80
Inverse Problems and Stochastic Volatility Models Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leit ˜ ao and W. Muniz May 1, 2014 Stochastic Volatility Models c J.P.Zubelli (IMPA) May 1, 2014 1 / 69

Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Inverse Problems and Stochastic Volatility Models

Jorge P. Zubelli

IMPA, Rio de Janeiro, BrazilThanks to A. Leitao and W. Muniz

May 1, 2014

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 1 / 69

Page 2: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Outline

1 Intro and Background

2 Problem Statement and Results on Local Vol Models

3 Main Technical Results

4 Numerical Examples w/ Synthetic and w/ Real Data

5 Connections with Exponential Families and Risk Measures

6 Conclusions

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 2 / 69

Page 3: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Historical RemarksOptions and Derivatives

600BC Greek Philosopher and Geometer Thales from Miletus: Optionsand Futures of Olives (for Olive Oil) Call options on olive presses ninemonths ahead of the next harvest

XVI century Dutch fisherman made forward contracts before departing

XVII Netherlands - Options on prices of tulips

XVII century future and option contracts on rice were negociated inAmsterdan and Osaka on rice.

XIX century USA Contracts of to arrive type on flour started to be traded(CBOT) in 1849-1850, standard future contracts on grains wereintroduced in 1865.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 3 / 69

Page 4: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Historical Remarks

1972, CME started to negociate the first future contracts on currencies (6currencies)

Since the mid 80’s the growth of derivative markets overcame the growthof the underlyings

Theoretical Developments: 70’s F. Black - M. Scholes - R. Merton

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 4 / 69

Page 5: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Derivative Contracts

European Call Option: a forward contract that gives the holder the right, butnot the obligation, to buy one unit of an underlying asset for an agreed strikeprice K on the maturity date T . Its payoff is given by

h(XT ) =

XT −K if XT > K ,

0 if XT ≤ K .

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 5 / 69

Page 6: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Derivative Contracts

European Put Option: a forward contract that gives the holder the right to sella unit of the asset for a strike price K at the maturity date T . Its payoff is

h(XT ) =

K −XT if XT < K ,

0 if XT ≥ K .

At other times, the contract has a value known as the derivative price. Theoption price at time t with stock price Xt = x is denoted by P(t,x).

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 6 / 69

Page 7: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Main Contributions

Historical Remarks

Figure: Thales

Thales (Miletus)

L. Bachelier (Paris)

P. Samuelson (Nobel 1970)

F. Black

M. Scholes (Nobel 1997)

R. Merton (Nobel 1997)

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 7 / 69

Page 8: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Main Contributions

Figure: L. Bachelier

Thales (Miletus)

L. Bachelier (Paris)

P. Samuelson

F. Black

M. Scholes

R. Merton

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 8 / 69

Page 9: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Figure: P. Samuelson

Thales (Miletus)

L. Bachelier (Paris)

P. Samuelson

F. Black

M. Scholes

R. Merton

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 9 / 69

Page 10: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Some Background, Terminology, and NotationClassical Black-Scholes-Merton

Under highly simplifying assumptions, the call option price C on an underlyingX is given by

CBS(X , t;K ,T , r ,σ) = XN(d+)−Ke−r(T−t)N(d−) (1)

where N is the cumulative normal distribution.

d± =log(Xer(T−t)/K )

σ√

T − t± σ√

T − t2

. (2)

Some of the Assumptions:

Non dividend paying (just for simplicity)

Complete and Frictionless Markets

Exponential Brownian motion dynamics

Constant Volatility

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 10 / 69

Page 11: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Plot of the Black-Scholes Price of a Call

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 11 / 69

Page 12: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

However...

Volatility is not deterministic! It is even a multi-scale phenomena!

It is not true that the underlying undergoes an Exponential BrownianMotion

Even more so in high frequency contexts...

