular to Z

The calculations are not sensitive to the place of the gap on this plane

Page 13: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

13

Impact of the cable passages across the barrel part of

solenoid

Page 14: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

14

Impact of the cable passages across the barrel part of

solenoid

dzBz

BrGaps square Fz [kN] ΔB/B [%] [mm]

No gaps +99 -1.78 ÷ 1.61 -1.721 ÷ 1.390

Gaps +10% +99 -1.70 ÷ 1.71 -1.716 ÷ 1.412

Gaps +100 -1.69 ÷ 1.72 -1.718 ÷ 1.418

Gaps -10% +101 -1.68 ÷ 1.73 -1.720 ÷ 1.423

The passages have small influence on the homogeneity and field integral in central region

Page 15: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

15

Solenoid front view

Page 16: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

16

Solenoid cross-section

Page 17: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

17

Stress-strain analysisdownstream door, inner (first) plate

Fixation scheme Axial displacement [m]

ΔZ < 0.05 mm

Page 18: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

18

0

1

Stress-strain analysisdownstream door (second plate)

Axial displacement [m]

Page 19: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

19

Stress-strain analysisdownstream door (second plate)

Number of welded spacers

Maximal bending deflection [mm]

No spacers 8.1

1 spacer 1.1

3 spacers <0.2

Fixation scheme

Page 20: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

20

Stress-strain analysisdownstream door (second plate)

Equivalent stress

(Von Mises)

σ < 25 MPa

Allowable value:

[σ] = 140 MPa

3 welded spacers

Page 21: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

21

Stress-strain analysisupstream door

The door consists of 8

steel plates of 30 mm

thickness consolidated in

a package

Equivalent stress

(Von Mises)

σ < 3 MPa

Page 22: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

22

1

0

Stress-strain analysisupstream door

Maximal axial displacement

ΔZ < 0.5 mm

Page 23: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

23

Beam deformationin the cross-section

Yoke barrel gravity load G = 2000 kN

Maximal value of the deformation: uy = 1.5 mm, ux = ± 1 mm

gravity load and Px  = 0.25 G, Py  = 0.18 G (seismic load)

Maximal value of the deformation: uy = 1.6 mm, ux = 2 mm

Maximal stress σmax = 35 MPa Maximal stress σmax = 50 MPa

With outer frames

Page 24: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

24

Solenoid coil

Al cylinder

subcoil 1 subcoil 2 subcoil 3

subcoil solid Al Al with slits

(for shear stress reduction)

25 mm

Page 25: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

25

Solenoid coil

Shear stress at the subcoil end face < 5 MPa

1

0

subcoil

solid Al

Page 26: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

26

Solenoid general view

Page 27: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

27

Solenoid general view

Page 28: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

28

Solenoid general view

Page 29: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

29

Solenoid details

Page 30: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

30

Solenoid details

Page 31: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

31

Solenoid details

Page 32: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

32

Page 33: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

33

Yoke beam construction(old dimensions)

Page 34: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

34

Mechanical analysis

Design criteria for the solenoid structural parts produced from metal alloys are chosen in accordance with “Codes of design to calculate the strength of equipment and pipe-lines of nuclear power plants” PNAE-G-002-86 and “Codes of strength calculations for high pressure vessels” (GOST 1429-89).

Design criteria for the yoke and support frames include building norms and codes for steel constructions (Russian) and Eurocodes 3 .

Allowable membrane stress in a solenoid structural part in the normal operation regime has to be chosen as follows:

u

um nn

;min2.0

2.0

where safety coefficients (safety margins) for the coil are

;5.12.0 n 3un

and for the yoke are ;5.12.0 n 6.2un

Allowable bending stress in a structural part in the normal operation regime has to be chosen as follows:

mben 3.1

Page 35: Joint Institute for Nuclear Research Further optimization of the solenoid design A.Efremov, E.Koshurnikov, Yu.Lobanov, A.Makarov, A.Vodopianov GSI, Darmstadt,

35

Beam deformationin the cross-section

Yoke barrel gravity load G = 2000 kN

Maximal value of the deformation: uy = 4.3 mm, ux = ± 2.5 mm

gravity load and Px  = 0.25 G, Py  = 0.18 G (seismic load)

Maximal value of the deformation: uy = 5.8 mm, ux = 9.6 mm

Maximal stress σmax = 115 MPa Maximal stress σmax = 140 MPa

Without outer frames