Implied Volatility: The value of the volatility that should be used in theBlack-Scholes formula to give the quote market price of a derivative.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 12 / 69

Page 13: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

The Concept of Implied Volatility

RecallCBS(X , t;K ,T , r ,σ0) = XN(d+)−Ke−r(T−t)N(d−) (3)

where N is the cumulative normal distribution function and

d± =log(Xer(T−t)/K )

σ0√

T − t± σ0

√T − t2

. (4)

Notion of Implied Volatility: Fix everything else and consider

σ 7−→ CBS(X , t;K ,T , r ,σ)

The implied volatilty is the inverse to this map.IMPLIED VOL: ”wrong number that when plugged into the wrong equationgives the right price”

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 13 / 69

Page 14: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Figure: Implied Volatility Surface- (From Bruno Dupire - IMPA talk)

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 14 / 69

Page 15: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Remarks

1 Implied Vol is only a way of renaming the price (change of variables).2 Crucial to find the connection with the underlying dynamics.3 Crucial to introduce the concept of LOCAL VOLATILITY

Concept of Stochastic Volatility:

dXt

Xt= µtdt + σtdWt

Fundamental Issue: How to model the process σt?One Possibility: Following Dupire... (Local Volatility Model) assume thatσt = σ(t,Xt)Another Possibility: Assume that the process σt = f (Yt) undergoes its owndynamics according to a SDE.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 15 / 69

Page 16: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Figure: Example of Data from IBOVESPA

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 16 / 69

Page 17: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Limitations of Classical Black-Scholes

log-normality of asset prices is not verified by statistical tests

option prices are subjet to the smile effects

volatility tends to fluctuate with time

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 17 / 69

Page 18: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Local Volatility Models

Idea: Assume that the volatility is given by

σ = σ(t,x)

i.e.: it depends on time and the asset price.Easy to check that the Black-Scholes eq. holds.

∂P∂t

+12

σ(t,x)2x2 ∂2P∂x2 + r

(x

∂P∂x−P

)= 0 (5)

P(T ,x) = h(x) (6)

or in the case you have dividends:

∂P∂t

+12

σ(t,x)2x2 ∂2P∂x2 + (r −d)x

∂P∂x− rP = 0

P(T ,x) = h(x)

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 18 / 69

Page 19: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Motivation and Goals

FocusDupire [Dup94] local volatility models

Goal:

Present a unified framework for the calibration of local volatility models

Use recent tools of convex regularization of ill-posed Inverse Problems.

Present convergence results that include convergence rates w.r.t. noiselevel in fairly general contexts

Go beyond the classical quadratic regularization.

Applicationsrisk management

hedging

evaluation of exotic derivatives.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 19 / 69

Page 20: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

The Direct and the Inverse Problem

The Direct ProblemGiven σ = σ(t,x) and the payoff information, determine P = P(t,x ,T ,K ;σ)

The Inverse ProblemGiven a set of observed prices

P = P(t,x ,T ,K ;σ)(T ,K )∈S

find the volatility σ = σ(t,x).

The set S is taken typically as [T1,T2]× [K1,K2].In Practice: Very limited and scarce dataNote: To price in a consistent way the so-called exotic derivatives one has toknow σ and not only the transition probabilities

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 20 / 69

Page 21: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

The Smile Curve and Dupire’s Equation

Assuming that there exists a local volatility function σ = σ(x , t) for which (5)holds Dupire(1994) showed that the call price satisfies

∂T C− 12 σ2(K ,T )K 2∂2

K C + rS∂K C = 0 , S > 0 , t < TC(K ,T = 0) = (X −K )+ ,

(7)

Theoretical: way of evaluating the local volatility

σ(K ,T ) =

√2

(∂T C + rK ∂K C

K 2∂2K C

)(8)

In practice To estimate σ from (7), limited amount of discrete data and thusinterpolate. Numerical instabilities! Even to keep the argument positive is hard.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 21 / 69

Page 22: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

LiteratureVery vast!!!

Avellaneda et al.[ABF+00, Ave98c, Ave98b,Ave98a, AFHS97]

Bouchev & Isakov [BI97]

Crepey [Cre03]

Derman et al. [DKZ96]

Egger & Engl [EE05]

Hofmann et al. [HKPS07, HK05]

Jermakyan [BJ99]

Achdou & Pironneau (2004)

Roger Lee (2001,2005)

Abken et al. (1996)

Ait Sahalia, Y & Lo, A (1998)

Berestycki et al. (2000)

Buchen & Kelly (1996)

Coleman et al. (1999)

Cont, Cont & Da Fonseca (2001)

Jackson et al. (1999)

Jackwerth & Rubinstein (1998)

Jourdain & Nguyen (2001)

Lagnado & Osher (1997)

Samperi (2001)

Stutzer (1997)

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 22 / 69

Page 23: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Problem Statement

Starting Point: Dupire forward equation [Dup94]

−∂T U +12

σ2(T ,K )K 2

∂2K U− (r −q)K ∂K U−qU = 0 , T > 0 , (9)

K = X0ey , τ = T − t , b = q− r , u(τ,y) = eqτU t,X (T ,K ) (10)

and

a(τ,y) =12

σ2(T − τ;X0ey ) , (11)

Set q = r = 0 for simplicity to get:

uτ = a(τ,y)(∂2y u−∂y u) (12)

and initial conditionu(0,y) = X0(1−ey )+ (13)

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 23 / 69

Page 24: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Problem Statement

The Vol Calibration ProblemGiven an observed set

u = u(t,S,T ,K ;σ)(T ,K )∈S

find σ = σ(t,S) that best fits such market data

Noisy data: u = uδ

Admissible convex class of calibration parameters:

D(F) := a ∈ a0 + H1+ε(Ω) : a≤ a≤ a. (14)

where, for 0≤ ε fixed, U := H1+ε(Ω) and a > a > 0.

Parameter-to-solution operator

F : D(F)⊂ H1+ε(Ω)→ L2(Ω)

F(a) = u(a) (15)

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 24 / 69

Page 25: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Setting of the problem

Theorem (H. Egger-H. Engl[EE05] Crepey[Cre03])The parameter to solution map

F : H1+ε(Ω)→ L2(Ω)

is

weak sequentialy continuous

compact and weakly closed

Consequences:

The inverse problem is ill-posed.

We can prove that the inverse problem satisfies the conditions to apply theregularization theory.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 25 / 69

Page 26: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Well-Posed and Ill-Posed Problems

Hadamard’s definition of well-posedness:

Existence

Uniqueness

Stability

The problem under consideration: Ill-posed.Equation:

F(a) = u

Need Regularization:

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 26 / 69

Page 27: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Approach

Convex Tikhonov RegularizationFor given convex f minimize the Tikhonov functional

Fβ,uδ(a) := ||F(a)−uδ||2L2(Ω) + βf (a) (16)

over D(F), where, β > 0 is the regularization parameter.

Remark that f incorporates the a priori info on a.

||u−uδ||L2(Ω) ≤ δ , (17)

where u is the data associated to the actual value a ∈D(F).

Assumption (very general!)

Let ε≥ 0 be fixed. f : D(f )⊂ H1+ε(Ω)−→ [0,∞] is a convex, proper, coerciveand sequentially weakly lower semi-continuous functional with domain D(f )containing D(F).

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 27 / 69

Page 28: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Questions

Theoretical Questions:Does there exist a minimizer of the regularized problem?

Suppose that the noise level goes to zero... How fast does the regularizedgo to the true solution?

Results obtained in joint work with D. Cezaro and O. Scherzer.Published in J. Nonlinear Analysis, 2012 [DCSZ12]

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 28 / 69

Page 29: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Questions

Practical Questions:Can we devise an iterative algorithm to compute the solution?

Does this algorithm converge?

Can we regularize by stopping the iteration judiciously?

We proved:1 A tangential cone condition that ensures convergence of the

Landwebber iteration. Joint work with D. Cezaro. (IMA J. of AppliedMath.)

2 Obtained a Morozov-type criterium to stop the iteration.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 29 / 69

Page 30: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Main Theoretical ResultF(a) = u(a) (15) F

β,uδ(a) := ||F(a)−uδ||2L2(Ω) +βf (a) (16)

Theorem (Existence, Stability, Convergence)

For the regularized inverse problem

F(a) = u (18)

we have:

∃ minimizer of Fβ,uδ .

If (uk )→ u in L2(Ω), then ∃ a seq. (ak ) s.t.

ak ∈ argmin

Fβ,uk (a) : a ∈D

has a subsequence which converges weakly to a

a ∈ argmin

Fβ,u(a) : a ∈D

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 30 / 69

Page 31: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Main Theoretical Result (cont)F(a) = u(a) (15) F

β,uδ(a) := ||F(a)−uδ||2L2(Ω) +βf (a) (16)

Theorem (cont.) NOISY CASE

Take β = β(δ) > 0 and assume

β(δ) satisfies

β(δ)→ 0 andδ2

β(δ)→ 0 , as δ→ 0 . (19)

The seq. (δk ) converges to 0, and that uk := uδk satisfies ‖u−uk‖ ≤ δk .

Then,1 Every seq. (ak ) ∈ argminFβk ,uk , has weak-convergent subseq. (ak ′).2 The limit a† := w− limak ′ is an f -minimizing solution of (15), and

f (ak )→ f (a†).3 If the f -minimizing solution a† is unique, then ak → a† weakly.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 31 / 69

Page 32: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Bregman distance

Let f be a convex function. For a ∈D(f ) and ∂f (a) the subdifferential of thefunctional f at a.We denote by D(∂f ) = a : ∂f (a) 6= /0 the domain of the subdifferential.The Bregman distance w.r.t ζ ∈ ∂f (a1) is defined on D(f )×D(∂f ) by

Dζ(a2,a1) = f (a2)− f (a1)−〈ζ,a2−a1〉 .

Assumption (1)

We assume that1 ∃ an f -minimizing sol. a† of (15), a† ∈DB(f ).2 ∃β1 ∈ [0,1), β2 ≥ 0, and ζ† ∈ ∂f (a†) s.t.

〈ζ†,a†−a〉 ≤ β1Dζ†(a,a†) + β2∥∥F(a)−F(a†)

∥∥L2(Ω)

for a ∈Mβmax(ρ) ,(20)

where ρ > βmaxf (a†) > 0.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 32 / 69

Page 33: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Convergence rates [SGG+08]

Theorem (Convergence rates [SGG+08])

Let F , f , D , H1+ε(Ω), and L2(Ω) satisfy Assumption 1. Moreover, letβ : (0,∞)→ (0,∞) satisfy β(δ)∼ δ. Then

Dζ†(aδ

β,a†) = O(δ) ,

∥∥∥F(aδ

β)−uδ

∥∥∥L2(Ω)

= O(δ) ,

and there exists c > 0, such that f (aδ

β)≤ f (a†) + δ/c for every δ with

β(δ)≤ βmax.

Example: The regularization functional f as the Boltzmann-Shannon entropy

f (a) =∫

Ωa log(a)dx , a ∈D(F) ,

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 33 / 69

Page 34: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Example of the Convergence Rate

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 34 / 69

Page 35: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

How about the assumptions?

Although Assumption 1 may seem too restrictive, the next result reveals that itcan be obtained from rather classical ones:

Proposition

Assume that ∃ an f -minimizing solution a† of F(a) = u and that F is Gateauxdifferentiable at a†.Moreover, assume that ∃γ≥ 0 and ω† ∈ L2(Ω)

∗ with γ∥∥ω†

∥∥ < 1, s.t.

ζ† := F ′(a†)∗ω† ∈ ∂f (a†) (21)

and ∃βmax > 0 satisfying ρ > βmaxf (a†) such that∥∥F(a)−F(a†)−F ′(a†)(a−a†)∥∥ ≤ γDζ†(a,a†) , for a ∈Mβmax(ρ) . (22)

Then, Assumption 1 holds.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 35 / 69

Page 36: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

How about algorithms?NOTE: We have proved

We have also proved a tangential cone condition for this problem, which impliesthat the Landwever iteration converges in a suitable neighborhood. LandweberIteration [EHN96]:

aδk+1 = aδ

k + cF ′(aδk )∗(uδ−F(aδ

k )) . (23)

Discrepancy Principle:∥∥∥uδ−F(aδ

k∗(δ,yδ))∥∥∥ ≤ rδ <

∥∥∥uδ−F(aδk )∥∥∥ , (24)

where

r > 21 + η

1−2η, (25)

is a relaxation term.If the iteration is stopped at index k∗(δ,yδ) such that for the first time, theresidual becomes small compared to the quantity rδ.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 36 / 69

Page 37: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples with Simulated DataDescription of the Examples

Using a Landweber iteration technique we implemented the calibration.

Produced for different test variances a the option prices and addeddifferent levels of multiplicative noise.

The examples consisted of perturbing a = 1 during a period ofT = 0, · · · ,0.2 and log-moneyness y varying between −5 and 5.

Initial guess: Constant volatility.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 37 / 69

Page 38: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples - Exact Solution

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 38 / 69

Page 39: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples - Exact Solution

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 39 / 69

Page 40: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples 1 - noiseless - 4000 steps

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 40 / 69

Page 41: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples 1 - error - 100 steps

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 41 / 69

Page 42: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples 1 - error - 300 steps

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 42 / 69

Page 43: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples 1 - error - 500 steps

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 43 / 69

Page 44: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples 1 - error - 1000 steps

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 44 / 69

Page 45: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples 1 - error - 2000 steps

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 45 / 69

Page 46: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples 1 - error - 4000 steps

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 46 / 69

Page 47: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 47 / 69

Page 48: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples 2 - 5% noise level - 100 steps

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 48 / 69

Page 49: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples 2 - 5% noise level - 200 steps

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 49 / 69

Page 50: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples 2 - 5% noise level - 300 steps

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 50 / 69

Page 51: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples 2 - 5% noise level - 400 steps

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 51 / 69

Page 52: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples 2 - 5% noise level - Stopping criteria

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 52 / 69

Page 53: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 53 / 69

Page 54: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples 2 - 5% noise level - 2000 iterationsToo many!!!

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 54 / 69

Page 55: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Local Vol Surface from Heston Model

Figure: Local Vol Surface associated to Heston Model Calibrated on PBR data

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 55 / 69

Page 56: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Local Vol Surface from Heston Model

Figure: Local Vol Surface associated to Heston Model Calibrated on SPX data

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 56 / 69

Page 57: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Local Vol Surface for WTI Crude Oiltotally nonparametric

Figure: Local Vol Surface associated to Heston Model Calibrated on SPX data

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 57 / 69

Page 58: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples: with Real DataReconstruction of a = σ2/2 with PBR Stock Data (implemented by Vinicius L. Albani/IMPA)

Figure: Minimal Entropy functional / Landweber Method / a priori Implied Vol /maturities: 2010-11

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 58 / 69

Page 59: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Numerical Examples: with Real DataReconstruction of a with PBR Stock Data (implemented by Vinicius L. Albani/IMPA)

Figure: Minimal Entropy functional / Minimization (Levenberg-Marquadt) Method /

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 59 / 69

Page 60: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Comparison Kullback-Leibler × Quadratic RegularizationWTI Data

Figure: Left Kullback-Leibler Regularization and Right Quadratic Regularization

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 60 / 69

Page 61: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Comparison Kullback-Leibler × Quadratic RegularizationWTI Data

Figure: Left Kullback-Leibler Regularization and Right Quadratic Regularization

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 61 / 69

Page 62: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Local Vol Surface for Henry Hub Natural Gas

In the next plots we show an online approach (joint work w/ V. Albani). Weperformed the following:

We consider the evolution of prices of futures and options for several daysbut kept the maturity dates and all the other features of the options.

Calibrated using the extra information.

This is part of an extension of the above results that leads to incorporatingthe flow of information.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 62 / 69

Page 63: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Figure: Local Vol Surface associated to Henry Hub Gas Prices

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 62 / 69

Page 64: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Figure: Local Vol Surface associated to Henry Hub Gas Prices

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 62 / 69

Page 65: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Figure: Local Vol Surface associated to Henry Hub Gas Prices

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 62 / 69

Page 66: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Figure: Local Vol Surface associated to Henry Hub Gas Prices

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 62 / 69

Page 67: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Figure: Local Vol Surface associated to Henry Hub Gas Prices

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 62 / 69

Page 68: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Figure: Local Vol Surface associated to Henry Hub Gas Prices

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 63 / 69

Page 69: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Connection with Statistics and Exponential Families

Regular Exponential Families:family of probability distribution functions pψ,θ : R→ R+ defined by

pψ,θ(s) := exp(s ·θ−ψ(θ))p0(s)

where ψ : R→ R∪+∞ is convex and p0 : R→ R+ is continuous.

Example:Gaussians parametrized by the mean.

The Darmois-Koopman-Pitman Thm: Under certain regularity conditions onthe probability density, a necessary and sufficient condition for the existence ofa sufficient statistic1 of fixed dimension is that the probability density belongs tothe exponential family [And70].

1no other statistic which b can be calculated from the same sample provides anyadditional information as to the value of the parameter

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 63 / 69

Page 70: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Connection with Statistics and Exponential Families(cont.)

Recall the Fenchel Conjugate

Given a function f : X → R∪+∞, the Fenchel dual f ∗X ∗→ R∪+∞ isdefined by

f ∗(x∗) := sup〈x∗,x〉− f (x) | x ∈ X

Theorem (Banerjee et al. [BMDG05])

Let ψ∗ denote the Fenchel transform of ψ, which we assume to bedifferentiable. Using the Bregman distance w.r.t. ψ∗

Dψ∗(a, a) = ψ∗(a)−ψ

∗(a)−ψ∗′(a)(a− a) ,

if we assume that a(θ) ∈ int(dom(ψ∗)), then

pψ,θ(a) = exp(−Dψ∗ (a,a(θ))

)exp(ψ∗(a)

)p0(a) . (26)

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 64 / 69

Page 71: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Connection with Statistics and Exponential Families(cont.)

Example (Exponential Families and their Fenchel conjugates)

For a Gaussian distribution ψ(θ) = ϖ2

2 θ2, then ψ∗(a) = a2

2ϖ2 . For Poissondistribution ψ(θ) = exp(θ) we have ψ∗(a) = a log(a)−a.

ExampleAccording to Example 1, if we use the exponential family associated to Poissondistributions, we obtain Kullback-Leibler regularization, consisting inminimization of

a 7−→ Fβ,uδ(a) :=

∥∥∥F(a)−uδ

∥∥∥2

L2(Ω)+ βKL(a,a) , (27)

whereKL(a,a) =

∫Ω

a log(a/a)− (a−a)dx .

We note that the Kullback-Leibler distance is the Bregman distance associatedto the Boltzmann-Shannon entropy

G(a) :=∫

Ωa log(a)dx . (28)

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 65 / 69

Page 72: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Connection with Statistics and Exponential Families(cont.)

Lemma (3)

Let Ω be a bounded subset of R2 with Lipschitz boundary. Moreover, assumethat F is continuous w.r.t. the weak topologies on L1(Ω) and L2(Ω), respec.

1 Let a,b ∈D(G). Then

‖a−b‖2L1(Ω) ≤

(23‖a‖L1(Ω) +

43‖b‖L1(Ω)

)KL(a,b) . (29)

(Convention: 0 · (+∞) = 0)

2 Let 0 6= a ∈DB(G), then the sets

Mβ,uδ(M) := a ∈DB(G) : F

β,uδ(a)≤M

are τU sequentially compact.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 66 / 69

Page 73: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Connection with Statistics and Exponential Families(cont.)

An important consequence of (29) and Theorem 2 is that∥∥∥aδ

β−a†

∥∥∥L1(Ω)

= O(√

δ) . (30)

Now, let δk be a sequence converging to zero and ak = aδkβk

the respective

minimizers of the Tikhonov functional (16). Take bk = a† for all k ∈ N. Then,from Lemma 2 ∥∥ak −a†∥∥

L1(Ω)→ 0 , as δk → 0 .

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 67 / 69

Page 74: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Conclusions

Volatility surface calibration is a classical and fundamental problem inQuantitative FinanceWe developed a unifying framework for the regularization that makes useof tools from Inverse Problem theory and Convex Analysis andestablished:

1 Convergence and convergence-rate results.2 Convergence of the regularized sol. w.r.t the noise level in L1(Ω)

(when Ω is compact)3 The connection with exponential families.4 The source condition connection with convex risk measures5 Implemented a Landweber type calibration algorithm.

Developed an Online Calibration MethodologyFuture Possibilities:

1 Use a priori asymptotic behavior (e.g.: following Roger Lee’s results for theimplied volatility)

2 Enhance the model to incorporate jumps and perhaps more sofisticatedmodels such as cogarch (for example).

.Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 68 / 69

Page 75: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

THANK YOU FOR YOUR ATTENTION!!!

Collaborators:V. Albani (IMPA), A. de Cezaro (FURG), O. Scherzer (Vienna)

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 69 / 69

Page 76: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

M. Avellaneda, R. Buff, C. Friedman, N. Grandchamp, L. Kruk, andJ. Newman.Weighted Monte Carlo: A new technique for calibrating asset-pricingmodels.Spigler, Renato (ed.), Applied and industrial mathematics, Venice-2, 1998.Selected papers from the ‘Venice-2/Symposium’, Venice, Italy, June 11-16,1998. Dordrecht: Kluwer Academic Publishers. 1-31 (2000)., 2000.

M. Avellaneda, C. Friedman, R. Holmes, and D. Samperi.Calibrating volatility surfaces via relative-entropy minimization.Appl. Math. Finance, 4(1):37–64, 1997.

E. B. Andersen.Sufficiency and exponential families for discrete sample spaces.65:1248–1255, 1970.

M. Avellaneda.Minimum-relative-entropy calibration of asset-pricing models.International Journal of Theoretical and Applied Finance, 1(4):447–472,1998.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 69 / 69

Page 77: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Marco Avellaneda.The minimum-entropy algorithm and related methods for calibratingasset-pricing model.In Trois applications des mathematiques, volume 1998 of SMF Journ.Annu., pages 51–86. Soc. Math. France, Paris, 1998.

Marco Avellaneda.The minimum-entropy algorithm and related methods for calibratingasset-pricing models.In Proceedings of the International Congress of Mathematicians, Vol. III(Berlin, 1998), number Extra Vol. III, pages 545–563 (electronic), 1998.

I. Bouchouev and V. Isakov.The inverse problem of option pricing.Inverse Problems, 13(5):L11–L17, 1997.

James N. Bodurtha, Jr. and Martin Jermakyan.Nonparametric estimation of an implied volatility surface.Journal of Computational Finance, 2(4), Summer 1999.

A. Banerjee, S. Merugu, I.S. Dhillon, and J. Ghosh.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 69 / 69

Page 78: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Clustering with bregman divergences.Journal of Machine Learning Research, 6:1705–1749, 2005.

S. Crepey.Calibration of the local volatility in a generalized Black-Scholes modelusing Tikhonov regularization.SIAM J. Math. Anal., 34(5):1183–1206 (electronic), 2003.

A. De Cezaro, O. Scherzer, and J. P. Zubelli.Convex regularization of local volatility models from option prices:convergence analysis and rates.Nonlinear Anal., 75(4):2398–2415, 2012.

Emanuel Derman, Iraj Kani, and Joseph Z. Zou.The local volatility surface: Unlocking the information in index optionprices.Financial Analysts Journal, 52(4):25–36, 1996.

B. Dupire.Pricing with a smile.Risk, 7:18– 20, 1994.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 69 / 69

Page 79: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

H. Egger and H. W. Engl.Tikhonov regularization applied to the inverse problem of option pricing:convergence analysis and rates.Inverse Problems, 21(3):1027–1045, 2005.

H. W. Engl, M. Hanke, and A. Neubauer.Regularization of inverse problems, volume 375 of Mathematics and itsApplications.Kluwer Academic Publishers Group, Dordrecht, 1996.

B. Hofmann and R. Kramer.On maximum entropy regularization for a specific inverse problem ofoption pricing.J. Inverse Ill-Posed Probl., 13(1):41–63, 2005.

B. Hofmann, B. Kaltenbacher, C. Poschl, and O. Scherzer.A convergence rates result for Tikhonov regularization in Banach spaceswith non-smooth operators.Inverse Problems, 23(3):987–1010, 2007.

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 69 / 69

Page 80: Jorge P. Zubelli - UFSCmtm.ufsc.br/~aleitao/public/slides-cmrs03/slides-zubelli.pdf · Jorge P. Zubelli IMPA, Rio de Janeiro, Brazil Thanks to A. Leitao and W. Muniz˜ May 1, 2014

Variational Methods in Imaging, volume 167 of Applied MathematicalSciences.Springer, New York, 2008.

Stochastic Volatility Models c©J.P.Zubelli (IMPA) May 1, 2014 69 / 69